linux-stable/include/linux/rcutree.h

120 lines
4.1 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0+ */
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 20:55:32 +00:00
/*
* Read-Copy Update mechanism for mutual exclusion (tree-based version)
*
* Copyright IBM Corporation, 2008
*
* Author: Dipankar Sarma <dipankar@in.ibm.com>
* Paul E. McKenney <paulmck@linux.ibm.com> Hierarchical algorithm
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 20:55:32 +00:00
*
* Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 20:55:32 +00:00
* and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
*
* For detailed explanation of Read-Copy Update mechanism see -
* Documentation/RCU
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 20:55:32 +00:00
*/
#ifndef __LINUX_RCUTREE_H
#define __LINUX_RCUTREE_H
void rcu_softirq_qs(void);
void rcu_note_context_switch(bool preempt);
int rcu_needs_cpu(void);
void rcu_cpu_stall_reset(void);
void rcu_request_urgent_qs_task(struct task_struct *t);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 20:55:32 +00:00
/*
* Note a virtualization-based context switch. This is simply a
* wrapper around rcu_note_context_switch(), which allows TINY_RCU
* to save a few bytes. The caller must have disabled interrupts.
*/
static inline void rcu_virt_note_context_switch(void)
{
rcu_note_context_switch(false);
}
void synchronize_rcu_expedited(void);
void kvfree_call_rcu(struct rcu_head *head, void *ptr);
void rcu_barrier(void);
bool rcu_eqs_special_set(int cpu);
void rcu_momentary_dyntick_idle(void);
rcu: Add basic support for kfree_rcu() batching Recently a discussion about stability and performance of a system involving a high rate of kfree_rcu() calls surfaced on the list [1] which led to another discussion how to prepare for this situation. This patch adds basic batching support for kfree_rcu(). It is "basic" because we do none of the slab management, dynamic allocation, code moving or any of the other things, some of which previous attempts did [2]. These fancier improvements can be follow-up patches and there are different ideas being discussed in those regards. This is an effort to start simple, and build up from there. In the future, an extension to use kfree_bulk and possibly per-slab batching could be done to further improve performance due to cache-locality and slab-specific bulk free optimizations. By using an array of pointers, the worker thread processing the work would need to read lesser data since it does not need to deal with large rcu_head(s) any longer. Torture tests follow in the next patch and show improvements of around 5x reduction in number of grace periods on a 16 CPU system. More details and test data are in that patch. There is an implication with rcu_barrier() with this patch. Since the kfree_rcu() calls can be batched, and may not be handed yet to the RCU machinery in fact, the monitor may not have even run yet to do the queue_rcu_work(), there seems no easy way of implementing rcu_barrier() to wait for those kfree_rcu()s that are already made. So this means a kfree_rcu() followed by an rcu_barrier() does not imply that memory will be freed once rcu_barrier() returns. Another implication is higher active memory usage (although not run-away..) until the kfree_rcu() flooding ends, in comparison to without batching. More details about this are in the second patch which adds an rcuperf test. Finally, in the near future we will get rid of kfree_rcu() special casing within RCU such as in rcu_do_batch and switch everything to just batching. Currently we don't do that since timer subsystem is not yet up and we cannot schedule the kfree_rcu() monitor as the timer subsystem's lock are not initialized. That would also mean getting rid of kfree_call_rcu_nobatch() entirely. [1] http://lore.kernel.org/lkml/20190723035725-mutt-send-email-mst@kernel.org [2] https://lkml.org/lkml/2017/12/19/824 Cc: kernel-team@android.com Cc: kernel-team@lge.com Co-developed-by: Byungchul Park <byungchul.park@lge.com> Signed-off-by: Byungchul Park <byungchul.park@lge.com> Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> [ paulmck: Applied 0day and Paul Walmsley feedback on ->monitor_todo. ] [ paulmck: Make it work during early boot. ] [ paulmck: Add a crude early boot self-test. ] [ paulmck: Style adjustments and experimental docbook structure header. ] Link: https://lore.kernel.org/lkml/alpine.DEB.2.21.9999.1908161931110.32497@viisi.sifive.com/T/#me9956f66cb611b95d26ae92700e1d901f46e8c59 Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
2019-08-05 22:22:27 +00:00
void kfree_rcu_scheduler_running(void);
bool rcu_gp_might_be_stalled(void);
struct rcu_gp_oldstate {
unsigned long rgos_norm;
unsigned long rgos_exp;
};
// Maximum number of rcu_gp_oldstate values corresponding to
// not-yet-completed RCU grace periods.
#define NUM_ACTIVE_RCU_POLL_FULL_OLDSTATE 4
/**
* same_state_synchronize_rcu_full - Are two old-state values identical?
* @rgosp1: First old-state value.
* @rgosp2: Second old-state value.
*
* The two old-state values must have been obtained from either
* get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
* or get_completed_synchronize_rcu_full(). Returns @true if the two
* values are identical and @false otherwise. This allows structures
* whose lifetimes are tracked by old-state values to push these values
* to a list header, allowing those structures to be slightly smaller.
*
* Note that equality is judged on a bitwise basis, so that an
* @rcu_gp_oldstate structure with an already-completed state in one field
* will compare not-equal to a structure with an already-completed state
* in the other field. After all, the @rcu_gp_oldstate structure is opaque
* so how did such a situation come to pass in the first place?
*/
static inline bool same_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp1,
struct rcu_gp_oldstate *rgosp2)
{
return rgosp1->rgos_norm == rgosp2->rgos_norm && rgosp1->rgos_exp == rgosp2->rgos_exp;
}
unsigned long start_poll_synchronize_rcu_expedited(void);
void start_poll_synchronize_rcu_expedited_full(struct rcu_gp_oldstate *rgosp);
void cond_synchronize_rcu_expedited(unsigned long oldstate);
void cond_synchronize_rcu_expedited_full(struct rcu_gp_oldstate *rgosp);
unsigned long get_state_synchronize_rcu(void);
void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
unsigned long start_poll_synchronize_rcu(void);
void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
bool poll_state_synchronize_rcu(unsigned long oldstate);
bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
void cond_synchronize_rcu(unsigned long oldstate);
void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
rcu: Add a TINY_PREEMPT_RCU Implement a small-memory-footprint uniprocessor-only implementation of preemptible RCU. This implementation uses but a single blocked-tasks list rather than the combinatorial number used per leaf rcu_node by TREE_PREEMPT_RCU, which reduces memory consumption and greatly simplifies processing. This version also takes advantage of uniprocessor execution to accelerate grace periods in the case where there are no readers. The general design is otherwise broadly similar to that of TREE_PREEMPT_RCU. This implementation is a step towards having RCU implementation driven off of the SMP and PREEMPT kernel configuration variables, which can happen once this implementation has accumulated sufficient experience. Removed ACCESS_ONCE() from __rcu_read_unlock() and added barrier() as suggested by Steve Rostedt in order to avoid the compiler-reordering issue noted by Mathieu Desnoyers (http://lkml.org/lkml/2010/8/16/183). As can be seen below, CONFIG_TINY_PREEMPT_RCU represents almost 5Kbyte savings compared to CONFIG_TREE_PREEMPT_RCU. Of course, for non-real-time workloads, CONFIG_TINY_RCU is even better. CONFIG_TREE_PREEMPT_RCU text data bss dec filename 13 0 0 13 kernel/rcupdate.o 6170 825 28 7023 kernel/rcutree.o ---- 7026 Total CONFIG_TINY_PREEMPT_RCU text data bss dec filename 13 0 0 13 kernel/rcupdate.o 2081 81 8 2170 kernel/rcutiny.o ---- 2183 Total CONFIG_TINY_RCU (non-preemptible) text data bss dec filename 13 0 0 13 kernel/rcupdate.o 719 25 0 744 kernel/rcutiny.o --- 757 Total Requested-by: Loïc Minier <loic.minier@canonical.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2010-06-29 23:49:16 +00:00
#ifdef CONFIG_PROVE_RCU
void rcu_irq_exit_check_preempt(void);
#else
static inline void rcu_irq_exit_check_preempt(void) { }
#endif
struct task_struct;
void rcu_preempt_deferred_qs(struct task_struct *t);
void exit_rcu(void);
void rcu_scheduler_starting(void);
extern int rcu_scheduler_active;
void rcu_end_inkernel_boot(void);
bool rcu_inkernel_boot_has_ended(void);
bool rcu_is_watching(void);
#ifndef CONFIG_PREEMPTION
void rcu_all_qs(void);
#endif
/* RCUtree hotplug events */
int rcutree_prepare_cpu(unsigned int cpu);
int rcutree_online_cpu(unsigned int cpu);
int rcutree_offline_cpu(unsigned int cpu);
int rcutree_dead_cpu(unsigned int cpu);
int rcutree_dying_cpu(unsigned int cpu);
void rcu_cpu_starting(unsigned int cpu);
"Tree RCU": scalable classic RCU implementation This patch fixes a long-standing performance bug in classic RCU that results in massive internal-to-RCU lock contention on systems with more than a few hundred CPUs. Although this patch creates a separate flavor of RCU for ease of review and patch maintenance, it is intended to replace classic RCU. This patch still handles stress better than does mainline, so I am still calling it ready for inclusion. This patch is against the -tip tree. Nevertheless, experience on an actual 1000+ CPU machine would still be most welcome. Most of the changes noted below were found while creating an rcutiny (which should permit ejecting the current rcuclassic) and while doing detailed line-by-line documentation. Updates from v9 (http://lkml.org/lkml/2008/12/2/334): o Fixes from remainder of line-by-line code walkthrough, including comment spelling, initialization, undesirable narrowing due to type conversion, removing redundant memory barriers, removing redundant local-variable initialization, and removing redundant local variables. I do not believe that any of these fixes address the CPU-hotplug issues that Andi Kleen was seeing, but please do give it a whirl in case the machine is smarter than I am. A writeup from the walkthrough may be found at the following URL, in case you are suffering from terminal insomnia or masochism: http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf o Made rcutree tracing use seq_file, as suggested some time ago by Lai Jiangshan. o Added a .csv variant of the rcudata debugfs trace file, to allow people having thousands of CPUs to drop the data into a spreadsheet. Tested with oocalc and gnumeric. Updated documentation to suit. Updates from v8 (http://lkml.org/lkml/2008/11/15/139): o Fix a theoretical race between grace-period initialization and force_quiescent_state() that could occur if more than three jiffies were required to carry out the grace-period initialization. Which it might, if you had enough CPUs. o Apply Ingo's printk-standardization patch. o Substitute local variables for repeated accesses to global variables. o Fix comment misspellings and redundant (but harmless) increments of ->n_rcu_pending (this latter after having explicitly added it). o Apply checkpatch fixes. Updates from v7 (http://lkml.org/lkml/2008/10/10/291): o Fixed a number of problems noted by Gautham Shenoy, including the cpu-stall-detection bug that he was having difficulty convincing me was real. ;-) o Changed cpu-stall detection to wait for ten seconds rather than three in order to reduce false positive, as suggested by Ingo Molnar. o Produced a design document (http://lwn.net/Articles/305782/). The act of writing this document uncovered a number of both theoretical and "here and now" bugs as noted below. o Fix dynticks_nesting accounting confusion, simplify WARN_ON() condition, fix kerneldoc comments, and add memory barriers in dynticks interface functions. o Add more data to tracing. o Remove unused "rcu_barrier" field from rcu_data structure. o Count calls to rcu_pending() from scheduling-clock interrupt to use as a surrogate timebase should jiffies stop counting. o Fix a theoretical race between force_quiescent_state() and grace-period initialization. Yes, initialization does have to go on for some jiffies for this race to occur, but given enough CPUs... Updates from v6 (http://lkml.org/lkml/2008/9/23/448): o Fix a number of checkpatch.pl complaints. o Apply review comments from Ingo Molnar and Lai Jiangshan on the stall-detection code. o Fix several bugs in !CONFIG_SMP builds. o Fix a misspelled config-parameter name so that RCU now announces at boot time if stall detection is configured. o Run tests on numerous combinations of configurations parameters, which after the fixes above, now build and run correctly. Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line): o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a changeset some time ago, and finally got around to retesting this option). o Fix some tracing bugs in rcupreempt that caused incorrect totals to be printed. o I now test with a more brutal random-selection online/offline script (attached). Probably more brutal than it needs to be on the people reading it as well, but so it goes. o A number of optimizations and usability improvements: o Make rcu_pending() ignore the grace-period timeout when there is no grace period in progress. o Make force_quiescent_state() avoid going for a global lock in the case where there is no grace period in progress. o Rearrange struct fields to improve struct layout. o Make call_rcu() initiate a grace period if RCU was idle, rather than waiting for the next scheduling clock interrupt. o Invoke rcu_irq_enter() and rcu_irq_exit() only when idle, as suggested by Andi Kleen. I still don't completely trust this change, and might back it out. o Make CONFIG_RCU_TRACE be the single config variable manipulated for all forms of RCU, instead of the prior confusion. o Document tracing files and formats for both rcupreempt and rcutree. Updates from v4 for those missing v5 given its bad subject line: o Separated dynticks interface so that NMIs and irqs call separate functions, greatly simplifying it. In particular, this code no longer requires a proof of correctness. ;-) o Separated dynticks state out into its own per-CPU structure, avoiding the duplicated accounting. o The case where a dynticks-idle CPU runs an irq handler that invokes call_rcu() is now correctly handled, forcing that CPU out of dynticks-idle mode. o Review comments have been applied (thank you all!!!). For but one example, fixed the dynticks-ordering issue that Manfred pointed out, saving me much debugging. ;-) o Adjusted rcuclassic and rcupreempt to handle dynticks changes. Attached is an updated patch to Classic RCU that applies a hierarchy, greatly reducing the contention on the top-level lock for large machines. This passes 10-hour concurrent rcutorture and online-offline testing on 128-CPU ppc64 without dynticks enabled, and exposes some timekeeping bugs in presence of dynticks (exciting working on a system where "sleep 1" hangs until interrupted...), which were fixed in the 2.6.27 kernel. It is getting more reliable than mainline by some measures, so the next version will be against -tip for inclusion. See also Manfred Spraul's recent patches (or his earlier work from 2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2). We will converge onto a common patch in the fullness of time, but are currently exploring different regions of the design space. That said, I have already gratefully stolen quite a few of Manfred's ideas. This patch provides CONFIG_RCU_FANOUT, which controls the bushiness of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on 64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT, there is no hierarchy. By default, the RCU initialization code will adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable this balancing, allowing the hierarchy to be exactly aligned to the underlying hardware. Up to two levels of hierarchy are permitted (in addition to the root node), allowing up to 16,384 CPUs on 32-bit systems and up to 262,144 CPUs on 64-bit systems. I just know that I am going to regret saying this, but this seems more than sufficient for the foreseeable future. (Some architectures might wish to set CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs. If this becomes a real problem, additional levels can be added, but I doubt that it will make a significant difference on real hardware.) In the common case, a given CPU will manipulate its private rcu_data structure and the rcu_node structure that it shares with its immediate neighbors. This can reduce both lock and memory contention by multiple orders of magnitude, which should eliminate the need for the strange manipulations that are reported to be required when running Linux on very large systems. Some shortcomings: o More bugs will probably surface as a result of an ongoing line-by-line code inspection. Patches will be provided as required. o There are probably hangs, rcutorture failures, &c. Seems quite stable on a 128-CPU machine, but that is kind of small compared to 4096 CPUs. However, seems to do better than mainline. Patches will be provided as required. o The memory footprint of this version is several KB larger than rcuclassic. A separate UP-only rcutiny patch will be provided, which will reduce the memory footprint significantly, even compared to the old rcuclassic. One such patch passes light testing, and has a memory footprint smaller even than rcuclassic. Initial reaction from various embedded guys was "it is not worth it", so am putting it aside. Credits: o Manfred Spraul for ideas, review comments, and bugs spotted, as well as some good friendly competition. ;-) o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers, Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton for reviews and comments. o Thomas Gleixner for much-needed help with some timer issues (see patches below). o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos, Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines alive despite my heavy abuse^Wtesting. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2008-12-18 20:55:32 +00:00
#endif /* __LINUX_RCUTREE_H */