We can put this back the moment someone requests it. Pain-free garbage
collection for the C language is pretty cool. All it does is overwrite
the return address with a trampoline that calls free(). It's not clear
what it should be named if it's made a public API.
Here's why we got those `Killed: 11` failures on MacOS after modifying
the contentns of the redbean.com executable. If you were inserting a
small file, such as a HelloWorld.html file, then InfoZIP might have
decreased the size of the executable to less than what the Mach-O
section had been expecting.
That's because when zipobj.com put things like time zone data in the
executable, it aligned each zip file entry on a 64-byte boundary, simply
for the sake of readability in binary dumps. But when InfoZIP edited the
file it would rewrite every entry using ZIP's usual 2-byte alignment.
Thus causing shrinkage.
The solution was to reconfigure the linker script so that zip file bits
that get put into the executable at link-time, such as timezone data,
aren't officially part of the executable image, i.e. we don't want the
operating system to load that part.
The original decision to put the linked zip files into the .data section
was mostly made so that when the executable was run in its .com.dbg form
it would still have the zip entries be accessible, even though there was
tons of GNU debug data following the central directory. We're not going
to be able to do that. The .com executable should be the canonical
executable. We have really good tools for automatically attaching and
configuring GDB correctly with debug symbols even when the .com is run.
We'll have to rely on those in cases where zip embedding is used.
See #53
See #54
See #68
- Polyfill ucontext_t on FreeBSD/OpenBSD/NetBSD
- Add tests confirming signals can edit CPU state
- Work towards supporting ZIP filesystem on bare metal
- Add more tinymath unit tests for POSIX conformance
- Add X87 and SSE status flags to crash report
- Fix some bugs in blinkenlights
- Fix llvm build breakage
- Reduce full build latency from ~20s to ~18s
- Bring back silent mode if `make V=0` is passed
- Demodernize utimes() polyfill so it works RHEL5
- Delete some old shell scripts that are no longer needed
- Truncate long lines when outputting builds to Emacs buffers
You can now build Cosmopolitan with Clang:
make -j8 MODE=llvm
o/llvm/examples/hello.com
The assembler and linker code is now friendly to LLVM too.
So it's not needed to configure Clang to use binutils under
the hood. If you love LLVM then you can now use pure LLVM.
You can now use cosmopolitan.h with an ANSI C89 compiler like MSVC. The
Cosmopolitan codebase itself won't support being compiled that way. But
you can build objects that link against Cosmopolitan using any compiler
and you can furthermore use tools like IntelliSense that can't even GNU
See also #40
- Get ASAN working on Windows.
- Deleting directories and then recreating them with the same name in a
short period of time appears to be a no-no on Windows.
- There's no reason to call FlushFileBuffers on close() for pipes, and
it's harmful since it might block indefinitely for no good reason.
- Support deterministic stacks on OpenBSD
- Support OpenBSD system call origin verification
- Fix overrun by one in chibicc string token allocator
- Get all chibicc tests passing under Address Sanitizer
We now have an integration test that runs the amalgamated sources
through a C++ compiler, to prevent the recurrence of such issues.
Fixes#38
Thanks @gbbnfhb for the report!
This change enables Address Sanitizer systemically w/ `make MODE=dbg`.
Our version of Rust's `unsafe` keyword is named `noasan` which is used
for two functions that do aligned memory chunking, like `strcpy.c` and
we need to fix the tiny DEFLATE code, but that's it everything else is
fabulous you can have all the fischer price security blankets you need
Best of all is we're now able to use the ASAN data in Blinkenlights to
colorize the memory dumps. See the screenshot below of a test program:
https://justine.lol/blinkenlights/asan.png
Which is operating on float arrays stored on the stack, with red areas
indicating poisoned memory, and the green areas indicate valid memory.
The libm code from musl wasn't being used since most of these functions
are implemented using x87 which goes faster than a library intended for
risc machines.