linux-stable/drivers/ptp/ptp_ocp.c

2623 lines
56 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2020 Facebook */
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/serial_8250.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/platform_device.h>
#include <linux/ptp_clock_kernel.h>
#include <linux/spi/spi.h>
#include <linux/spi/xilinx_spi.h>
#include <net/devlink.h>
#include <linux/i2c.h>
#include <linux/mtd/mtd.h>
#ifndef PCI_VENDOR_ID_FACEBOOK
#define PCI_VENDOR_ID_FACEBOOK 0x1d9b
#endif
#ifndef PCI_DEVICE_ID_FACEBOOK_TIMECARD
#define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
#endif
static struct class timecard_class = {
.owner = THIS_MODULE,
.name = "timecard",
};
struct ocp_reg {
u32 ctrl;
u32 status;
u32 select;
u32 version;
u32 time_ns;
u32 time_sec;
u32 __pad0[2];
u32 adjust_ns;
u32 adjust_sec;
u32 __pad1[2];
u32 offset_ns;
u32 offset_window_ns;
u32 __pad2[2];
u32 drift_ns;
u32 drift_window_ns;
u32 __pad3[6];
u32 servo_offset_p;
u32 servo_offset_i;
u32 servo_drift_p;
u32 servo_drift_i;
};
#define OCP_CTRL_ENABLE BIT(0)
#define OCP_CTRL_ADJUST_TIME BIT(1)
#define OCP_CTRL_ADJUST_OFFSET BIT(2)
#define OCP_CTRL_ADJUST_DRIFT BIT(3)
#define OCP_CTRL_ADJUST_SERVO BIT(8)
#define OCP_CTRL_READ_TIME_REQ BIT(30)
#define OCP_CTRL_READ_TIME_DONE BIT(31)
#define OCP_STATUS_IN_SYNC BIT(0)
#define OCP_STATUS_IN_HOLDOVER BIT(1)
#define OCP_SELECT_CLK_NONE 0
#define OCP_SELECT_CLK_REG 0xfe
struct tod_reg {
u32 ctrl;
u32 status;
u32 uart_polarity;
u32 version;
u32 adj_sec;
u32 __pad0[3];
u32 uart_baud;
u32 __pad1[3];
u32 utc_status;
u32 leap;
};
#define TOD_CTRL_PROTOCOL BIT(28)
#define TOD_CTRL_DISABLE_FMT_A BIT(17)
#define TOD_CTRL_DISABLE_FMT_B BIT(16)
#define TOD_CTRL_ENABLE BIT(0)
#define TOD_CTRL_GNSS_MASK ((1U << 4) - 1)
#define TOD_CTRL_GNSS_SHIFT 24
#define TOD_STATUS_UTC_MASK 0xff
#define TOD_STATUS_UTC_VALID BIT(8)
#define TOD_STATUS_LEAP_VALID BIT(16)
struct ts_reg {
u32 enable;
u32 error;
u32 polarity;
u32 version;
u32 __pad0[4];
u32 cable_delay;
u32 __pad1[3];
u32 intr;
u32 intr_mask;
u32 event_count;
u32 __pad2[1];
u32 ts_count;
u32 time_ns;
u32 time_sec;
u32 data_width;
u32 data;
};
struct pps_reg {
u32 ctrl;
u32 status;
u32 __pad0[6];
u32 cable_delay;
};
#define PPS_STATUS_FILTER_ERR BIT(0)
#define PPS_STATUS_SUPERV_ERR BIT(1)
struct img_reg {
u32 version;
};
struct gpio_reg {
u32 gpio1;
u32 __pad0;
u32 gpio2;
u32 __pad1;
};
struct irig_master_reg {
u32 ctrl;
u32 status;
u32 __pad0;
u32 version;
u32 adj_sec;
u32 mode_ctrl;
};
#define IRIG_M_CTRL_ENABLE BIT(0)
struct irig_slave_reg {
u32 ctrl;
u32 status;
u32 __pad0;
u32 version;
u32 adj_sec;
u32 mode_ctrl;
};
#define IRIG_S_CTRL_ENABLE BIT(0)
struct dcf_master_reg {
u32 ctrl;
u32 status;
u32 __pad0;
u32 version;
u32 adj_sec;
};
#define DCF_M_CTRL_ENABLE BIT(0)
struct dcf_slave_reg {
u32 ctrl;
u32 status;
u32 __pad0;
u32 version;
u32 adj_sec;
};
#define DCF_S_CTRL_ENABLE BIT(0)
struct ptp_ocp_flash_info {
const char *name;
int pci_offset;
int data_size;
void *data;
};
struct ptp_ocp_i2c_info {
const char *name;
unsigned long fixed_rate;
size_t data_size;
void *data;
};
struct ptp_ocp_ext_info {
int index;
irqreturn_t (*irq_fcn)(int irq, void *priv);
int (*enable)(void *priv, u32 req, bool enable);
};
struct ptp_ocp_ext_src {
void __iomem *mem;
struct ptp_ocp *bp;
struct ptp_ocp_ext_info *info;
int irq_vec;
};
struct ptp_ocp {
struct pci_dev *pdev;
struct device dev;
spinlock_t lock;
struct ocp_reg __iomem *reg;
struct tod_reg __iomem *tod;
struct pps_reg __iomem *pps_to_ext;
struct pps_reg __iomem *pps_to_clk;
struct gpio_reg __iomem *pps_select;
struct gpio_reg __iomem *sma;
struct irig_master_reg __iomem *irig_out;
struct irig_slave_reg __iomem *irig_in;
struct dcf_master_reg __iomem *dcf_out;
struct dcf_slave_reg __iomem *dcf_in;
struct tod_reg __iomem *nmea_out;
struct ptp_ocp_ext_src *pps;
struct ptp_ocp_ext_src *ts0;
struct ptp_ocp_ext_src *ts1;
struct ptp_ocp_ext_src *ts2;
struct img_reg __iomem *image;
struct ptp_clock *ptp;
struct ptp_clock_info ptp_info;
struct platform_device *i2c_ctrl;
struct platform_device *spi_flash;
struct clk_hw *i2c_clk;
struct timer_list watchdog;
struct dentry *debug_root;
time64_t gnss_lost;
int id;
int n_irqs;
int gnss_port;
int gnss2_port;
int mac_port; /* miniature atomic clock */
int nmea_port;
u8 serial[6];
bool has_serial;
u32 pps_req_map;
int flash_start;
u32 utc_tai_offset;
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
u32 ts_window_adjust;
};
#define OCP_REQ_TIMESTAMP BIT(0)
#define OCP_REQ_PPS BIT(1)
struct ocp_resource {
unsigned long offset;
int size;
int irq_vec;
int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
void *extra;
unsigned long bp_offset;
const char * const name;
};
static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
#define bp_assign_entry(bp, res, val) ({ \
uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
*(typeof(val) *)addr = val; \
})
#define OCP_RES_LOCATION(member) \
.name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
#define OCP_MEM_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
#define OCP_SERIAL_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
#define OCP_I2C_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
#define OCP_SPI_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
#define OCP_EXT_RESOURCE(member) \
OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
/* This is the MSI vector mapping used.
* 0: TS3 (and PPS)
* 1: TS0
* 2: TS1
* 3: GNSS
* 4: GNSS2
* 5: MAC
* 6: TS2
* 7: I2C controller
* 8: HWICAP (notused)
* 9: SPI Flash
* 10: NMEA
*/
static struct ocp_resource ocp_fb_resource[] = {
{
OCP_MEM_RESOURCE(reg),
.offset = 0x01000000, .size = 0x10000,
},
{
OCP_EXT_RESOURCE(ts0),
.offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
.extra = &(struct ptp_ocp_ext_info) {
.index = 0,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts1),
.offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
.extra = &(struct ptp_ocp_ext_info) {
.index = 1,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(ts2),
.offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
.extra = &(struct ptp_ocp_ext_info) {
.index = 2,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_EXT_RESOURCE(pps),
.offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
.extra = &(struct ptp_ocp_ext_info) {
.index = 3,
.irq_fcn = ptp_ocp_ts_irq,
.enable = ptp_ocp_ts_enable,
},
},
{
OCP_MEM_RESOURCE(pps_to_ext),
.offset = 0x01030000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(pps_to_clk),
.offset = 0x01040000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(tod),
.offset = 0x01050000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(irig_in),
.offset = 0x01070000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(irig_out),
.offset = 0x01080000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(dcf_in),
.offset = 0x01090000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(dcf_out),
.offset = 0x010A0000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(nmea_out),
.offset = 0x010B0000, .size = 0x10000,
},
{
OCP_MEM_RESOURCE(image),
.offset = 0x00020000, .size = 0x1000,
},
{
OCP_MEM_RESOURCE(pps_select),
.offset = 0x00130000, .size = 0x1000,
},
{
OCP_MEM_RESOURCE(sma),
.offset = 0x00140000, .size = 0x1000,
},
{
OCP_I2C_RESOURCE(i2c_ctrl),
.offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
.extra = &(struct ptp_ocp_i2c_info) {
.name = "xiic-i2c",
.fixed_rate = 50000000,
},
},
{
OCP_SERIAL_RESOURCE(gnss_port),
.offset = 0x00160000 + 0x1000, .irq_vec = 3,
},
{
OCP_SERIAL_RESOURCE(gnss2_port),
.offset = 0x00170000 + 0x1000, .irq_vec = 4,
},
{
OCP_SERIAL_RESOURCE(mac_port),
.offset = 0x00180000 + 0x1000, .irq_vec = 5,
},
{
OCP_SERIAL_RESOURCE(nmea_port),
.offset = 0x00190000 + 0x1000, .irq_vec = 10,
},
{
OCP_SPI_RESOURCE(spi_flash),
.offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
.extra = &(struct ptp_ocp_flash_info) {
.name = "xilinx_spi", .pci_offset = 0,
.data_size = sizeof(struct xspi_platform_data),
.data = &(struct xspi_platform_data) {
.num_chipselect = 1,
.bits_per_word = 8,
.num_devices = 1,
.devices = &(struct spi_board_info) {
.modalias = "spi-nor",
},
},
},
},
{
.setup = ptp_ocp_fb_board_init,
},
{ }
};
static const struct pci_device_id ptp_ocp_pcidev_id[] = {
{ PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
static DEFINE_MUTEX(ptp_ocp_lock);
static DEFINE_IDR(ptp_ocp_idr);
struct ocp_selector {
const char *name;
int value;
};
static struct ocp_selector ptp_ocp_clock[] = {
{ .name = "NONE", .value = 0 },
{ .name = "TOD", .value = 1 },
{ .name = "IRIG", .value = 2 },
{ .name = "PPS", .value = 3 },
{ .name = "PTP", .value = 4 },
{ .name = "RTC", .value = 5 },
{ .name = "DCF", .value = 6 },
{ .name = "REGS", .value = 0xfe },
{ .name = "EXT", .value = 0xff },
{ }
};
static struct ocp_selector ptp_ocp_sma_in[] = {
{ .name = "10Mhz", .value = 0x00 },
{ .name = "PPS1", .value = 0x01 },
{ .name = "PPS2", .value = 0x02 },
{ .name = "TS1", .value = 0x04 },
{ .name = "TS2", .value = 0x08 },
{ .name = "IRIG", .value = 0x10 },
{ .name = "DCF", .value = 0x20 },
{ }
};
static struct ocp_selector ptp_ocp_sma_out[] = {
{ .name = "10Mhz", .value = 0x00 },
{ .name = "PHC", .value = 0x01 },
{ .name = "MAC", .value = 0x02 },
{ .name = "GNSS", .value = 0x04 },
{ .name = "GNSS2", .value = 0x08 },
{ .name = "IRIG", .value = 0x10 },
{ .name = "DCF", .value = 0x20 },
{ }
};
static const char *
ptp_ocp_select_name_from_val(struct ocp_selector *tbl, int val)
{
int i;
for (i = 0; tbl[i].name; i++)
if (tbl[i].value == val)
return tbl[i].name;
return NULL;
}
static int
ptp_ocp_select_val_from_name(struct ocp_selector *tbl, const char *name)
{
const char *select;
int i;
for (i = 0; tbl[i].name; i++) {
select = tbl[i].name;
if (!strncasecmp(name, select, strlen(select)))
return tbl[i].value;
}
return -EINVAL;
}
static ssize_t
ptp_ocp_select_table_show(struct ocp_selector *tbl, char *buf)
{
ssize_t count;
int i;
count = 0;
for (i = 0; tbl[i].name; i++)
count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
if (count)
count--;
count += sysfs_emit_at(buf, count, "\n");
return count;
}
static int
__ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
u32 ctrl, time_sec, time_ns;
int i;
ptp_read_system_prets(sts);
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
for (i = 0; i < 100; i++) {
ctrl = ioread32(&bp->reg->ctrl);
if (ctrl & OCP_CTRL_READ_TIME_DONE)
break;
}
ptp_read_system_postts(sts);
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
if (sts && bp->ts_window_adjust) {
s64 ns = timespec64_to_ns(&sts->post_ts);
sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
}
time_ns = ioread32(&bp->reg->time_ns);
time_sec = ioread32(&bp->reg->time_sec);
ts->tv_sec = time_sec;
ts->tv_nsec = time_ns;
return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
}
static int
ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
unsigned long flags;
int err;
spin_lock_irqsave(&bp->lock, flags);
err = __ptp_ocp_gettime_locked(bp, ts, sts);
spin_unlock_irqrestore(&bp->lock, flags);
return err;
}
static void
__ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
{
u32 ctrl, time_sec, time_ns;
u32 select;
time_ns = ts->tv_nsec;
time_sec = ts->tv_sec;
select = ioread32(&bp->reg->select);
iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
iowrite32(time_ns, &bp->reg->adjust_ns);
iowrite32(time_sec, &bp->reg->adjust_sec);
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
/* restore clock selection */
iowrite32(select >> 16, &bp->reg->select);
}
static int
ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
{
struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
unsigned long flags;
spin_lock_irqsave(&bp->lock, flags);
__ptp_ocp_settime_locked(bp, ts);
spin_unlock_irqrestore(&bp->lock, flags);
return 0;
}
static void
__ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u64 adj_val)
{
u32 select, ctrl;
select = ioread32(&bp->reg->select);
iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
iowrite32(adj_val, &bp->reg->offset_ns);
iowrite32(adj_val & 0x7f, &bp->reg->offset_window_ns);
ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
/* restore clock selection */
iowrite32(select >> 16, &bp->reg->select);
}
static int
ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
{
struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
unsigned long flags;
u32 adj_ns, sign;
sign = delta_ns < 0 ? BIT(31) : 0;
adj_ns = sign ? -delta_ns : delta_ns;
spin_lock_irqsave(&bp->lock, flags);
__ptp_ocp_adjtime_locked(bp, sign | adj_ns);
spin_unlock_irqrestore(&bp->lock, flags);
return 0;
}
static int
ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
{
if (scaled_ppm == 0)
return 0;
return -EOPNOTSUPP;
}
static int
ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
{
return -EOPNOTSUPP;
}
static int
ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
int on)
{
struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
struct ptp_ocp_ext_src *ext = NULL;
u32 req;
int err;
switch (rq->type) {
case PTP_CLK_REQ_EXTTS:
req = OCP_REQ_TIMESTAMP;
switch (rq->extts.index) {
case 0:
ext = bp->ts0;
break;
case 1:
ext = bp->ts1;
break;
case 2:
ext = bp->ts2;
break;
case 3:
ext = bp->pps;
break;
}
break;
case PTP_CLK_REQ_PPS:
req = OCP_REQ_PPS;
ext = bp->pps;
break;
case PTP_CLK_REQ_PEROUT:
if (on &&
(rq->perout.period.sec != 1 || rq->perout.period.nsec != 0))
return -EINVAL;
/* This is a request for 1PPS on an output SMA.
* Allow, but assume manual configuration.
*/
return 0;
default:
return -EOPNOTSUPP;
}
err = -ENXIO;
if (ext)
err = ext->info->enable(ext, req, on);
return err;
}
static const struct ptp_clock_info ptp_ocp_clock_info = {
.owner = THIS_MODULE,
.name = KBUILD_MODNAME,
.max_adj = 100000000,
.gettimex64 = ptp_ocp_gettimex,
.settime64 = ptp_ocp_settime,
.adjtime = ptp_ocp_adjtime,
.adjfine = ptp_ocp_null_adjfine,
.adjphase = ptp_ocp_null_adjphase,
.enable = ptp_ocp_enable,
.pps = true,
.n_ext_ts = 4,
.n_per_out = 1,
};
static void
__ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
{
u32 ctrl, select;
select = ioread32(&bp->reg->select);
iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
iowrite32(0, &bp->reg->drift_ns);
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
/* restore clock selection */
iowrite32(select >> 16, &bp->reg->select);
}
static void
ptp_ocp_watchdog(struct timer_list *t)
{
struct ptp_ocp *bp = from_timer(bp, t, watchdog);
unsigned long flags;
u32 status;
status = ioread32(&bp->pps_to_clk->status);
if (status & PPS_STATUS_SUPERV_ERR) {
iowrite32(status, &bp->pps_to_clk->status);
if (!bp->gnss_lost) {
spin_lock_irqsave(&bp->lock, flags);
__ptp_ocp_clear_drift_locked(bp);
spin_unlock_irqrestore(&bp->lock, flags);
bp->gnss_lost = ktime_get_real_seconds();
}
} else if (bp->gnss_lost) {
bp->gnss_lost = 0;
}
mod_timer(&bp->watchdog, jiffies + HZ);
}
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
static void
ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
{
ktime_t start, end;
ktime_t delay;
u32 ctrl;
ctrl = ioread32(&bp->reg->ctrl);
ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
start = ktime_get_ns();
ctrl = ioread32(&bp->reg->ctrl);
end = ktime_get_ns();
delay = end - start;
bp->ts_window_adjust = (delay >> 5) * 3;
}
static int
ptp_ocp_init_clock(struct ptp_ocp *bp)
{
struct timespec64 ts;
bool sync;
u32 ctrl;
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
ctrl = OCP_CTRL_ENABLE;
iowrite32(ctrl, &bp->reg->ctrl);
/* NO DRIFT Correction */
/* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */
iowrite32(0x2000, &bp->reg->servo_offset_p);
iowrite32(0x1000, &bp->reg->servo_offset_i);
iowrite32(0, &bp->reg->servo_drift_p);
iowrite32(0, &bp->reg->servo_drift_i);
/* latch servo values */
ctrl |= OCP_CTRL_ADJUST_SERVO;
iowrite32(ctrl, &bp->reg->ctrl);
if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
dev_err(&bp->pdev->dev, "clock not enabled\n");
return -ENODEV;
}
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
ptp_ocp_estimate_pci_timing(bp);
sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
if (!sync) {
ktime_get_clocktai_ts64(&ts);
ptp_ocp_settime(&bp->ptp_info, &ts);
}
/* If there is a clock supervisor, then enable the watchdog */
if (bp->pps_to_clk) {
timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
mod_timer(&bp->watchdog, jiffies + HZ);
}
return 0;
}
static void
ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
{
unsigned long flags;
spin_lock_irqsave(&bp->lock, flags);
bp->utc_tai_offset = val;
if (bp->irig_out)
iowrite32(val, &bp->irig_out->adj_sec);
if (bp->dcf_out)
iowrite32(val, &bp->dcf_out->adj_sec);
if (bp->nmea_out)
iowrite32(val, &bp->nmea_out->adj_sec);
spin_unlock_irqrestore(&bp->lock, flags);
}
static void
ptp_ocp_tod_init(struct ptp_ocp *bp)
{
u32 ctrl, reg;
ctrl = ioread32(&bp->tod->ctrl);
ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
iowrite32(ctrl, &bp->tod->ctrl);
reg = ioread32(&bp->tod->utc_status);
if (reg & TOD_STATUS_UTC_VALID)
ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
}
static void
ptp_ocp_tod_info(struct ptp_ocp *bp)
{
static const char * const proto_name[] = {
"NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
"UBX", "UBX_UTC", "UBX_LS", "UBX_none"
};
static const char * const gnss_name[] = {
"ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
};
u32 version, ctrl, reg;
int idx;
version = ioread32(&bp->tod->version);
dev_info(&bp->pdev->dev, "TOD Version %d.%d.%d\n",
version >> 24, (version >> 16) & 0xff, version & 0xffff);
ctrl = ioread32(&bp->tod->ctrl);
idx = ctrl & TOD_CTRL_PROTOCOL ? 4 : 0;
idx += (ctrl >> 16) & 3;
dev_info(&bp->pdev->dev, "control: %x\n", ctrl);
dev_info(&bp->pdev->dev, "TOD Protocol %s %s\n", proto_name[idx],
ctrl & TOD_CTRL_ENABLE ? "enabled" : "");
idx = (ctrl >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
if (idx < ARRAY_SIZE(gnss_name))
dev_info(&bp->pdev->dev, "GNSS %s\n", gnss_name[idx]);
reg = ioread32(&bp->tod->status);
dev_info(&bp->pdev->dev, "status: %x\n", reg);
reg = ioread32(&bp->tod->adj_sec);
dev_info(&bp->pdev->dev, "correction: %d\n", reg);
reg = ioread32(&bp->tod->utc_status);
dev_info(&bp->pdev->dev, "utc_status: %x\n", reg);
dev_info(&bp->pdev->dev, "utc_offset: %d valid:%d leap_valid:%d\n",
reg & TOD_STATUS_UTC_MASK, reg & TOD_STATUS_UTC_VALID ? 1 : 0,
reg & TOD_STATUS_LEAP_VALID ? 1 : 0);
}
static int
ptp_ocp_firstchild(struct device *dev, void *data)
{
return 1;
}
static int
ptp_ocp_read_i2c(struct i2c_adapter *adap, u8 addr, u8 reg, u8 sz, u8 *data)
{
struct i2c_msg msgs[2] = {
{
.addr = addr,
.len = 1,
.buf = &reg,
},
{
.addr = addr,
.flags = I2C_M_RD,
.len = 2,
.buf = data,
},
};
int err;
u8 len;
/* xiic-i2c for some stupid reason only does 2 byte reads. */
while (sz) {
len = min_t(u8, sz, 2);
msgs[1].len = len;
err = i2c_transfer(adap, msgs, 2);
if (err != msgs[1].len)
return err;
msgs[1].buf += len;
reg += len;
sz -= len;
}
return 0;
}
static void
ptp_ocp_get_serial_number(struct ptp_ocp *bp)
{
struct i2c_adapter *adap;
struct device *dev;
int err;
if (!bp->i2c_ctrl)
return;
dev = device_find_child(&bp->i2c_ctrl->dev, NULL, ptp_ocp_firstchild);
if (!dev) {
dev_err(&bp->pdev->dev, "Can't find I2C adapter\n");
return;
}
adap = i2c_verify_adapter(dev);
if (!adap) {
dev_err(&bp->pdev->dev, "device '%s' isn't an I2C adapter\n",
dev_name(dev));
goto out;
}
err = ptp_ocp_read_i2c(adap, 0x58, 0x9A, 6, bp->serial);
if (err) {
dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", err);
goto out;
}
bp->has_serial = true;
out:
put_device(dev);
}
static struct device *
ptp_ocp_find_flash(struct ptp_ocp *bp)
{
struct device *dev, *last;
last = NULL;
dev = &bp->spi_flash->dev;
while ((dev = device_find_child(dev, NULL, ptp_ocp_firstchild))) {
if (!strcmp("mtd", dev_bus_name(dev)))
break;
put_device(last);
last = dev;
}
put_device(last);
return dev;
}
static int
ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
const struct firmware *fw)
{
struct mtd_info *mtd = dev_get_drvdata(dev);
struct ptp_ocp *bp = devlink_priv(devlink);
size_t off, len, resid, wrote;
struct erase_info erase;
size_t base, blksz;
int err = 0;
off = 0;
base = bp->flash_start;
blksz = 4096;
resid = fw->size;
while (resid) {
devlink_flash_update_status_notify(devlink, "Flashing",
NULL, off, fw->size);
len = min_t(size_t, resid, blksz);
erase.addr = base + off;
erase.len = blksz;
err = mtd_erase(mtd, &erase);
if (err)
goto out;
err = mtd_write(mtd, base + off, len, &wrote, &fw->data[off]);
if (err)
goto out;
off += blksz;
resid -= len;
}
out:
return err;
}
static int
ptp_ocp_devlink_flash_update(struct devlink *devlink,
struct devlink_flash_update_params *params,
struct netlink_ext_ack *extack)
{
struct ptp_ocp *bp = devlink_priv(devlink);
struct device *dev;
const char *msg;
int err;
dev = ptp_ocp_find_flash(bp);
if (!dev) {
dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
return -ENODEV;
}
devlink_flash_update_status_notify(devlink, "Preparing to flash",
NULL, 0, 0);
err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
msg = err ? "Flash error" : "Flash complete";
devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
put_device(dev);
return err;
}
static int
ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
struct netlink_ext_ack *extack)
{
struct ptp_ocp *bp = devlink_priv(devlink);
char buf[32];
int err;
err = devlink_info_driver_name_put(req, KBUILD_MODNAME);
if (err)
return err;
if (bp->image) {
u32 ver = ioread32(&bp->image->version);
if (ver & 0xffff) {
sprintf(buf, "%d", ver);
err = devlink_info_version_running_put(req,
"fw",
buf);
} else {
sprintf(buf, "%d", ver >> 16);
err = devlink_info_version_running_put(req,
"loader",
buf);
}
if (err)
return err;
}
if (!bp->has_serial)
ptp_ocp_get_serial_number(bp);
if (bp->has_serial) {
sprintf(buf, "%pM", bp->serial);
err = devlink_info_serial_number_put(req, buf);
if (err)
return err;
}
return 0;
}
static const struct devlink_ops ptp_ocp_devlink_ops = {
.flash_update = ptp_ocp_devlink_flash_update,
.info_get = ptp_ocp_devlink_info_get,
};
static void __iomem *
__ptp_ocp_get_mem(struct ptp_ocp *bp, unsigned long start, int size)
{
struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
return devm_ioremap_resource(&bp->pdev->dev, &res);
}
static void __iomem *
ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
{
unsigned long start;
start = pci_resource_start(bp->pdev, 0) + r->offset;
return __ptp_ocp_get_mem(bp, start, r->size);
}
static void
ptp_ocp_set_irq_resource(struct resource *res, int irq)
{
struct resource r = DEFINE_RES_IRQ(irq);
*res = r;
}
static void
ptp_ocp_set_mem_resource(struct resource *res, unsigned long start, int size)
{
struct resource r = DEFINE_RES_MEM(start, size);
*res = r;
}
static int
ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
{
struct ptp_ocp_flash_info *info;
struct pci_dev *pdev = bp->pdev;
struct platform_device *p;
struct resource res[2];
unsigned long start;
int id;
start = pci_resource_start(pdev, 0) + r->offset;
ptp_ocp_set_mem_resource(&res[0], start, r->size);
ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
info = r->extra;
id = pci_dev_id(pdev) << 1;
id += info->pci_offset;
p = platform_device_register_resndata(&pdev->dev, info->name, id,
res, 2, info->data,
info->data_size);
if (IS_ERR(p))
return PTR_ERR(p);
bp_assign_entry(bp, r, p);
return 0;
}
static struct platform_device *
ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
{
struct ptp_ocp_i2c_info *info;
struct resource res[2];
unsigned long start;
info = r->extra;
start = pci_resource_start(pdev, 0) + r->offset;
ptp_ocp_set_mem_resource(&res[0], start, r->size);
ptp_ocp_set_irq_resource(&res[1], pci_irq_vector(pdev, r->irq_vec));
return platform_device_register_resndata(&pdev->dev, info->name,
id, res, 2,
info->data, info->data_size);
}
static int
ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
{
struct pci_dev *pdev = bp->pdev;
struct ptp_ocp_i2c_info *info;
struct platform_device *p;
struct clk_hw *clk;
char buf[32];
int id;
info = r->extra;
id = pci_dev_id(bp->pdev);
sprintf(buf, "AXI.%d", id);
clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
info->fixed_rate);
if (IS_ERR(clk))
return PTR_ERR(clk);
bp->i2c_clk = clk;
sprintf(buf, "%s.%d", info->name, id);
devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
p = ptp_ocp_i2c_bus(bp->pdev, r, id);
if (IS_ERR(p))
return PTR_ERR(p);
bp_assign_entry(bp, r, p);
return 0;
}
static irqreturn_t
ptp_ocp_ts_irq(int irq, void *priv)
{
struct ptp_ocp_ext_src *ext = priv;
struct ts_reg __iomem *reg = ext->mem;
struct ptp_clock_event ev;
u32 sec, nsec;
if (ext == ext->bp->pps) {
if (ext->bp->pps_req_map & OCP_REQ_PPS) {
ev.type = PTP_CLOCK_PPS;
ptp_clock_event(ext->bp->ptp, &ev);
}
if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
goto out;
}
/* XXX should fix API - this converts s/ns -> ts -> s/ns */
sec = ioread32(&reg->time_sec);
nsec = ioread32(&reg->time_ns);
ev.type = PTP_CLOCK_EXTTS;
ev.index = ext->info->index;
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
ev.timestamp = sec * NSEC_PER_SEC + nsec;
ptp_clock_event(ext->bp->ptp, &ev);
out:
iowrite32(1, &reg->intr); /* write 1 to ack */
return IRQ_HANDLED;
}
static int
ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
{
struct ptp_ocp_ext_src *ext = priv;
struct ts_reg __iomem *reg = ext->mem;
struct ptp_ocp *bp = ext->bp;
if (ext == bp->pps) {
u32 old_map = bp->pps_req_map;
if (enable)
bp->pps_req_map |= req;
else
bp->pps_req_map &= ~req;
/* if no state change, just return */
if ((!!old_map ^ !!bp->pps_req_map) == 0)
return 0;
}
if (enable) {
iowrite32(1, &reg->enable);
iowrite32(1, &reg->intr_mask);
iowrite32(1, &reg->intr);
} else {
iowrite32(0, &reg->intr_mask);
iowrite32(0, &reg->enable);
}
return 0;
}
static void
ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
{
ext->info->enable(ext, ~0, false);
pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
kfree(ext);
}
static int
ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
{
struct pci_dev *pdev = bp->pdev;
struct ptp_ocp_ext_src *ext;
int err;
ext = kzalloc(sizeof(*ext), GFP_KERNEL);
if (!ext)
return -ENOMEM;
ext->mem = ptp_ocp_get_mem(bp, r);
if (IS_ERR(ext->mem)) {
err = PTR_ERR(ext->mem);
goto out;
}
ext->bp = bp;
ext->info = r->extra;
ext->irq_vec = r->irq_vec;
err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
ext, "ocp%d.%s", bp->id, r->name);
if (err) {
dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
goto out;
}
bp_assign_entry(bp, r, ext);
return 0;
out:
kfree(ext);
return err;
}
static int
ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
{
struct pci_dev *pdev = bp->pdev;
struct uart_8250_port uart;
/* Setting UPF_IOREMAP and leaving port.membase unspecified lets
* the serial port device claim and release the pci resource.
*/
memset(&uart, 0, sizeof(uart));
uart.port.dev = &pdev->dev;
uart.port.iotype = UPIO_MEM;
uart.port.regshift = 2;
uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
uart.port.uartclk = 50000000;
uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP;
uart.port.type = PORT_16550A;
return serial8250_register_8250_port(&uart);
}
static int
ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
{
int port;
port = ptp_ocp_serial_line(bp, r);
if (port < 0)
return port;
bp_assign_entry(bp, r, port);
return 0;
}
static int
ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
{
void __iomem *mem;
mem = ptp_ocp_get_mem(bp, r);
if (IS_ERR(mem))
return PTR_ERR(mem);
bp_assign_entry(bp, r, mem);
return 0;
}
static void
ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
{
if (!bp->nmea_out)
return;
iowrite32(0, &bp->nmea_out->ctrl); /* disable */
iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
iowrite32(1, &bp->nmea_out->ctrl); /* enable */
}
/* FB specific board initializers; last "resource" registered. */
static int
ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
{
bp->flash_start = 1024 * 4096;
ptp_ocp_tod_init(bp);
ptp_ocp_nmea_out_init(bp);
return ptp_ocp_init_clock(bp);
}
static bool
ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
{
bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
if (!allow)
dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
r->irq_vec, r->name);
return allow;
}
static int
ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
{
struct ocp_resource *r, *table;
int err = 0;
table = (struct ocp_resource *)driver_data;
for (r = table; r->setup; r++) {
if (!ptp_ocp_allow_irq(bp, r))
continue;
err = r->setup(bp, r);
if (err) {
dev_err(&bp->pdev->dev,
"Could not register %s: err %d\n",
r->name, err);
break;
}
}
return err;
}
static void
ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
{
u32 ctrl;
bool on;
ctrl = ioread32(reg);
on = ctrl & bit;
if (on ^ enable) {
ctrl &= ~bit;
ctrl |= enable ? bit : 0;
iowrite32(ctrl, reg);
}
}
static void
ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
{
return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
IRIG_M_CTRL_ENABLE, enable);
}
static void
ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
{
return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
IRIG_S_CTRL_ENABLE, enable);
}
static void
ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
{
return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
DCF_M_CTRL_ENABLE, enable);
}
static void
ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
{
return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
DCF_S_CTRL_ENABLE, enable);
}
static void
__handle_signal_outputs(struct ptp_ocp *bp, u32 val)
{
ptp_ocp_irig_out(bp, val & 0x00100010);
ptp_ocp_dcf_out(bp, val & 0x00200020);
}
static void
__handle_signal_inputs(struct ptp_ocp *bp, u32 val)
{
ptp_ocp_irig_in(bp, val & 0x00100010);
ptp_ocp_dcf_in(bp, val & 0x00200020);
}
/*
* ANT0 == gps (in)
* ANT1 == sma1 (in)
* ANT2 == sma2 (in)
* ANT3 == sma3 (out)
* ANT4 == sma4 (out)
*/
enum ptp_ocp_sma_mode {
SMA_MODE_IN,
SMA_MODE_OUT,
};
static struct ptp_ocp_sma_connector {
enum ptp_ocp_sma_mode mode;
bool fixed_mode;
u16 default_out_idx;
} ptp_ocp_sma_map[4] = {
{
.mode = SMA_MODE_IN,
.fixed_mode = true,
},
{
.mode = SMA_MODE_IN,
.fixed_mode = true,
},
{
.mode = SMA_MODE_OUT,
.fixed_mode = true,
.default_out_idx = 0, /* 10Mhz */
},
{
.mode = SMA_MODE_OUT,
.fixed_mode = true,
.default_out_idx = 1, /* PHC */
},
};
static ssize_t
ptp_ocp_show_output(u32 val, char *buf, int default_idx)
{
const char *name;
ssize_t count;
count = sysfs_emit(buf, "OUT: ");
name = ptp_ocp_select_name_from_val(ptp_ocp_sma_out, val);
if (!name)
name = ptp_ocp_sma_out[default_idx].name;
count += sysfs_emit_at(buf, count, "%s\n", name);
return count;
}
static ssize_t
ptp_ocp_show_inputs(u32 val, char *buf, const char *zero_in)
{
const char *name;
ssize_t count;
int i;
count = sysfs_emit(buf, "IN: ");
for (i = 0; i < ARRAY_SIZE(ptp_ocp_sma_in); i++) {
if (val & ptp_ocp_sma_in[i].value) {
name = ptp_ocp_sma_in[i].name;
count += sysfs_emit_at(buf, count, "%s ", name);
}
}
if (!val && zero_in)
count += sysfs_emit_at(buf, count, "%s ", zero_in);
if (count)
count--;
count += sysfs_emit_at(buf, count, "\n");
return count;
}
static int
sma_parse_inputs(const char *buf, enum ptp_ocp_sma_mode *mode)
{
struct ocp_selector *tbl[] = { ptp_ocp_sma_in, ptp_ocp_sma_out };
int idx, count, dir;
char **argv;
int ret;
argv = argv_split(GFP_KERNEL, buf, &count);
if (!argv)
return -ENOMEM;
ret = -EINVAL;
if (!count)
goto out;
idx = 0;
dir = *mode == SMA_MODE_IN ? 0 : 1;
if (!strcasecmp("IN:", argv[idx])) {
dir = 0;
idx++;
}
if (!strcasecmp("OUT:", argv[0])) {
dir = 1;
idx++;
}
*mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
ret = 0;
for (; idx < count; idx++)
ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
if (ret < 0)
ret = -EINVAL;
out:
argv_free(argv);
return ret;
}
static ssize_t
ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, u32 val, char *buf,
const char *zero_in)
{
struct ptp_ocp_sma_connector *sma = &ptp_ocp_sma_map[sma_nr - 1];
if (sma->mode == SMA_MODE_IN)
return ptp_ocp_show_inputs(val, buf, zero_in);
return ptp_ocp_show_output(val, buf, sma->default_out_idx);
}
static ssize_t
sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
u32 val;
val = ioread32(&bp->sma->gpio1) & 0x3f;
return ptp_ocp_sma_show(bp, 1, val, buf, ptp_ocp_sma_in[0].name);
}
static ssize_t
sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
u32 val;
val = (ioread32(&bp->sma->gpio1) >> 16) & 0x3f;
return ptp_ocp_sma_show(bp, 2, val, buf, NULL);
}
static ssize_t
sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
u32 val;
val = ioread32(&bp->sma->gpio2) & 0x3f;
return ptp_ocp_sma_show(bp, 3, val, buf, NULL);
}
static ssize_t
sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
u32 val;
val = (ioread32(&bp->sma->gpio2) >> 16) & 0x3f;
return ptp_ocp_sma_show(bp, 4, val, buf, NULL);
}
static void
ptp_ocp_sma_store_output(struct ptp_ocp *bp, u32 val, u32 shift)
{
unsigned long flags;
u32 gpio, mask;
mask = 0xffff << (16 - shift);
spin_lock_irqsave(&bp->lock, flags);
gpio = ioread32(&bp->sma->gpio2);
gpio = (gpio & mask) | (val << shift);
__handle_signal_outputs(bp, gpio);
iowrite32(gpio, &bp->sma->gpio2);
spin_unlock_irqrestore(&bp->lock, flags);
}
static void
ptp_ocp_sma_store_inputs(struct ptp_ocp *bp, u32 val, u32 shift)
{
unsigned long flags;
u32 gpio, mask;
mask = 0xffff << (16 - shift);
spin_lock_irqsave(&bp->lock, flags);
gpio = ioread32(&bp->sma->gpio1);
gpio = (gpio & mask) | (val << shift);
__handle_signal_inputs(bp, gpio);
iowrite32(gpio, &bp->sma->gpio1);
spin_unlock_irqrestore(&bp->lock, flags);
}
static ssize_t
ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr, u32 shift)
{
struct ptp_ocp_sma_connector *sma = &ptp_ocp_sma_map[sma_nr - 1];
enum ptp_ocp_sma_mode mode;
int val;
mode = sma->mode;
val = sma_parse_inputs(buf, &mode);
if (val < 0)
return val;
if (mode != sma->mode && sma->fixed_mode)
return -EOPNOTSUPP;
if (mode != sma->mode) {
pr_err("Mode changes not supported yet.\n");
return -EOPNOTSUPP;
}
if (sma->mode == SMA_MODE_IN)
ptp_ocp_sma_store_inputs(bp, val, shift);
else
ptp_ocp_sma_store_output(bp, val, shift);
return 0;
}
static ssize_t
sma1_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
err = ptp_ocp_sma_store(bp, buf, 1, 0);
return err ? err : count;
}
static ssize_t
sma2_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
err = ptp_ocp_sma_store(bp, buf, 2, 16);
return err ? err : count;
}
static ssize_t
sma3_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
err = ptp_ocp_sma_store(bp, buf, 3, 0);
return err ? err : count;
}
static ssize_t
sma4_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
err = ptp_ocp_sma_store(bp, buf, 4, 16);
return err ? err : count;
}
static DEVICE_ATTR_RW(sma1);
static DEVICE_ATTR_RW(sma2);
static DEVICE_ATTR_RW(sma3);
static DEVICE_ATTR_RW(sma4);
static ssize_t
available_sma_inputs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return ptp_ocp_select_table_show(ptp_ocp_sma_in, buf);
}
static DEVICE_ATTR_RO(available_sma_inputs);
static ssize_t
available_sma_outputs_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return ptp_ocp_select_table_show(ptp_ocp_sma_out, buf);
}
static DEVICE_ATTR_RO(available_sma_outputs);
static ssize_t
serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
if (!bp->has_serial)
ptp_ocp_get_serial_number(bp);
return sysfs_emit(buf, "%pM\n", bp->serial);
}
static DEVICE_ATTR_RO(serialnum);
static ssize_t
gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
ssize_t ret;
if (bp->gnss_lost)
ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
else
ret = sysfs_emit(buf, "SYNC\n");
return ret;
}
static DEVICE_ATTR_RO(gnss_sync);
static ssize_t
utc_tai_offset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
}
static ssize_t
utc_tai_offset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
u32 val;
err = kstrtou32(buf, 0, &val);
if (err)
return err;
ptp_ocp_utc_distribute(bp, val);
return count;
}
static DEVICE_ATTR_RW(utc_tai_offset);
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
static ssize_t
ts_window_adjust_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
}
static ssize_t
ts_window_adjust_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
int err;
u32 val;
err = kstrtou32(buf, 0, &val);
if (err)
return err;
bp->ts_window_adjust = val;
return count;
}
static DEVICE_ATTR_RW(ts_window_adjust);
static ssize_t
irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
u32 val;
val = ioread32(&bp->irig_out->ctrl);
val = (val >> 16) & 0x07;
return sysfs_emit(buf, "%d\n", val);
}
static ssize_t
irig_b_mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
unsigned long flags;
int err;
u32 reg;
u8 val;
err = kstrtou8(buf, 0, &val);
if (err)
return err;
if (val > 7)
return -EINVAL;
reg = ((val & 0x7) << 16);
spin_lock_irqsave(&bp->lock, flags);
iowrite32(0, &bp->irig_out->ctrl); /* disable */
iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
spin_unlock_irqrestore(&bp->lock, flags);
return count;
}
static DEVICE_ATTR_RW(irig_b_mode);
static ssize_t
clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
const char *p;
u32 select;
select = ioread32(&bp->reg->select);
p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
return sysfs_emit(buf, "%s\n", p);
}
static ssize_t
clock_source_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t count)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
unsigned long flags;
int val;
val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
if (val < 0)
return val;
spin_lock_irqsave(&bp->lock, flags);
iowrite32(val, &bp->reg->select);
spin_unlock_irqrestore(&bp->lock, flags);
return count;
}
static DEVICE_ATTR_RW(clock_source);
static ssize_t
available_clock_sources_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
}
static DEVICE_ATTR_RO(available_clock_sources);
static struct attribute *timecard_attrs[] = {
&dev_attr_serialnum.attr,
&dev_attr_gnss_sync.attr,
&dev_attr_clock_source.attr,
&dev_attr_available_clock_sources.attr,
&dev_attr_sma1.attr,
&dev_attr_sma2.attr,
&dev_attr_sma3.attr,
&dev_attr_sma4.attr,
&dev_attr_available_sma_inputs.attr,
&dev_attr_available_sma_outputs.attr,
&dev_attr_irig_b_mode.attr,
&dev_attr_utc_tai_offset.attr,
ptp: ocp: Add timestamp window adjustment The following process is used to read the PHC clock and correlate the reading with the "correct" system time. - get starting timestamp - issue PCI write command - issue PCI read command - get ending timestamp - read latched sec/nsec registers The write command is posted to PCI bus and returns. When the write arrives at the FPGA, the PHC time is latched into the sec/nsec registers, and a flag is set indicating the registers are valid. The read command returns this flag, and the time retrieval proceeds. Below is a non-scaled picture of the timing diagram involved. The PHC time corresponds to some SYS time between [start, end]. Userspace usually uses the midpoint between [start, end] to estimate the PCI delay and match this with the PHC time. [start] | | write |-------+ | | \ | read |----+ +----->| | \ * PHC time latched into register | \ | midpoint | +------->| | | | | | +----| | / | |<--------+ | [end] | | As the diagram indicates, the PHC time is latched before the midpoint, so the system clock time is slightly off the real PHC time. This shows up as a phase error with an oscilliscope. The workaround here is to provide a tunable which reduces (shrinks) the end time in the above diagram. This in turn moves the calculated midpoint so the system time and PHC time are in agreemment. Currently, the adjustment reduces the end time by 3/16th of the entire window. E.g.: [start, end] ==> [start, (end - (3/16 * end)], which produces reasonably good results. Also reduce delays by just writing to the clock control register instead of performing a read/modify/write sequence, as the contents of the control register are known. Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2021-09-15 02:16:35 +00:00
&dev_attr_ts_window_adjust.attr,
NULL,
};
ATTRIBUTE_GROUPS(timecard);
static const char *
gpio_map(u32 gpio, u32 bit, const char *pri, const char *sec, const char *def)
{
const char *ans;
if (gpio & (1 << bit))
ans = pri;
else if (gpio & (1 << (bit + 16)))
ans = sec;
else
ans = def;
return ans;
}
static void
gpio_multi_map(char *buf, u32 gpio, u32 bit,
const char *pri, const char *sec, const char *def)
{
char *ans = buf;
strcpy(ans, def);
if (gpio & (1 << bit))
ans += sprintf(ans, "%s ", pri);
if (gpio & (1 << (bit + 16)))
ans += sprintf(ans, "%s ", sec);
}
static int
ptp_ocp_summary_show(struct seq_file *s, void *data)
{
struct device *dev = s->private;
struct ptp_system_timestamp sts;
u32 sma_in, sma_out, ctrl, val;
struct ts_reg __iomem *ts_reg;
struct timespec64 ts;
struct ptp_ocp *bp;
const char *src;
bool on, map;
char *buf;
buf = (char *)__get_free_page(GFP_KERNEL);
if (!buf)
return -ENOMEM;
bp = dev_get_drvdata(dev);
sma_in = ioread32(&bp->sma->gpio1);
sma_out = ioread32(&bp->sma->gpio2);
seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
sma1_show(dev, NULL, buf);
seq_printf(s, " sma1: %s", buf);
sma2_show(dev, NULL, buf);
seq_printf(s, " sma2: %s", buf);
sma3_show(dev, NULL, buf);
seq_printf(s, " sma3: %s", buf);
sma4_show(dev, NULL, buf);
seq_printf(s, " sma4: %s", buf);
if (bp->ts0) {
ts_reg = bp->ts0->mem;
on = ioread32(&ts_reg->enable);
src = "GNSS";
seq_printf(s, "%7s: %s, src: %s\n", "TS0",
on ? " ON" : "OFF", src);
}
if (bp->ts1) {
ts_reg = bp->ts1->mem;
on = ioread32(&ts_reg->enable);
src = gpio_map(sma_in, 2, "sma1", "sma2", "----");
seq_printf(s, "%7s: %s, src: %s\n", "TS1",
on ? " ON" : "OFF", src);
}
if (bp->ts2) {
ts_reg = bp->ts2->mem;
on = ioread32(&ts_reg->enable);
src = gpio_map(sma_in, 3, "sma1", "sma2", "----");
seq_printf(s, "%7s: %s, src: %s\n", "TS2",
on ? " ON" : "OFF", src);
}
if (bp->pps) {
ts_reg = bp->pps->mem;
src = "PHC";
on = ioread32(&ts_reg->enable);
map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
seq_printf(s, "%7s: %s, src: %s\n", "TS3",
on && map ? " ON" : "OFF", src);
map = !!(bp->pps_req_map & OCP_REQ_PPS);
seq_printf(s, "%7s: %s, src: %s\n", "PPS",
on && map ? " ON" : "OFF", src);
}
if (bp->irig_out) {
ctrl = ioread32(&bp->irig_out->ctrl);
on = ctrl & IRIG_M_CTRL_ENABLE;
val = ioread32(&bp->irig_out->status);
gpio_multi_map(buf, sma_out, 4, "sma3", "sma4", "----");
seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
on ? " ON" : "OFF", val, (ctrl >> 16), buf);
}
if (bp->irig_in) {
on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
val = ioread32(&bp->irig_in->status);
src = gpio_map(sma_in, 4, "sma1", "sma2", "----");
seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
on ? " ON" : "OFF", val, src);
}
if (bp->dcf_out) {
on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
val = ioread32(&bp->dcf_out->status);
gpio_multi_map(buf, sma_out, 5, "sma3", "sma4", "----");
seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
on ? " ON" : "OFF", val, buf);
}
if (bp->dcf_in) {
on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
val = ioread32(&bp->dcf_in->status);
src = gpio_map(sma_in, 5, "sma1", "sma2", "----");
seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
on ? " ON" : "OFF", val, src);
}
if (bp->nmea_out) {
on = ioread32(&bp->nmea_out->ctrl) & 1;
val = ioread32(&bp->nmea_out->status);
seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
on ? " ON" : "OFF", val);
}
/* compute src for PPS1, used below. */
if (bp->pps_select) {
val = ioread32(&bp->pps_select->gpio1);
if (val & 0x01)
src = gpio_map(sma_in, 0, "sma1", "sma2", "----");
else if (val & 0x02)
src = "MAC";
else if (val & 0x04)
src = "GNSS";
else
src = "----";
} else {
src = "?";
}
/* assumes automatic switchover/selection */
val = ioread32(&bp->reg->select);
switch (val >> 16) {
case 0:
sprintf(buf, "----");
break;
case 2:
sprintf(buf, "IRIG");
break;
case 3:
sprintf(buf, "%s via PPS1", src);
break;
case 6:
sprintf(buf, "DCF");
break;
default:
strcpy(buf, "unknown");
break;
}
val = ioread32(&bp->reg->status);
seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
val & OCP_STATUS_IN_SYNC ? "sync" : "unsynced");
/* reuses PPS1 src from earlier */
seq_printf(s, "MAC PPS1 src: %s\n", src);
src = gpio_map(sma_in, 1, "sma1", "sma2", "GNSS2");
seq_printf(s, "MAC PPS2 src: %s\n", src);
if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
struct timespec64 sys_ts;
s64 pre_ns, post_ns, ns;
pre_ns = timespec64_to_ns(&sts.pre_ts);
post_ns = timespec64_to_ns(&sts.post_ts);
ns = (pre_ns + post_ns) / 2;
ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
sys_ts = ns_to_timespec64(ns);
seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
ts.tv_sec, ts.tv_nsec, &ts);
seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
bp->utc_tai_offset);
seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
timespec64_to_ns(&ts) - ns,
post_ns - pre_ns);
}
free_page((unsigned long)buf);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
static struct dentry *ptp_ocp_debugfs_root;
static void
ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
{
struct dentry *d;
d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
bp->debug_root = d;
debugfs_create_file("summary", 0444, bp->debug_root,
&bp->dev, &ptp_ocp_summary_fops);
}
static void
ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
{
debugfs_remove_recursive(bp->debug_root);
}
static void
ptp_ocp_debugfs_init(void)
{
ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
}
static void
ptp_ocp_debugfs_fini(void)
{
debugfs_remove_recursive(ptp_ocp_debugfs_root);
}
static void
ptp_ocp_dev_release(struct device *dev)
{
struct ptp_ocp *bp = dev_get_drvdata(dev);
mutex_lock(&ptp_ocp_lock);
idr_remove(&ptp_ocp_idr, bp->id);
mutex_unlock(&ptp_ocp_lock);
}
static int
ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
{
int err;
mutex_lock(&ptp_ocp_lock);
err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
mutex_unlock(&ptp_ocp_lock);
if (err < 0) {
dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
return err;
}
bp->id = err;
bp->ptp_info = ptp_ocp_clock_info;
spin_lock_init(&bp->lock);
bp->gnss_port = -1;
bp->gnss2_port = -1;
bp->mac_port = -1;
bp->nmea_port = -1;
bp->pdev = pdev;
device_initialize(&bp->dev);
dev_set_name(&bp->dev, "ocp%d", bp->id);
bp->dev.class = &timecard_class;
bp->dev.parent = &pdev->dev;
bp->dev.release = ptp_ocp_dev_release;
dev_set_drvdata(&bp->dev, bp);
err = device_add(&bp->dev);
if (err) {
dev_err(&bp->dev, "device add failed: %d\n", err);
goto out;
}
pci_set_drvdata(pdev, bp);
return 0;
out:
ptp_ocp_dev_release(&bp->dev);
put_device(&bp->dev);
return err;
}
static void
ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
{
struct device *dev = &bp->dev;
if (sysfs_create_link(&dev->kobj, &child->kobj, link))
dev_err(dev, "%s symlink failed\n", link);
}
static void
ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
{
struct device *dev, *child;
dev = &bp->pdev->dev;
child = device_find_child_by_name(dev, name);
if (!child) {
dev_err(dev, "Could not find device %s\n", name);
return;
}
ptp_ocp_symlink(bp, child, link);
put_device(child);
}
static int
ptp_ocp_complete(struct ptp_ocp *bp)
{
struct pps_device *pps;
char buf[32];
if (bp->gnss_port != -1) {
sprintf(buf, "ttyS%d", bp->gnss_port);
ptp_ocp_link_child(bp, buf, "ttyGNSS");
}
if (bp->gnss2_port != -1) {
sprintf(buf, "ttyS%d", bp->gnss2_port);
ptp_ocp_link_child(bp, buf, "ttyGNSS2");
}
if (bp->mac_port != -1) {
sprintf(buf, "ttyS%d", bp->mac_port);
ptp_ocp_link_child(bp, buf, "ttyMAC");
}
if (bp->nmea_port != -1) {
sprintf(buf, "ttyS%d", bp->nmea_port);
ptp_ocp_link_child(bp, buf, "ttyNMEA");
}
sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
ptp_ocp_link_child(bp, buf, "ptp");
pps = pps_lookup_dev(bp->ptp);
if (pps)
ptp_ocp_symlink(bp, pps->dev, "pps");
if (device_add_groups(&bp->dev, timecard_groups))
pr_err("device add groups failed\n");
ptp_ocp_debugfs_add_device(bp);
return 0;
}
static void
ptp_ocp_phc_info(struct ptp_ocp *bp)
{
struct timespec64 ts;
u32 version, select;
bool sync;
version = ioread32(&bp->reg->version);
select = ioread32(&bp->reg->select);
dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
version >> 24, (version >> 16) & 0xff, version & 0xffff,
ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
ptp_clock_index(bp->ptp));
sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
ts.tv_sec, ts.tv_nsec,
sync ? "in-sync" : "UNSYNCED");
}
static void
ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
{
if (port != -1)
dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
}
static void
ptp_ocp_info(struct ptp_ocp *bp)
{
static int nmea_baud[] = {
1200, 2400, 4800, 9600, 19200, 38400,
57600, 115200, 230400, 460800, 921600,
1000000, 2000000
};
struct device *dev = &bp->pdev->dev;
u32 reg;
ptp_ocp_phc_info(bp);
if (bp->tod)
ptp_ocp_tod_info(bp);
if (bp->image) {
u32 ver = ioread32(&bp->image->version);
dev_info(dev, "version %x\n", ver);
if (ver & 0xffff)
dev_info(dev, "regular image, version %d\n",
ver & 0xffff);
else
dev_info(dev, "golden image, version %d\n",
ver >> 16);
}
ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port, 115200);
ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port, 115200);
ptp_ocp_serial_info(dev, "MAC", bp->mac_port, 57600);
if (bp->nmea_out && bp->nmea_port != -1) {
int baud = -1;
reg = ioread32(&bp->nmea_out->uart_baud);
if (reg < ARRAY_SIZE(nmea_baud))
baud = nmea_baud[reg];
ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port, baud);
}
}
static void
ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
{
struct device *dev = &bp->dev;
sysfs_remove_link(&dev->kobj, "ttyGNSS");
sysfs_remove_link(&dev->kobj, "ttyMAC");
sysfs_remove_link(&dev->kobj, "ptp");
sysfs_remove_link(&dev->kobj, "pps");
device_remove_groups(dev, timecard_groups);
}
static void
ptp_ocp_detach(struct ptp_ocp *bp)
{
ptp_ocp_debugfs_remove_device(bp);
ptp_ocp_detach_sysfs(bp);
if (timer_pending(&bp->watchdog))
del_timer_sync(&bp->watchdog);
if (bp->ts0)
ptp_ocp_unregister_ext(bp->ts0);
if (bp->ts1)
ptp_ocp_unregister_ext(bp->ts1);
if (bp->ts2)
ptp_ocp_unregister_ext(bp->ts2);
if (bp->pps)
ptp_ocp_unregister_ext(bp->pps);
if (bp->gnss_port != -1)
serial8250_unregister_port(bp->gnss_port);
if (bp->gnss2_port != -1)
serial8250_unregister_port(bp->gnss2_port);
if (bp->mac_port != -1)
serial8250_unregister_port(bp->mac_port);
if (bp->nmea_port != -1)
serial8250_unregister_port(bp->nmea_port);
if (bp->spi_flash)
platform_device_unregister(bp->spi_flash);
if (bp->i2c_ctrl)
platform_device_unregister(bp->i2c_ctrl);
if (bp->i2c_clk)
clk_hw_unregister_fixed_rate(bp->i2c_clk);
if (bp->n_irqs)
pci_free_irq_vectors(bp->pdev);
if (bp->ptp)
ptp_clock_unregister(bp->ptp);
device_unregister(&bp->dev);
}
static int
ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct devlink *devlink;
struct ptp_ocp *bp;
int err;
devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
if (!devlink) {
dev_err(&pdev->dev, "devlink_alloc failed\n");
return -ENOMEM;
}
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "pci_enable_device\n");
goto out_unregister;
}
bp = devlink_priv(devlink);
err = ptp_ocp_device_init(bp, pdev);
if (err)
goto out_disable;
/* compat mode.
* Older FPGA firmware only returns 2 irq's.
* allow this - if not all of the IRQ's are returned, skip the
* extra devices and just register the clock.
*/
err = pci_alloc_irq_vectors(pdev, 1, 11, PCI_IRQ_MSI | PCI_IRQ_MSIX);
if (err < 0) {
dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
goto out;
}
bp->n_irqs = err;
pci_set_master(pdev);
err = ptp_ocp_register_resources(bp, id->driver_data);
if (err)
goto out;
bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
if (IS_ERR(bp->ptp)) {
err = PTR_ERR(bp->ptp);
dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
bp->ptp = NULL;
goto out;
}
err = ptp_ocp_complete(bp);
if (err)
goto out;
ptp_ocp_info(bp);
devlink_register(devlink);
return 0;
out:
ptp_ocp_detach(bp);
pci_set_drvdata(pdev, NULL);
out_disable:
pci_disable_device(pdev);
out_unregister:
devlink_free(devlink);
return err;
}
static void
ptp_ocp_remove(struct pci_dev *pdev)
{
struct ptp_ocp *bp = pci_get_drvdata(pdev);
struct devlink *devlink = priv_to_devlink(bp);
devlink_unregister(devlink);
ptp_ocp_detach(bp);
pci_set_drvdata(pdev, NULL);
pci_disable_device(pdev);
devlink_free(devlink);
}
static struct pci_driver ptp_ocp_driver = {
.name = KBUILD_MODNAME,
.id_table = ptp_ocp_pcidev_id,
.probe = ptp_ocp_probe,
.remove = ptp_ocp_remove,
};
static int
ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
unsigned long action, void *data)
{
struct device *dev, *child = data;
struct ptp_ocp *bp;
bool add;
switch (action) {
case BUS_NOTIFY_ADD_DEVICE:
case BUS_NOTIFY_DEL_DEVICE:
add = action == BUS_NOTIFY_ADD_DEVICE;
break;
default:
return 0;
}
if (!i2c_verify_adapter(child))
return 0;
dev = child;
while ((dev = dev->parent))
if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
goto found;
return 0;
found:
bp = dev_get_drvdata(dev);
if (add)
ptp_ocp_symlink(bp, child, "i2c");
else
sysfs_remove_link(&bp->dev.kobj, "i2c");
return 0;
}
static struct notifier_block ptp_ocp_i2c_notifier = {
.notifier_call = ptp_ocp_i2c_notifier_call,
};
static int __init
ptp_ocp_init(void)
{
const char *what;
int err;
ptp_ocp_debugfs_init();
what = "timecard class";
err = class_register(&timecard_class);
if (err)
goto out;
what = "i2c notifier";
err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
if (err)
goto out_notifier;
what = "ptp_ocp driver";
err = pci_register_driver(&ptp_ocp_driver);
if (err)
goto out_register;
return 0;
out_register:
bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
out_notifier:
class_unregister(&timecard_class);
out:
ptp_ocp_debugfs_fini();
pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
return err;
}
static void __exit
ptp_ocp_fini(void)
{
bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
pci_unregister_driver(&ptp_ocp_driver);
class_unregister(&timecard_class);
ptp_ocp_debugfs_fini();
}
module_init(ptp_ocp_init);
module_exit(ptp_ocp_fini);
MODULE_DESCRIPTION("OpenCompute TimeCard driver");
MODULE_LICENSE("GPL v2");