linux-stable/arch/arm64/mm/proc.S

554 lines
13 KiB
ArmAsm
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Based on arch/arm/mm/proc.S
*
* Copyright (C) 2001 Deep Blue Solutions Ltd.
* Copyright (C) 2012 ARM Ltd.
* Author: Catalin Marinas <catalin.marinas@arm.com>
*/
#include <linux/init.h>
#include <linux/linkage.h>
mm: reorder includes after introduction of linux/pgtable.h The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include of the latter in the middle of asm includes. Fix this up with the aid of the below script and manual adjustments here and there. import sys import re if len(sys.argv) is not 3: print "USAGE: %s <file> <header>" % (sys.argv[0]) sys.exit(1) hdr_to_move="#include <linux/%s>" % sys.argv[2] moved = False in_hdrs = False with open(sys.argv[1], "r") as f: lines = f.readlines() for _line in lines: line = _line.rstrip(' ') if line == hdr_to_move: continue if line.startswith("#include <linux/"): in_hdrs = True elif not moved and in_hdrs: moved = True print hdr_to_move print line Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Cain <bcain@codeaurora.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Chris Zankel <chris@zankel.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Greentime Hu <green.hu@gmail.com> Cc: Greg Ungerer <gerg@linux-m68k.org> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Guo Ren <guoren@kernel.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Ley Foon Tan <ley.foon.tan@intel.com> Cc: Mark Salter <msalter@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Nick Hu <nickhu@andestech.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Richard Weinberger <richard@nod.at> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Stafford Horne <shorne@gmail.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vincent Chen <deanbo422@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Will Deacon <will@kernel.org> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-09 04:32:42 +00:00
#include <linux/pgtable.h>
#include <linux/cfi_types.h>
#include <asm/assembler.h>
#include <asm/asm-offsets.h>
#include <asm/asm_pointer_auth.h>
#include <asm/hwcap.h>
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
#include <asm/kernel-pgtable.h>
#include <asm/pgtable-hwdef.h>
#include <asm/cpufeature.h>
#include <asm/alternative.h>
#include <asm/smp.h>
#include <asm/sysreg.h>
#ifdef CONFIG_ARM64_64K_PAGES
#define TCR_TG_FLAGS TCR_TG0_64K | TCR_TG1_64K
#elif defined(CONFIG_ARM64_16K_PAGES)
#define TCR_TG_FLAGS TCR_TG0_16K | TCR_TG1_16K
#else /* CONFIG_ARM64_4K_PAGES */
#define TCR_TG_FLAGS TCR_TG0_4K | TCR_TG1_4K
#endif
#ifdef CONFIG_RANDOMIZE_BASE
#define TCR_KASLR_FLAGS TCR_NFD1
#else
#define TCR_KASLR_FLAGS 0
#endif
#define TCR_SMP_FLAGS TCR_SHARED
/* PTWs cacheable, inner/outer WBWA */
#define TCR_CACHE_FLAGS TCR_IRGN_WBWA | TCR_ORGN_WBWA
#ifdef CONFIG_KASAN_SW_TAGS
arm64: kasan: allow enabling in-kernel MTE Hardware tag-based KASAN relies on Memory Tagging Extension (MTE) feature and requires it to be enabled. MTE supports This patch adds a new mte_enable_kernel() helper, that enables MTE in Synchronous mode in EL1 and is intended to be called from KASAN runtime during initialization. The Tag Checking operation causes a synchronous data abort as a consequence of a tag check fault when MTE is configured in synchronous mode. As part of this change enable match-all tag for EL1 to allow the kernel to access user pages without faulting. This is required because the kernel does not have knowledge of the tags set by the user in a page. Note: For MTE, the TCF bit field in SCTLR_EL1 affects only EL1 in a similar way as TCF0 affects EL0. MTE that is built on top of the Top Byte Ignore (TBI) feature hence we enable it as part of this patch as well. Link: https://lkml.kernel.org/r/7352b0a0899af65c2785416c8ca6bf3845b66fa1.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22 20:01:38 +00:00
#define TCR_KASAN_SW_FLAGS TCR_TBI1 | TCR_TBID1
#else
arm64: kasan: allow enabling in-kernel MTE Hardware tag-based KASAN relies on Memory Tagging Extension (MTE) feature and requires it to be enabled. MTE supports This patch adds a new mte_enable_kernel() helper, that enables MTE in Synchronous mode in EL1 and is intended to be called from KASAN runtime during initialization. The Tag Checking operation causes a synchronous data abort as a consequence of a tag check fault when MTE is configured in synchronous mode. As part of this change enable match-all tag for EL1 to allow the kernel to access user pages without faulting. This is required because the kernel does not have knowledge of the tags set by the user in a page. Note: For MTE, the TCF bit field in SCTLR_EL1 affects only EL1 in a similar way as TCF0 affects EL0. MTE that is built on top of the Top Byte Ignore (TBI) feature hence we enable it as part of this patch as well. Link: https://lkml.kernel.org/r/7352b0a0899af65c2785416c8ca6bf3845b66fa1.1606161801.git.andreyknvl@google.com Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Co-developed-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Andrey Konovalov <andreyknvl@google.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Branislav Rankov <Branislav.Rankov@arm.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Evgenii Stepanov <eugenis@google.com> Cc: Kevin Brodsky <kevin.brodsky@arm.com> Cc: Marco Elver <elver@google.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-22 20:01:38 +00:00
#define TCR_KASAN_SW_FLAGS 0
#endif
#ifdef CONFIG_KASAN_HW_TAGS
#define TCR_MTE_FLAGS TCR_TCMA1 | TCR_TBI1 | TCR_TBID1
2022-09-15 22:20:53 +00:00
#elif defined(CONFIG_ARM64_MTE)
/*
* The mte_zero_clear_page_tags() implementation uses DC GZVA, which relies on
* TBI being enabled at EL1.
*/
#define TCR_MTE_FLAGS TCR_TBI1 | TCR_TBID1
2022-09-15 22:20:53 +00:00
#else
#define TCR_MTE_FLAGS 0
#endif
/*
* Default MAIR_EL1. MT_NORMAL_TAGGED is initially mapped as Normal memory and
2022-09-15 22:20:53 +00:00
* changed during mte_cpu_setup to Normal Tagged if the system supports MTE.
*/
#define MAIR_EL1_SET \
(MAIR_ATTRIDX(MAIR_ATTR_DEVICE_nGnRnE, MT_DEVICE_nGnRnE) | \
MAIR_ATTRIDX(MAIR_ATTR_DEVICE_nGnRE, MT_DEVICE_nGnRE) | \
MAIR_ATTRIDX(MAIR_ATTR_NORMAL_NC, MT_NORMAL_NC) | \
MAIR_ATTRIDX(MAIR_ATTR_NORMAL, MT_NORMAL) | \
MAIR_ATTRIDX(MAIR_ATTR_NORMAL, MT_NORMAL_TAGGED))
arm64: kernel: remove ARM64_CPU_SUSPEND config option ARM64_CPU_SUSPEND config option was introduced to make code providing context save/restore selectable only on platforms requiring power management capabilities. Currently ARM64_CPU_SUSPEND depends on the PM_SLEEP config option which in turn is set by the SUSPEND config option. The introduction of CPU_IDLE for arm64 requires that code configured by ARM64_CPU_SUSPEND (context save/restore) should be compiled in in order to enable the CPU idle driver to rely on CPU operations carrying out context save/restore. The ARM64_CPUIDLE config option (ARM64 generic idle driver) is therefore forced to select ARM64_CPU_SUSPEND, even if there may be (ie PM_SLEEP) failed dependencies, which is not a clean way of handling the kernel configuration option. For these reasons, this patch removes the ARM64_CPU_SUSPEND config option and makes the context save/restore dependent on CPU_PM, which is selected whenever either SUSPEND or CPU_IDLE are configured, cleaning up dependencies in the process. This way, code previously configured through ARM64_CPU_SUSPEND is compiled in whenever a power management subsystem requires it to be present in the kernel (SUSPEND || CPU_IDLE), which is the behaviour expected on ARM64 kernels. The cpu_suspend and cpu_init_idle CPU operations are added only if CPU_IDLE is selected, since they are CPU_IDLE specific methods and should be grouped and defined accordingly. PSCI CPU operations are updated to reflect the introduced changes. Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Krzysztof Kozlowski <k.kozlowski@samsung.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-01-26 18:33:44 +00:00
#ifdef CONFIG_CPU_PM
/**
* cpu_do_suspend - save CPU registers context
*
* x0: virtual address of context pointer
*
* This must be kept in sync with struct cpu_suspend_ctx in <asm/suspend.h>.
*/
SYM_FUNC_START(cpu_do_suspend)
mrs x2, tpidr_el0
mrs x3, tpidrro_el0
mrs x4, contextidr_el1
mrs x5, osdlr_el1
mrs x6, cpacr_el1
mrs x7, tcr_el1
mrs x8, vbar_el1
mrs x9, mdscr_el1
mrs x10, oslsr_el1
mrs x11, sctlr_el1
get_this_cpu_offset x12
mrs x13, sp_el0
stp x2, x3, [x0]
stp x4, x5, [x0, #16]
stp x6, x7, [x0, #32]
stp x8, x9, [x0, #48]
stp x10, x11, [x0, #64]
stp x12, x13, [x0, #80]
/*
* Save x18 as it may be used as a platform register, e.g. by shadow
* call stack.
*/
str x18, [x0, #96]
ret
SYM_FUNC_END(cpu_do_suspend)
/**
* cpu_do_resume - restore CPU register context
*
* x0: Address of context pointer
*/
SYM_FUNC_START(cpu_do_resume)
ldp x2, x3, [x0]
ldp x4, x5, [x0, #16]
ldp x6, x8, [x0, #32]
ldp x9, x10, [x0, #48]
ldp x11, x12, [x0, #64]
ldp x13, x14, [x0, #80]
/*
* Restore x18, as it may be used as a platform register, and clear
* the buffer to minimize the risk of exposure when used for shadow
* call stack.
*/
ldr x18, [x0, #96]
str xzr, [x0, #96]
msr tpidr_el0, x2
msr tpidrro_el0, x3
msr contextidr_el1, x4
msr cpacr_el1, x6
/* Don't change t0sz here, mask those bits when restoring */
mrs x7, tcr_el1
bfi x8, x7, TCR_T0SZ_OFFSET, TCR_TxSZ_WIDTH
msr tcr_el1, x8
msr vbar_el1, x9
/*
* __cpu_setup() cleared MDSCR_EL1.MDE and friends, before unmasking
* debug exceptions. By restoring MDSCR_EL1 here, we may take a debug
* exception. Mask them until local_daif_restore() in cpu_suspend()
* resets them.
*/
disable_daif
msr mdscr_el1, x10
msr sctlr_el1, x12
set_this_cpu_offset x13
msr sp_el0, x14
/*
* Restore oslsr_el1 by writing oslar_el1
*/
msr osdlr_el1, x5
ubfx x11, x11, #1, #1
msr oslar_el1, x11
reset_pmuserenr_el0 x0 // Disable PMU access from EL0
reset_amuserenr_el0 x0 // Disable AMU access from EL0
alternative_if ARM64_HAS_RAS_EXTN
msr_s SYS_DISR_EL1, xzr
alternative_else_nop_endif
ptrauth_keys_install_kernel_nosync x14, x1, x2, x3
isb
ret
SYM_FUNC_END(cpu_do_resume)
#endif
.pushsection ".idmap.text", "a"
.macro __idmap_cpu_set_reserved_ttbr1, tmp1, tmp2
adrp \tmp1, reserved_pg_dir
phys_to_ttbr \tmp2, \tmp1
offset_ttbr1 \tmp2, \tmp1
msr ttbr1_el1, \tmp2
isb
tlbi vmalle1
dsb nsh
isb
.endm
arm64: mm: add code to safely replace TTBR1_EL1 If page tables are modified without suitable TLB maintenance, the ARM architecture permits multiple TLB entries to be allocated for the same VA. When this occurs, it is permitted that TLB conflict aborts are raised in response to synchronous data/instruction accesses, and/or and amalgamation of the TLB entries may be used as a result of a TLB lookup. The presence of conflicting TLB entries may result in a variety of behaviours detrimental to the system (e.g. erroneous physical addresses may be used by I-cache fetches and/or page table walks). Some of these cases may result in unexpected changes of hardware state, and/or result in the (asynchronous) delivery of SError. To avoid these issues, we must avoid situations where conflicting entries may be allocated into TLBs. For user and module mappings we can follow a strict break-before-make approach, but this cannot work for modifications to the swapper page tables that cover the kernel text and data. Instead, this patch adds code which is intended to be executed from the idmap, which can safely unmap the swapper page tables as it only requires the idmap to be active. This enables us to uninstall the active TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry without potentially unmapping code or data required for the sequence. This avoids the risk of conflict, but requires that updates are staged in a copy of the swapper page tables prior to being installed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 11:45:01 +00:00
/*
arm64: mm: Support Common Not Private translations Common Not Private (CNP) is a feature of ARMv8.2 extension which allows translation table entries to be shared between different PEs in the same inner shareable domain, so the hardware can use this fact to optimise the caching of such entries in the TLB. CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to the hardware that the translation table entries pointed to by this TTBR are the same as every PE in the same inner shareable domain for which the equivalent TTBR also has CNP bit set. In case CNP bit is set but TTBR does not point at the same translation table entries for a given ASID and VMID, then the system is mis-configured, so the results of translations are UNPREDICTABLE. For kernel we postpone setting CNP till all cpus are up and rely on cpufeature framework to 1) patch the code which is sensitive to CNP and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be reprogrammed as result of hibernation or cpuidle (via __enable_mmu). For these two cases we restore CnP bit via __cpu_suspend_exit(). There are a few cases we need to care of changes in TTBR0_EL1: - a switch to idmap - software emulated PAN we rule out latter via Kconfig options and for the former we make sure that CNP is set for non-zero ASIDs only. Reviewed-by: James Morse <james.morse@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> [catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-07-31 13:08:56 +00:00
* void idmap_cpu_replace_ttbr1(phys_addr_t ttbr1)
arm64: mm: add code to safely replace TTBR1_EL1 If page tables are modified without suitable TLB maintenance, the ARM architecture permits multiple TLB entries to be allocated for the same VA. When this occurs, it is permitted that TLB conflict aborts are raised in response to synchronous data/instruction accesses, and/or and amalgamation of the TLB entries may be used as a result of a TLB lookup. The presence of conflicting TLB entries may result in a variety of behaviours detrimental to the system (e.g. erroneous physical addresses may be used by I-cache fetches and/or page table walks). Some of these cases may result in unexpected changes of hardware state, and/or result in the (asynchronous) delivery of SError. To avoid these issues, we must avoid situations where conflicting entries may be allocated into TLBs. For user and module mappings we can follow a strict break-before-make approach, but this cannot work for modifications to the swapper page tables that cover the kernel text and data. Instead, this patch adds code which is intended to be executed from the idmap, which can safely unmap the swapper page tables as it only requires the idmap to be active. This enables us to uninstall the active TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry without potentially unmapping code or data required for the sequence. This avoids the risk of conflict, but requires that updates are staged in a copy of the swapper page tables prior to being installed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 11:45:01 +00:00
*
* This is the low-level counterpart to cpu_replace_ttbr1, and should not be
* called by anything else. It can only be executed from a TTBR0 mapping.
*/
SYM_TYPED_FUNC_START(idmap_cpu_replace_ttbr1)
__idmap_cpu_set_reserved_ttbr1 x1, x3
arm64: mm: add code to safely replace TTBR1_EL1 If page tables are modified without suitable TLB maintenance, the ARM architecture permits multiple TLB entries to be allocated for the same VA. When this occurs, it is permitted that TLB conflict aborts are raised in response to synchronous data/instruction accesses, and/or and amalgamation of the TLB entries may be used as a result of a TLB lookup. The presence of conflicting TLB entries may result in a variety of behaviours detrimental to the system (e.g. erroneous physical addresses may be used by I-cache fetches and/or page table walks). Some of these cases may result in unexpected changes of hardware state, and/or result in the (asynchronous) delivery of SError. To avoid these issues, we must avoid situations where conflicting entries may be allocated into TLBs. For user and module mappings we can follow a strict break-before-make approach, but this cannot work for modifications to the swapper page tables that cover the kernel text and data. Instead, this patch adds code which is intended to be executed from the idmap, which can safely unmap the swapper page tables as it only requires the idmap to be active. This enables us to uninstall the active TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry without potentially unmapping code or data required for the sequence. This avoids the risk of conflict, but requires that updates are staged in a copy of the swapper page tables prior to being installed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 11:45:01 +00:00
offset_ttbr1 x0, x3
arm64: mm: Support Common Not Private translations Common Not Private (CNP) is a feature of ARMv8.2 extension which allows translation table entries to be shared between different PEs in the same inner shareable domain, so the hardware can use this fact to optimise the caching of such entries in the TLB. CNP occupies one bit in TTBRx_ELy and VTTBR_EL2, which advertises to the hardware that the translation table entries pointed to by this TTBR are the same as every PE in the same inner shareable domain for which the equivalent TTBR also has CNP bit set. In case CNP bit is set but TTBR does not point at the same translation table entries for a given ASID and VMID, then the system is mis-configured, so the results of translations are UNPREDICTABLE. For kernel we postpone setting CNP till all cpus are up and rely on cpufeature framework to 1) patch the code which is sensitive to CNP and 2) update TTBR1_EL1 with CNP bit set. TTBR1_EL1 can be reprogrammed as result of hibernation or cpuidle (via __enable_mmu). For these two cases we restore CnP bit via __cpu_suspend_exit(). There are a few cases we need to care of changes in TTBR0_EL1: - a switch to idmap - software emulated PAN we rule out latter via Kconfig options and for the former we make sure that CNP is set for non-zero ASIDs only. Reviewed-by: James Morse <james.morse@arm.com> Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com> [catalin.marinas@arm.com: default y for CONFIG_ARM64_CNP] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2018-07-31 13:08:56 +00:00
msr ttbr1_el1, x0
arm64: mm: add code to safely replace TTBR1_EL1 If page tables are modified without suitable TLB maintenance, the ARM architecture permits multiple TLB entries to be allocated for the same VA. When this occurs, it is permitted that TLB conflict aborts are raised in response to synchronous data/instruction accesses, and/or and amalgamation of the TLB entries may be used as a result of a TLB lookup. The presence of conflicting TLB entries may result in a variety of behaviours detrimental to the system (e.g. erroneous physical addresses may be used by I-cache fetches and/or page table walks). Some of these cases may result in unexpected changes of hardware state, and/or result in the (asynchronous) delivery of SError. To avoid these issues, we must avoid situations where conflicting entries may be allocated into TLBs. For user and module mappings we can follow a strict break-before-make approach, but this cannot work for modifications to the swapper page tables that cover the kernel text and data. Instead, this patch adds code which is intended to be executed from the idmap, which can safely unmap the swapper page tables as it only requires the idmap to be active. This enables us to uninstall the active TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry without potentially unmapping code or data required for the sequence. This avoids the risk of conflict, but requires that updates are staged in a copy of the swapper page tables prior to being installed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 11:45:01 +00:00
isb
ret
SYM_FUNC_END(idmap_cpu_replace_ttbr1)
SYM_FUNC_ALIAS(__pi_idmap_cpu_replace_ttbr1, idmap_cpu_replace_ttbr1)
arm64: mm: add code to safely replace TTBR1_EL1 If page tables are modified without suitable TLB maintenance, the ARM architecture permits multiple TLB entries to be allocated for the same VA. When this occurs, it is permitted that TLB conflict aborts are raised in response to synchronous data/instruction accesses, and/or and amalgamation of the TLB entries may be used as a result of a TLB lookup. The presence of conflicting TLB entries may result in a variety of behaviours detrimental to the system (e.g. erroneous physical addresses may be used by I-cache fetches and/or page table walks). Some of these cases may result in unexpected changes of hardware state, and/or result in the (asynchronous) delivery of SError. To avoid these issues, we must avoid situations where conflicting entries may be allocated into TLBs. For user and module mappings we can follow a strict break-before-make approach, but this cannot work for modifications to the swapper page tables that cover the kernel text and data. Instead, this patch adds code which is intended to be executed from the idmap, which can safely unmap the swapper page tables as it only requires the idmap to be active. This enables us to uninstall the active TTBR1_EL1 entry, invalidate TLBs, then install a new TTBR1_EL1 entry without potentially unmapping code or data required for the sequence. This avoids the risk of conflict, but requires that updates are staged in a copy of the swapper page tables prior to being installed. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-01-25 11:45:01 +00:00
.popsection
#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
#define KPTI_NG_PTE_FLAGS (PTE_ATTRINDX(MT_NORMAL) | PTE_TYPE_PAGE | \
PTE_AF | PTE_SHARED | PTE_UXN | PTE_WRITE)
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
.pushsection ".idmap.text", "a"
.macro pte_to_phys, phys, pte
and \phys, \pte, #PTE_ADDR_LOW
#ifdef CONFIG_ARM64_PA_BITS_52
and \pte, \pte, #PTE_ADDR_HIGH
orr \phys, \phys, \pte, lsl #PTE_ADDR_HIGH_SHIFT
#endif
.endm
.macro kpti_mk_tbl_ng, type, num_entries
add end_\type\()p, cur_\type\()p, #\num_entries * 8
.Ldo_\type:
ldr \type, [cur_\type\()p], #8 // Load the entry and advance
tbz \type, #0, .Lnext_\type // Skip invalid and
tbnz \type, #11, .Lnext_\type // non-global entries
orr \type, \type, #PTE_NG // Same bit for blocks and pages
str \type, [cur_\type\()p, #-8] // Update the entry
.ifnc \type, pte
tbnz \type, #1, .Lderef_\type
.endif
.Lnext_\type:
cmp cur_\type\()p, end_\type\()p
b.ne .Ldo_\type
.endm
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
/*
* Dereference the current table entry and map it into the temporary
* fixmap slot associated with the current level.
*/
.macro kpti_map_pgtbl, type, level
str xzr, [temp_pte, #8 * (\level + 2)] // break before make
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
dsb nshst
add pte, temp_pte, #PAGE_SIZE * (\level + 2)
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
lsr pte, pte, #12
tlbi vaae1, pte
dsb nsh
isb
phys_to_pte pte, cur_\type\()p
add cur_\type\()p, temp_pte, #PAGE_SIZE * (\level + 2)
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
orr pte, pte, pte_flags
str pte, [temp_pte, #8 * (\level + 2)]
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
dsb nshst
.endm
/*
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
* void __kpti_install_ng_mappings(int cpu, int num_secondaries, phys_addr_t temp_pgd,
* unsigned long temp_pte_va)
*
* Called exactly once from stop_machine context by each CPU found during boot.
*/
.pushsection ".data", "aw", %progbits
SYM_DATA(__idmap_kpti_flag, .long 1)
.popsection
SYM_TYPED_FUNC_START(idmap_kpti_install_ng_mappings)
cpu .req w0
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
temp_pte .req x0
num_cpus .req w1
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
pte_flags .req x1
temp_pgd_phys .req x2
swapper_ttb .req x3
flag_ptr .req x4
cur_pgdp .req x5
end_pgdp .req x6
pgd .req x7
cur_pudp .req x8
end_pudp .req x9
cur_pmdp .req x11
end_pmdp .req x12
cur_ptep .req x14
end_ptep .req x15
pte .req x16
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
valid .req x17
cur_p4dp .req x19
end_p4dp .req x20
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
mov x5, x3 // preserve temp_pte arg
mrs swapper_ttb, ttbr1_el1
adr_l flag_ptr, __idmap_kpti_flag
cbnz cpu, __idmap_kpti_secondary
#if CONFIG_PGTABLE_LEVELS > 4
stp x29, x30, [sp, #-32]!
mov x29, sp
stp x19, x20, [sp, #16]
#endif
/* We're the boot CPU. Wait for the others to catch up */
sevl
1: wfe
ldaxr w17, [flag_ptr]
eor w17, w17, num_cpus
cbnz w17, 1b
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
/* Switch to the temporary page tables on this CPU only */
__idmap_cpu_set_reserved_ttbr1 x8, x9
offset_ttbr1 temp_pgd_phys, x8
msr ttbr1_el1, temp_pgd_phys
isb
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
mov temp_pte, x5
mov_q pte_flags, KPTI_NG_PTE_FLAGS
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
/* Everybody is enjoying the idmap, so we can rewrite swapper. */
#ifdef CONFIG_ARM64_LPA2
/*
* If LPA2 support is configured, but 52-bit virtual addressing is not
* enabled at runtime, we will fall back to one level of paging less,
* and so we have to walk swapper_pg_dir as if we dereferenced its
* address from a PGD level entry, and terminate the PGD level loop
* right after.
*/
adrp pgd, swapper_pg_dir // walk &swapper_pg_dir at the next level
mov cur_pgdp, end_pgdp // must be equal to terminate the PGD loop
alternative_if_not ARM64_HAS_VA52
b .Lderef_pgd // skip to the next level
alternative_else_nop_endif
/*
* LPA2 based 52-bit virtual addressing requires 52-bit physical
* addressing to be enabled as well. In this case, the shareability
* bits are repurposed as physical address bits, and should not be
* set in pte_flags.
*/
bic pte_flags, pte_flags, #PTE_SHARED
#endif
/* PGD */
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
adrp cur_pgdp, swapper_pg_dir
kpti_map_pgtbl pgd, -1
kpti_mk_tbl_ng pgd, PTRS_PER_PGD
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
/* Ensure all the updated entries are visible to secondary CPUs */
dsb ishst
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
/* We're done: fire up swapper_pg_dir again */
__idmap_cpu_set_reserved_ttbr1 x8, x9
msr ttbr1_el1, swapper_ttb
isb
/* Set the flag to zero to indicate that we're all done */
str wzr, [flag_ptr]
#if CONFIG_PGTABLE_LEVELS > 4
ldp x19, x20, [sp, #16]
ldp x29, x30, [sp], #32
#endif
ret
.Lderef_pgd:
/* P4D */
.if CONFIG_PGTABLE_LEVELS > 4
p4d .req x30
pte_to_phys cur_p4dp, pgd
kpti_map_pgtbl p4d, 0
kpti_mk_tbl_ng p4d, PTRS_PER_P4D
b .Lnext_pgd
.else /* CONFIG_PGTABLE_LEVELS <= 4 */
p4d .req pgd
.set .Lnext_p4d, .Lnext_pgd
.endif
.Lderef_p4d:
/* PUD */
.if CONFIG_PGTABLE_LEVELS > 3
pud .req x10
pte_to_phys cur_pudp, p4d
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
kpti_map_pgtbl pud, 1
kpti_mk_tbl_ng pud, PTRS_PER_PUD
b .Lnext_p4d
.else /* CONFIG_PGTABLE_LEVELS <= 3 */
pud .req pgd
.set .Lnext_pud, .Lnext_pgd
.endif
.Lderef_pud:
/* PMD */
.if CONFIG_PGTABLE_LEVELS > 2
pmd .req x13
pte_to_phys cur_pmdp, pud
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
kpti_map_pgtbl pmd, 2
kpti_mk_tbl_ng pmd, PTRS_PER_PMD
b .Lnext_pud
.else /* CONFIG_PGTABLE_LEVELS <= 2 */
pmd .req pgd
.set .Lnext_pmd, .Lnext_pgd
.endif
.Lderef_pmd:
/* PTE */
pte_to_phys cur_ptep, pmd
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
kpti_map_pgtbl pte, 3
kpti_mk_tbl_ng pte, PTRS_PER_PTE
b .Lnext_pmd
.unreq cpu
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
.unreq temp_pte
.unreq num_cpus
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
.unreq pte_flags
.unreq temp_pgd_phys
.unreq cur_pgdp
.unreq end_pgdp
.unreq pgd
.unreq cur_pudp
.unreq end_pudp
.unreq pud
.unreq cur_pmdp
.unreq end_pmdp
.unreq pmd
.unreq cur_ptep
.unreq end_ptep
.unreq pte
arm64: mm: install KPTI nG mappings with MMU enabled In cases where we unmap the kernel while running in user space, we rely on ASIDs to distinguish the minimal trampoline from the full kernel mapping, and this means we must use non-global attributes for those mappings, to ensure they are scoped by ASID and will not hit in the TLB inadvertently. We only do this when needed, as this is generally more costly in terms of TLB pressure, and so we boot without these non-global attributes, and apply them to all existing kernel mappings once all CPUs are up and we know whether or not the non-global attributes are needed. At this point, we cannot simply unmap and remap the entire address space, so we have to update all existing block and page descriptors in place. Currently, we go through a lot of trouble to perform these updates with the MMU and caches off, to avoid violating break before make (BBM) rules imposed by the architecture. Since we make changes to page tables that are not covered by the ID map, we gain access to those descriptors by disabling translations altogether. This means that the stores to memory are issued with device attributes, and require extra care in terms of coherency, which is costly. We also rely on the ID map to access a shared flag, which requires the ID map to be executable and writable at the same time, which is another thing we'd prefer to avoid. So let's switch to an approach where we replace the kernel mapping with a minimal mapping of a few pages that can be used for a minimal, ad-hoc fixmap that we can use to map each page table in turn as we traverse the hierarchy. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org Signed-off-by: Will Deacon <will@kernel.org>
2022-06-09 17:43:20 +00:00
.unreq valid
.unreq cur_p4dp
.unreq end_p4dp
.unreq p4d
/* Secondary CPUs end up here */
__idmap_kpti_secondary:
/* Uninstall swapper before surgery begins */
__idmap_cpu_set_reserved_ttbr1 x16, x17
/* Increment the flag to let the boot CPU we're ready */
1: ldxr w16, [flag_ptr]
add w16, w16, #1
stxr w17, w16, [flag_ptr]
cbnz w17, 1b
/* Wait for the boot CPU to finish messing around with swapper */
sevl
1: wfe
ldxr w16, [flag_ptr]
cbnz w16, 1b
/* All done, act like nothing happened */
msr ttbr1_el1, swapper_ttb
isb
ret
.unreq swapper_ttb
.unreq flag_ptr
SYM_FUNC_END(idmap_kpti_install_ng_mappings)
.popsection
#endif
/*
* __cpu_setup
*
* Initialise the processor for turning the MMU on.
*
* Output:
* Return in x0 the value of the SCTLR_EL1 register.
*/
.pushsection ".idmap.text", "a"
SYM_FUNC_START(__cpu_setup)
tlbi vmalle1 // Invalidate local TLB
dsb nsh
arm64: Use a positive cpucap for FP/SIMD Currently we have a negative cpucap which describes the *absence* of FP/SIMD rather than *presence* of FP/SIMD. This largely works, but is somewhat awkward relative to other cpucaps that describe the presence of a feature, and it would be nicer to have a cpucap which describes the presence of FP/SIMD: * This will allow the cpucap to be treated as a standard ARM64_CPUCAP_SYSTEM_FEATURE, which can be detected with the standard has_cpuid_feature() function and ARM64_CPUID_FIELDS() description. * This ensures that the cpucap will only transition from not-present to present, reducing the risk of unintentional and/or unsafe usage of FP/SIMD before cpucaps are finalized. * This will allow using arm64_cpu_capabilities::cpu_enable() to enable the use of FP/SIMD later, with FP/SIMD being disabled at boot time otherwise. This will ensure that any unintentional and/or unsafe usage of FP/SIMD prior to this is trapped, and will ensure that FP/SIMD is never unintentionally enabled for userspace in mismatched big.LITTLE systems. This patch replaces the negative ARM64_HAS_NO_FPSIMD cpucap with a positive ARM64_HAS_FPSIMD cpucap, making changes as described above. Note that as FP/SIMD will now be trapped when not supported system-wide, do_fpsimd_acc() must handle these traps in the same way as for SVE and SME. The commentary in fpsimd_restore_current_state() is updated to describe the new scheme. No users of system_supports_fpsimd() need to know that FP/SIMD is available prior to alternatives being patched, so this is updated to use alternative_has_cap_likely() to check for the ARM64_HAS_FPSIMD cpucap, without generating code to test the system_cpucaps bitmap. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Mark Brown <broonie@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2023-10-16 10:24:36 +00:00
msr cpacr_el1, xzr // Reset cpacr_el1
mov x1, #1 << 12 // Reset mdscr_el1 and disable
msr mdscr_el1, x1 // access to the DCC from EL0
arm64: debug: unmask PSTATE.D earlier Clearing PSTATE.D is one of the requirements for generating a debug exception. The arm64 booting protocol requires that PSTATE.D is set, since many of the debug registers (for example, the hw_breakpoint registers) are UNKNOWN out of reset and could potentially generate spurious, fatal debug exceptions in early boot code if PSTATE.D was clear. Once the debug registers have been safely initialised, PSTATE.D is cleared, however this is currently broken for two reasons: (1) The boot CPU clears PSTATE.D in a postcore_initcall and secondary CPUs clear PSTATE.D in secondary_start_kernel. Since the initcall runs after SMP (and the scheduler) have been initialised, there is no guarantee that it is actually running on the boot CPU. In this case, the boot CPU is left with PSTATE.D set and is not capable of generating debug exceptions. (2) In a preemptible kernel, we may explicitly schedule on the IRQ return path to EL1. If an IRQ occurs with PSTATE.D set in the idle thread, then we may schedule the kthread_init thread, run the postcore_initcall to clear PSTATE.D and then context switch back to the idle thread before returning from the IRQ. The exception return path will then restore PSTATE.D from the stack, and set it again. This patch fixes the problem by moving the clearing of PSTATE.D earlier to proc.S. This has the desirable effect of clearing it in one place for all CPUs, long before we have to worry about the scheduler or any exception handling. We ensure that the previous reset of MDSCR_EL1 has completed before unmasking the exception, so that any spurious exceptions resulting from UNKNOWN debug registers are not generated. Without this patch applied, the kprobes selftests have been seen to fail under KVM, where we end up attempting to step the OOL instruction buffer with PSTATE.D set and therefore fail to complete the step. Cc: <stable@vger.kernel.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Reported-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2016-07-19 14:07:37 +00:00
isb // Unmask debug exceptions now,
enable_dbg // since this is per-cpu
reset_pmuserenr_el0 x1 // Disable PMU access from EL0
reset_amuserenr_el0 x1 // Disable AMU access from EL0
/*
* Default values for VMSA control registers. These will be adjusted
* below depending on detected CPU features.
*/
mair .req x17
tcr .req x16
mov_q mair, MAIR_EL1_SET
arm64: mm: Handle LVA support as a CPU feature Currently, we detect CPU support for 52-bit virtual addressing (LVA) extremely early, before creating the kernel page tables or enabling the MMU. We cannot override the feature this early, and so large virtual addressing is always enabled on CPUs that implement support for it if the software support for it was enabled at build time. It also means we rely on non-trivial code in asm to deal with this feature. Given that both the ID map and the TTBR1 mapping of the kernel image are guaranteed to be 48-bit addressable, it is not actually necessary to enable support this early, and instead, we can model it as a CPU feature. That way, we can rely on code patching to get the correct TCR.T1SZ values programmed on secondary boot and resume from suspend. On the primary boot path, we simply enable the MMU with 48-bit virtual addressing initially, and update TCR.T1SZ if LVA is supported from C code, right before creating the kernel mapping. Given that TTBR1 still points to reserved_pg_dir at this point, updating TCR.T1SZ should be safe without the need for explicit TLB maintenance. Since this gets rid of all accesses to the vabits_actual variable from asm code that occurred before TCR.T1SZ had been programmed, we no longer have a need for this variable, and we can replace it with a C expression that produces the correct value directly, based on the value of TCR.T1SZ. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-70-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-14 12:29:11 +00:00
mov_q tcr, TCR_T0SZ(IDMAP_VA_BITS) | TCR_T1SZ(VA_BITS_MIN) | TCR_CACHE_FLAGS | \
TCR_SMP_FLAGS | TCR_TG_FLAGS | TCR_KASLR_FLAGS | TCR_ASID16 | \
TCR_TBI0 | TCR_A1 | TCR_KASAN_SW_FLAGS | TCR_MTE_FLAGS
tcr_clear_errata_bits tcr, x9, x5
#ifdef CONFIG_ARM64_VA_BITS_52
arm64: mm: Handle LVA support as a CPU feature Currently, we detect CPU support for 52-bit virtual addressing (LVA) extremely early, before creating the kernel page tables or enabling the MMU. We cannot override the feature this early, and so large virtual addressing is always enabled on CPUs that implement support for it if the software support for it was enabled at build time. It also means we rely on non-trivial code in asm to deal with this feature. Given that both the ID map and the TTBR1 mapping of the kernel image are guaranteed to be 48-bit addressable, it is not actually necessary to enable support this early, and instead, we can model it as a CPU feature. That way, we can rely on code patching to get the correct TCR.T1SZ values programmed on secondary boot and resume from suspend. On the primary boot path, we simply enable the MMU with 48-bit virtual addressing initially, and update TCR.T1SZ if LVA is supported from C code, right before creating the kernel mapping. Given that TTBR1 still points to reserved_pg_dir at this point, updating TCR.T1SZ should be safe without the need for explicit TLB maintenance. Since this gets rid of all accesses to the vabits_actual variable from asm code that occurred before TCR.T1SZ had been programmed, we no longer have a need for this variable, and we can replace it with a C expression that produces the correct value directly, based on the value of TCR.T1SZ. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-70-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-14 12:29:11 +00:00
mov x9, #64 - VA_BITS
alternative_if ARM64_HAS_VA52
tcr_set_t1sz tcr, x9
arm64: Enable LPA2 at boot if supported by the system Update the early kernel mapping code to take 52-bit virtual addressing into account based on the LPA2 feature. This is a bit more involved than LVA (which is supported with 64k pages only), given that some page table descriptor bits change meaning in this case. To keep the handling in asm to a minimum, the initial ID map is still created with 48-bit virtual addressing, which implies that the kernel image must be loaded into 48-bit addressable physical memory. This is currently required by the boot protocol, even though we happen to support placement outside of that for LVA/64k based configurations. Enabling LPA2 involves more than setting TCR.T1SZ to a lower value, there is also a DS bit in TCR that needs to be set, and which changes the meaning of bits [9:8] in all page table descriptors. Since we cannot enable DS and every live page table descriptor at the same time, let's pivot through another temporary mapping. This avoids the need to reintroduce manipulations of the page tables with the MMU and caches disabled. To permit the LPA2 feature to be overridden on the kernel command line, which may be necessary to work around silicon errata, or to deal with mismatched features on heterogeneous SoC designs, test for CPU feature overrides first, and only then enable LPA2. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-78-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-14 12:29:19 +00:00
#ifdef CONFIG_ARM64_LPA2
orr tcr, tcr, #TCR_DS
#endif
arm64: mm: Handle LVA support as a CPU feature Currently, we detect CPU support for 52-bit virtual addressing (LVA) extremely early, before creating the kernel page tables or enabling the MMU. We cannot override the feature this early, and so large virtual addressing is always enabled on CPUs that implement support for it if the software support for it was enabled at build time. It also means we rely on non-trivial code in asm to deal with this feature. Given that both the ID map and the TTBR1 mapping of the kernel image are guaranteed to be 48-bit addressable, it is not actually necessary to enable support this early, and instead, we can model it as a CPU feature. That way, we can rely on code patching to get the correct TCR.T1SZ values programmed on secondary boot and resume from suspend. On the primary boot path, we simply enable the MMU with 48-bit virtual addressing initially, and update TCR.T1SZ if LVA is supported from C code, right before creating the kernel mapping. Given that TTBR1 still points to reserved_pg_dir at this point, updating TCR.T1SZ should be safe without the need for explicit TLB maintenance. Since this gets rid of all accesses to the vabits_actual variable from asm code that occurred before TCR.T1SZ had been programmed, we no longer have a need for this variable, and we can replace it with a C expression that produces the correct value directly, based on the value of TCR.T1SZ. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20240214122845.2033971-70-ardb+git@google.com Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-02-14 12:29:11 +00:00
alternative_else_nop_endif
#endif
/*
* Set the IPS bits in TCR_EL1.
*/
tcr_compute_pa_size tcr, #TCR_IPS_SHIFT, x5, x6
#ifdef CONFIG_ARM64_HW_AFDBM
/*
* Enable hardware update of the Access Flags bit.
* Hardware dirty bit management is enabled later,
* via capabilities.
*/
mrs x9, ID_AA64MMFR1_EL1
and x9, x9, ID_AA64MMFR1_EL1_HAFDBS_MASK
cbz x9, 1f
orr tcr, tcr, #TCR_HA // hardware Access flag update
1:
#endif /* CONFIG_ARM64_HW_AFDBM */
msr mair_el1, mair
msr tcr_el1, tcr
mrs_s x1, SYS_ID_AA64MMFR3_EL1
ubfx x1, x1, #ID_AA64MMFR3_EL1_S1PIE_SHIFT, #4
cbz x1, .Lskip_indirection
/*
* The PROT_* macros describing the various memory types may resolve to
* C expressions if they include the PTE_MAYBE_* macros, and so they
* can only be used from C code. The PIE_E* constants below are also
* defined in terms of those macros, but will mask out those
* PTE_MAYBE_* constants, whether they are set or not. So #define them
* as 0x0 here so we can evaluate the PIE_E* constants in asm context.
*/
#define PTE_MAYBE_NG 0
#define PTE_MAYBE_SHARED 0
mov_q x0, PIE_E0
msr REG_PIRE0_EL1, x0
mov_q x0, PIE_E1
msr REG_PIR_EL1, x0
#undef PTE_MAYBE_NG
#undef PTE_MAYBE_SHARED
mov x0, TCR2_EL1x_PIE
msr REG_TCR2_EL1, x0
.Lskip_indirection:
/*
* Prepare SCTLR
*/
mov_q x0, INIT_SCTLR_EL1_MMU_ON
ret // return to head.S
.unreq mair
.unreq tcr
SYM_FUNC_END(__cpu_setup)