linux-stable/include/linux/platform_data/dma-dw.h

80 lines
2.6 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0 */
dmaengine: Driver for the Synopsys DesignWare DMA controller This adds a driver for the Synopsys DesignWare DMA controller (aka DMACA on AVR32 systems.) This DMA controller can be found integrated on the AT32AP7000 chip and is primarily meant for peripheral DMA transfer, but can also be used for memory-to-memory transfers. This patch is based on a driver from David Brownell which was based on an older version of the DMA Engine framework. It also implements the proposed extensions to the DMA Engine API for slave DMA operations. The dmatest client shows no problems, but there may still be room for improvement performance-wise. DMA slave transfer performance is definitely "good enough"; reading 100 MiB from an SD card running at ~20 MHz yields ~7.2 MiB/s average transfer rate. Full documentation for this controller can be found in the Synopsys DW AHB DMAC Databook: http://www.synopsys.com/designware/docs/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf The controller has lots of implementation options, so it's usually a good idea to check the data sheet of the chip it's intergrated on as well. The AT32AP7000 data sheet can be found here: http://www.atmel.com/dyn/products/datasheets.asp?family_id=682 Changes since v4: * Use client_count instead of dma_chan_is_in_use() * Add missing include * Unmap buffers unless client told us not to Changes since v3: * Update to latest DMA engine and DMA slave APIs * Embed the hw descriptor into the sw descriptor * Clean up and update MODULE_DESCRIPTION, copyright date, etc. Changes since v2: * Dequeue all pending transfers in terminate_all() * Rename dw_dmac.h -> dw_dmac_regs.h * Define and use controller-specific dma_slave data * Fix up a few outdated comments * Define hardware registers as structs (doesn't generate better code, unfortunately, but it looks nicer.) * Get number of channels from platform_data instead of hardcoding it based on CONFIG_WHATEVER_CPU. * Give slave clients exclusive access to the channel Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>, Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 18:59:42 +00:00
/*
* Driver for the Synopsys DesignWare DMA Controller
dmaengine: Driver for the Synopsys DesignWare DMA controller This adds a driver for the Synopsys DesignWare DMA controller (aka DMACA on AVR32 systems.) This DMA controller can be found integrated on the AT32AP7000 chip and is primarily meant for peripheral DMA transfer, but can also be used for memory-to-memory transfers. This patch is based on a driver from David Brownell which was based on an older version of the DMA Engine framework. It also implements the proposed extensions to the DMA Engine API for slave DMA operations. The dmatest client shows no problems, but there may still be room for improvement performance-wise. DMA slave transfer performance is definitely "good enough"; reading 100 MiB from an SD card running at ~20 MHz yields ~7.2 MiB/s average transfer rate. Full documentation for this controller can be found in the Synopsys DW AHB DMAC Databook: http://www.synopsys.com/designware/docs/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf The controller has lots of implementation options, so it's usually a good idea to check the data sheet of the chip it's intergrated on as well. The AT32AP7000 data sheet can be found here: http://www.atmel.com/dyn/products/datasheets.asp?family_id=682 Changes since v4: * Use client_count instead of dma_chan_is_in_use() * Add missing include * Unmap buffers unless client told us not to Changes since v3: * Update to latest DMA engine and DMA slave APIs * Embed the hw descriptor into the sw descriptor * Clean up and update MODULE_DESCRIPTION, copyright date, etc. Changes since v2: * Dequeue all pending transfers in terminate_all() * Rename dw_dmac.h -> dw_dmac_regs.h * Define and use controller-specific dma_slave data * Fix up a few outdated comments * Define hardware registers as structs (doesn't generate better code, unfortunately, but it looks nicer.) * Get number of channels from platform_data instead of hardcoding it based on CONFIG_WHATEVER_CPU. * Give slave clients exclusive access to the channel Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>, Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 18:59:42 +00:00
*
* Copyright (C) 2007 Atmel Corporation
* Copyright (C) 2010-2011 ST Microelectronics
dmaengine: Driver for the Synopsys DesignWare DMA controller This adds a driver for the Synopsys DesignWare DMA controller (aka DMACA on AVR32 systems.) This DMA controller can be found integrated on the AT32AP7000 chip and is primarily meant for peripheral DMA transfer, but can also be used for memory-to-memory transfers. This patch is based on a driver from David Brownell which was based on an older version of the DMA Engine framework. It also implements the proposed extensions to the DMA Engine API for slave DMA operations. The dmatest client shows no problems, but there may still be room for improvement performance-wise. DMA slave transfer performance is definitely "good enough"; reading 100 MiB from an SD card running at ~20 MHz yields ~7.2 MiB/s average transfer rate. Full documentation for this controller can be found in the Synopsys DW AHB DMAC Databook: http://www.synopsys.com/designware/docs/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf The controller has lots of implementation options, so it's usually a good idea to check the data sheet of the chip it's intergrated on as well. The AT32AP7000 data sheet can be found here: http://www.atmel.com/dyn/products/datasheets.asp?family_id=682 Changes since v4: * Use client_count instead of dma_chan_is_in_use() * Add missing include * Unmap buffers unless client told us not to Changes since v3: * Update to latest DMA engine and DMA slave APIs * Embed the hw descriptor into the sw descriptor * Clean up and update MODULE_DESCRIPTION, copyright date, etc. Changes since v2: * Dequeue all pending transfers in terminate_all() * Rename dw_dmac.h -> dw_dmac_regs.h * Define and use controller-specific dma_slave data * Fix up a few outdated comments * Define hardware registers as structs (doesn't generate better code, unfortunately, but it looks nicer.) * Get number of channels from platform_data instead of hardcoding it based on CONFIG_WHATEVER_CPU. * Give slave clients exclusive access to the channel Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>, Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 18:59:42 +00:00
*/
#ifndef _PLATFORM_DATA_DMA_DW_H
#define _PLATFORM_DATA_DMA_DW_H
dmaengine: Driver for the Synopsys DesignWare DMA controller This adds a driver for the Synopsys DesignWare DMA controller (aka DMACA on AVR32 systems.) This DMA controller can be found integrated on the AT32AP7000 chip and is primarily meant for peripheral DMA transfer, but can also be used for memory-to-memory transfers. This patch is based on a driver from David Brownell which was based on an older version of the DMA Engine framework. It also implements the proposed extensions to the DMA Engine API for slave DMA operations. The dmatest client shows no problems, but there may still be room for improvement performance-wise. DMA slave transfer performance is definitely "good enough"; reading 100 MiB from an SD card running at ~20 MHz yields ~7.2 MiB/s average transfer rate. Full documentation for this controller can be found in the Synopsys DW AHB DMAC Databook: http://www.synopsys.com/designware/docs/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf The controller has lots of implementation options, so it's usually a good idea to check the data sheet of the chip it's intergrated on as well. The AT32AP7000 data sheet can be found here: http://www.atmel.com/dyn/products/datasheets.asp?family_id=682 Changes since v4: * Use client_count instead of dma_chan_is_in_use() * Add missing include * Unmap buffers unless client told us not to Changes since v3: * Update to latest DMA engine and DMA slave APIs * Embed the hw descriptor into the sw descriptor * Clean up and update MODULE_DESCRIPTION, copyright date, etc. Changes since v2: * Dequeue all pending transfers in terminate_all() * Rename dw_dmac.h -> dw_dmac_regs.h * Define and use controller-specific dma_slave data * Fix up a few outdated comments * Define hardware registers as structs (doesn't generate better code, unfortunately, but it looks nicer.) * Get number of channels from platform_data instead of hardcoding it based on CONFIG_WHATEVER_CPU. * Give slave clients exclusive access to the channel Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>, Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 18:59:42 +00:00
#include <linux/bits.h>
#include <linux/types.h>
dmaengine: Driver for the Synopsys DesignWare DMA controller This adds a driver for the Synopsys DesignWare DMA controller (aka DMACA on AVR32 systems.) This DMA controller can be found integrated on the AT32AP7000 chip and is primarily meant for peripheral DMA transfer, but can also be used for memory-to-memory transfers. This patch is based on a driver from David Brownell which was based on an older version of the DMA Engine framework. It also implements the proposed extensions to the DMA Engine API for slave DMA operations. The dmatest client shows no problems, but there may still be room for improvement performance-wise. DMA slave transfer performance is definitely "good enough"; reading 100 MiB from an SD card running at ~20 MHz yields ~7.2 MiB/s average transfer rate. Full documentation for this controller can be found in the Synopsys DW AHB DMAC Databook: http://www.synopsys.com/designware/docs/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf The controller has lots of implementation options, so it's usually a good idea to check the data sheet of the chip it's intergrated on as well. The AT32AP7000 data sheet can be found here: http://www.atmel.com/dyn/products/datasheets.asp?family_id=682 Changes since v4: * Use client_count instead of dma_chan_is_in_use() * Add missing include * Unmap buffers unless client told us not to Changes since v3: * Update to latest DMA engine and DMA slave APIs * Embed the hw descriptor into the sw descriptor * Clean up and update MODULE_DESCRIPTION, copyright date, etc. Changes since v2: * Dequeue all pending transfers in terminate_all() * Rename dw_dmac.h -> dw_dmac_regs.h * Define and use controller-specific dma_slave data * Fix up a few outdated comments * Define hardware registers as structs (doesn't generate better code, unfortunately, but it looks nicer.) * Get number of channels from platform_data instead of hardcoding it based on CONFIG_WHATEVER_CPU. * Give slave clients exclusive access to the channel Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>, Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 18:59:42 +00:00
#define DW_DMA_MAX_NR_MASTERS 4
#define DW_DMA_MAX_NR_CHANNELS 8
#define DW_DMA_MIN_BURST 1
#define DW_DMA_MAX_BURST 256
struct device;
/**
* struct dw_dma_slave - Controller-specific information about a slave
*
* @dma_dev: required DMA master device
* @src_id: src request line
* @dst_id: dst request line
* @m_master: memory master for transfers on allocated channel
* @p_master: peripheral master for transfers on allocated channel
dmaengine: dw: Add DMA-channels mask cell support DW DMA IP-core provides a way to synthesize the DMA controller with channels having different parameters like maximum burst-length, multi-block support, maximum data width, etc. Those parameters both explicitly and implicitly affect the channels performance. Since DMA slave devices might be very demanding to the DMA performance, let's provide a functionality for the slaves to be assigned with DW DMA channels, which performance according to the platform engineer fulfill their requirements. After this patch is applied it can be done by passing the mask of suitable DMA-channels either directly in the dw_dma_slave structure instance or as a fifth cell of the DMA DT-property. If mask is zero or not provided, then there is no limitation on the channels allocation. For instance Baikal-T1 SoC is equipped with a DW DMAC engine, which first two channels are synthesized with max burst length of 16, while the rest of the channels have been created with max-burst-len=4. It would seem that the first two channels must be faster than the others and should be more preferable for the time-critical DMA slave devices. In practice it turned out that the situation is quite the opposite. The channels with max-burst-len=4 demonstrated a better performance than the channels with max-burst-len=16 even when they both had been initialized with the same settings. The performance drop of the first two DMA-channels made them unsuitable for the DW APB SSI slave device. No matter what settings they are configured with, full-duplex SPI transfers occasionally experience the Rx FIFO overflow. It means that the DMA-engine doesn't keep up with incoming data pace even though the SPI-bus is enabled with speed of 25MHz while the DW DMA controller is clocked with 50MHz signal. There is no such problem has been noticed for the channels synthesized with max-burst-len=4. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Link: https://lore.kernel.org/r/20200731200826.9292-6-Sergey.Semin@baikalelectronics.ru Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-07-31 20:08:26 +00:00
* @channels: mask of the channels permitted for allocation (zero value means any)
* @hs_polarity:set active low polarity of handshake interface
*/
struct dw_dma_slave {
struct device *dma_dev;
u8 src_id;
u8 dst_id;
u8 m_master;
u8 p_master;
dmaengine: dw: Add DMA-channels mask cell support DW DMA IP-core provides a way to synthesize the DMA controller with channels having different parameters like maximum burst-length, multi-block support, maximum data width, etc. Those parameters both explicitly and implicitly affect the channels performance. Since DMA slave devices might be very demanding to the DMA performance, let's provide a functionality for the slaves to be assigned with DW DMA channels, which performance according to the platform engineer fulfill their requirements. After this patch is applied it can be done by passing the mask of suitable DMA-channels either directly in the dw_dma_slave structure instance or as a fifth cell of the DMA DT-property. If mask is zero or not provided, then there is no limitation on the channels allocation. For instance Baikal-T1 SoC is equipped with a DW DMAC engine, which first two channels are synthesized with max burst length of 16, while the rest of the channels have been created with max-burst-len=4. It would seem that the first two channels must be faster than the others and should be more preferable for the time-critical DMA slave devices. In practice it turned out that the situation is quite the opposite. The channels with max-burst-len=4 demonstrated a better performance than the channels with max-burst-len=16 even when they both had been initialized with the same settings. The performance drop of the first two DMA-channels made them unsuitable for the DW APB SSI slave device. No matter what settings they are configured with, full-duplex SPI transfers occasionally experience the Rx FIFO overflow. It means that the DMA-engine doesn't keep up with incoming data pace even though the SPI-bus is enabled with speed of 25MHz while the DW DMA controller is clocked with 50MHz signal. There is no such problem has been noticed for the channels synthesized with max-burst-len=4. Signed-off-by: Serge Semin <Sergey.Semin@baikalelectronics.ru> Link: https://lore.kernel.org/r/20200731200826.9292-6-Sergey.Semin@baikalelectronics.ru Signed-off-by: Vinod Koul <vkoul@kernel.org>
2020-07-31 20:08:26 +00:00
u8 channels;
bool hs_polarity;
};
dmaengine: Driver for the Synopsys DesignWare DMA controller This adds a driver for the Synopsys DesignWare DMA controller (aka DMACA on AVR32 systems.) This DMA controller can be found integrated on the AT32AP7000 chip and is primarily meant for peripheral DMA transfer, but can also be used for memory-to-memory transfers. This patch is based on a driver from David Brownell which was based on an older version of the DMA Engine framework. It also implements the proposed extensions to the DMA Engine API for slave DMA operations. The dmatest client shows no problems, but there may still be room for improvement performance-wise. DMA slave transfer performance is definitely "good enough"; reading 100 MiB from an SD card running at ~20 MHz yields ~7.2 MiB/s average transfer rate. Full documentation for this controller can be found in the Synopsys DW AHB DMAC Databook: http://www.synopsys.com/designware/docs/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf The controller has lots of implementation options, so it's usually a good idea to check the data sheet of the chip it's intergrated on as well. The AT32AP7000 data sheet can be found here: http://www.atmel.com/dyn/products/datasheets.asp?family_id=682 Changes since v4: * Use client_count instead of dma_chan_is_in_use() * Add missing include * Unmap buffers unless client told us not to Changes since v3: * Update to latest DMA engine and DMA slave APIs * Embed the hw descriptor into the sw descriptor * Clean up and update MODULE_DESCRIPTION, copyright date, etc. Changes since v2: * Dequeue all pending transfers in terminate_all() * Rename dw_dmac.h -> dw_dmac_regs.h * Define and use controller-specific dma_slave data * Fix up a few outdated comments * Define hardware registers as structs (doesn't generate better code, unfortunately, but it looks nicer.) * Get number of channels from platform_data instead of hardcoding it based on CONFIG_WHATEVER_CPU. * Give slave clients exclusive access to the channel Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>, Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 18:59:42 +00:00
/**
* struct dw_dma_platform_data - Controller configuration parameters
* @nr_masters: Number of AHB masters supported by the controller
dmaengine: Driver for the Synopsys DesignWare DMA controller This adds a driver for the Synopsys DesignWare DMA controller (aka DMACA on AVR32 systems.) This DMA controller can be found integrated on the AT32AP7000 chip and is primarily meant for peripheral DMA transfer, but can also be used for memory-to-memory transfers. This patch is based on a driver from David Brownell which was based on an older version of the DMA Engine framework. It also implements the proposed extensions to the DMA Engine API for slave DMA operations. The dmatest client shows no problems, but there may still be room for improvement performance-wise. DMA slave transfer performance is definitely "good enough"; reading 100 MiB from an SD card running at ~20 MHz yields ~7.2 MiB/s average transfer rate. Full documentation for this controller can be found in the Synopsys DW AHB DMAC Databook: http://www.synopsys.com/designware/docs/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf The controller has lots of implementation options, so it's usually a good idea to check the data sheet of the chip it's intergrated on as well. The AT32AP7000 data sheet can be found here: http://www.atmel.com/dyn/products/datasheets.asp?family_id=682 Changes since v4: * Use client_count instead of dma_chan_is_in_use() * Add missing include * Unmap buffers unless client told us not to Changes since v3: * Update to latest DMA engine and DMA slave APIs * Embed the hw descriptor into the sw descriptor * Clean up and update MODULE_DESCRIPTION, copyright date, etc. Changes since v2: * Dequeue all pending transfers in terminate_all() * Rename dw_dmac.h -> dw_dmac_regs.h * Define and use controller-specific dma_slave data * Fix up a few outdated comments * Define hardware registers as structs (doesn't generate better code, unfortunately, but it looks nicer.) * Get number of channels from platform_data instead of hardcoding it based on CONFIG_WHATEVER_CPU. * Give slave clients exclusive access to the channel Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>, Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 18:59:42 +00:00
* @nr_channels: Number of channels supported by hardware (max 8)
* @chan_allocation_order: Allocate channels starting from 0 or 7
* @chan_priority: Set channel priority increasing from 0 to 7 or 7 to 0.
* @block_size: Maximum block size supported by the controller
* @data_width: Maximum data width supported by hardware per AHB master
* (in bytes, power of 2)
* @multi_block: Multi block transfers supported by hardware per channel.
* @max_burst: Maximum value of burst transaction size supported by hardware
* per channel (in units of CTL.SRC_TR_WIDTH/CTL.DST_TR_WIDTH).
dmaengine: dw-dmac: implement dma protection control setting This patch adds a new device-tree property that allows to specify the dma protection control bits for the all of the DMA controller's channel uniformly. Setting the "correct" bits can have a huge impact on the PPC460EX and APM82181 that use this DMA engine in combination with a DesignWare' SATA-II core (sata_dwc_460ex driver). In the OpenWrt Forum, the user takimata reported that: |It seems your patch unleashed the full power of the SATA port. |Where I was previously hitting a really hard limit at around |82 MB/s for reading and 27 MB/s for writing, I am now getting this: | |root@OpenWrt:/mnt# time dd if=/dev/zero of=tempfile bs=1M count=1024 |1024+0 records in |1024+0 records out |real 0m 13.65s |user 0m 0.01s |sys 0m 11.89s | |root@OpenWrt:/mnt# time dd if=tempfile of=/dev/null bs=1M count=1024 |1024+0 records in |1024+0 records out |real 0m 8.41s |user 0m 0.01s |sys 0m 4.70s | |This means: 121 MB/s reading and 75 MB/s writing! | |The drive is a WD Green WD10EARX taken from an older MBL Single. |I repeated the test a few times with even larger files to rule out |any caching, I'm still seeing the same great performance. OpenWrt is |now completely on par with the original MBL firmware's performance. Another user And.short reported: |I can report that your fix worked! Boots up fine with two |drives even with more partitions, and no more reboot on |concurrent disk access! A closer look into the sata_dwc_460ex code revealed that the driver did initally set the correct protection control bits. However, this feature was lost when the sata_dwc_460ex driver was converted to the generic DMA driver framework. BugLink: https://forum.openwrt.org/t/wd-mybook-live-duo-two-disks/16195/55 BugLink: https://forum.openwrt.org/t/wd-mybook-live-duo-two-disks/16195/50 Fixes: 8b3444852a2b ("sata_dwc_460ex: move to generic DMA driver") Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Christian Lamparter <chunkeey@gmail.com> Signed-off-by: Vinod Koul <vkoul@kernel.org>
2018-11-17 16:17:21 +00:00
* @protctl: Protection control signals setting per channel.
* @quirks: Optional platform quirks.
dmaengine: Driver for the Synopsys DesignWare DMA controller This adds a driver for the Synopsys DesignWare DMA controller (aka DMACA on AVR32 systems.) This DMA controller can be found integrated on the AT32AP7000 chip and is primarily meant for peripheral DMA transfer, but can also be used for memory-to-memory transfers. This patch is based on a driver from David Brownell which was based on an older version of the DMA Engine framework. It also implements the proposed extensions to the DMA Engine API for slave DMA operations. The dmatest client shows no problems, but there may still be room for improvement performance-wise. DMA slave transfer performance is definitely "good enough"; reading 100 MiB from an SD card running at ~20 MHz yields ~7.2 MiB/s average transfer rate. Full documentation for this controller can be found in the Synopsys DW AHB DMAC Databook: http://www.synopsys.com/designware/docs/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf The controller has lots of implementation options, so it's usually a good idea to check the data sheet of the chip it's intergrated on as well. The AT32AP7000 data sheet can be found here: http://www.atmel.com/dyn/products/datasheets.asp?family_id=682 Changes since v4: * Use client_count instead of dma_chan_is_in_use() * Add missing include * Unmap buffers unless client told us not to Changes since v3: * Update to latest DMA engine and DMA slave APIs * Embed the hw descriptor into the sw descriptor * Clean up and update MODULE_DESCRIPTION, copyright date, etc. Changes since v2: * Dequeue all pending transfers in terminate_all() * Rename dw_dmac.h -> dw_dmac_regs.h * Define and use controller-specific dma_slave data * Fix up a few outdated comments * Define hardware registers as structs (doesn't generate better code, unfortunately, but it looks nicer.) * Get number of channels from platform_data instead of hardcoding it based on CONFIG_WHATEVER_CPU. * Give slave clients exclusive access to the channel Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>, Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 18:59:42 +00:00
*/
struct dw_dma_platform_data {
u32 nr_masters;
u32 nr_channels;
#define CHAN_ALLOCATION_ASCENDING 0 /* zero to seven */
#define CHAN_ALLOCATION_DESCENDING 1 /* seven to zero */
u32 chan_allocation_order;
#define CHAN_PRIORITY_ASCENDING 0 /* chan0 highest */
#define CHAN_PRIORITY_DESCENDING 1 /* chan7 highest */
u32 chan_priority;
u32 block_size;
u32 data_width[DW_DMA_MAX_NR_MASTERS];
u32 multi_block[DW_DMA_MAX_NR_CHANNELS];
u32 max_burst[DW_DMA_MAX_NR_CHANNELS];
dmaengine: dw-dmac: implement dma protection control setting This patch adds a new device-tree property that allows to specify the dma protection control bits for the all of the DMA controller's channel uniformly. Setting the "correct" bits can have a huge impact on the PPC460EX and APM82181 that use this DMA engine in combination with a DesignWare' SATA-II core (sata_dwc_460ex driver). In the OpenWrt Forum, the user takimata reported that: |It seems your patch unleashed the full power of the SATA port. |Where I was previously hitting a really hard limit at around |82 MB/s for reading and 27 MB/s for writing, I am now getting this: | |root@OpenWrt:/mnt# time dd if=/dev/zero of=tempfile bs=1M count=1024 |1024+0 records in |1024+0 records out |real 0m 13.65s |user 0m 0.01s |sys 0m 11.89s | |root@OpenWrt:/mnt# time dd if=tempfile of=/dev/null bs=1M count=1024 |1024+0 records in |1024+0 records out |real 0m 8.41s |user 0m 0.01s |sys 0m 4.70s | |This means: 121 MB/s reading and 75 MB/s writing! | |The drive is a WD Green WD10EARX taken from an older MBL Single. |I repeated the test a few times with even larger files to rule out |any caching, I'm still seeing the same great performance. OpenWrt is |now completely on par with the original MBL firmware's performance. Another user And.short reported: |I can report that your fix worked! Boots up fine with two |drives even with more partitions, and no more reboot on |concurrent disk access! A closer look into the sata_dwc_460ex code revealed that the driver did initally set the correct protection control bits. However, this feature was lost when the sata_dwc_460ex driver was converted to the generic DMA driver framework. BugLink: https://forum.openwrt.org/t/wd-mybook-live-duo-two-disks/16195/55 BugLink: https://forum.openwrt.org/t/wd-mybook-live-duo-two-disks/16195/50 Fixes: 8b3444852a2b ("sata_dwc_460ex: move to generic DMA driver") Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Christian Lamparter <chunkeey@gmail.com> Signed-off-by: Vinod Koul <vkoul@kernel.org>
2018-11-17 16:17:21 +00:00
#define CHAN_PROTCTL_PRIVILEGED BIT(0)
#define CHAN_PROTCTL_BUFFERABLE BIT(1)
#define CHAN_PROTCTL_CACHEABLE BIT(2)
#define CHAN_PROTCTL_MASK GENMASK(2, 0)
u32 protctl;
#define DW_DMA_QUIRK_XBAR_PRESENT BIT(0)
u32 quirks;
dmaengine: Driver for the Synopsys DesignWare DMA controller This adds a driver for the Synopsys DesignWare DMA controller (aka DMACA on AVR32 systems.) This DMA controller can be found integrated on the AT32AP7000 chip and is primarily meant for peripheral DMA transfer, but can also be used for memory-to-memory transfers. This patch is based on a driver from David Brownell which was based on an older version of the DMA Engine framework. It also implements the proposed extensions to the DMA Engine API for slave DMA operations. The dmatest client shows no problems, but there may still be room for improvement performance-wise. DMA slave transfer performance is definitely "good enough"; reading 100 MiB from an SD card running at ~20 MHz yields ~7.2 MiB/s average transfer rate. Full documentation for this controller can be found in the Synopsys DW AHB DMAC Databook: http://www.synopsys.com/designware/docs/iip/DW_ahb_dmac/latest/doc/dw_ahb_dmac_db.pdf The controller has lots of implementation options, so it's usually a good idea to check the data sheet of the chip it's intergrated on as well. The AT32AP7000 data sheet can be found here: http://www.atmel.com/dyn/products/datasheets.asp?family_id=682 Changes since v4: * Use client_count instead of dma_chan_is_in_use() * Add missing include * Unmap buffers unless client told us not to Changes since v3: * Update to latest DMA engine and DMA slave APIs * Embed the hw descriptor into the sw descriptor * Clean up and update MODULE_DESCRIPTION, copyright date, etc. Changes since v2: * Dequeue all pending transfers in terminate_all() * Rename dw_dmac.h -> dw_dmac_regs.h * Define and use controller-specific dma_slave data * Fix up a few outdated comments * Define hardware registers as structs (doesn't generate better code, unfortunately, but it looks nicer.) * Get number of channels from platform_data instead of hardcoding it based on CONFIG_WHATEVER_CPU. * Give slave clients exclusive access to the channel Acked-by: Maciej Sosnowski <maciej.sosnowski@intel.com>, Signed-off-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
2008-07-08 18:59:42 +00:00
};
#endif /* _PLATFORM_DATA_DMA_DW_H */