linux-stable/fs/btrfs/disk-io.c

4973 lines
138 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/radix-tree.h>
#include <linux/writeback.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 08:04:11 +00:00
#include <linux/slab.h>
#include <linux/migrate.h>
#include <linux/ratelimit.h>
#include <linux/uuid.h>
#include <linux/semaphore.h>
#include <linux/error-injection.h>
btrfs: Remove custom crc32c init code The custom crc32 init code was introduced in 14a958e678cd ("Btrfs: fix btrfs boot when compiled as built-in") to enable using btrfs as a built-in. However, later as pointed out by 60efa5eb2e88 ("Btrfs: use late_initcall instead of module_init") this wasn't enough and finally btrfs was switched to late_initcall which comes after the generic crc32c implementation is initiliased. The latter commit superseeded the former. Now that we don't have to maintain our own code let's just remove it and switch to using the generic implementation. Despite touching a lot of files the patch is really simple. Here is the gist of the changes: 1. Select LIBCRC32C rather than the low-level modules. 2. s/btrfs_crc32c/crc32c/g 3. replace hash.h with linux/crc32c.h 4. Move the btrfs namehash funcs to ctree.h and change the tree accordingly. I've tested this with btrfs being both a module and a built-in and xfstest doesn't complain. Does seem to fix the longstanding problem of not automatically selectiong the crc32c module when btrfs is used. Possibly there is a workaround in dracut. The modinfo confirms that now all the module dependencies are there: before: depends: zstd_compress,zstd_decompress,raid6_pq,xor,zlib_deflate after: depends: libcrc32c,zstd_compress,zstd_decompress,raid6_pq,xor,zlib_deflate Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add more info to changelog from mails ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-01-08 09:45:05 +00:00
#include <linux/crc32c.h>
#include <linux/sched/mm.h>
#include <asm/unaligned.h>
#include <crypto/hash.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "bio.h"
#include "print-tree.h"
#include "locking.h"
#include "tree-log.h"
#include "free-space-cache.h"
#include "free-space-tree.h"
#include "dev-replace.h"
#include "raid56.h"
#include "sysfs.h"
Btrfs: rework qgroup accounting Currently qgroups account for space by intercepting delayed ref updates to fs trees. It does this by adding sequence numbers to delayed ref updates so that it can figure out how the tree looked before the update so we can adjust the counters properly. The problem with this is that it does not allow delayed refs to be merged, so if you say are defragging an extent with 5k snapshots pointing to it we will thrash the delayed ref lock because we need to go back and manually merge these things together. Instead we want to process quota changes when we know they are going to happen, like when we first allocate an extent, we free a reference for an extent, we add new references etc. This patch accomplishes this by only adding qgroup operations for real ref changes. We only modify the sequence number when we need to lookup roots for bytenrs, this reduces the amount of churn on the sequence number and allows us to merge delayed refs as we add them most of the time. This patch encompasses a bunch of architectural changes 1) qgroup ref operations: instead of tracking qgroup operations through the delayed refs we simply add new ref operations whenever we notice that we need to when we've modified the refs themselves. 2) tree mod seq: we no longer have this separation of major/minor counters. this makes the sequence number stuff much more sane and we can remove some locking that was needed to protect the counter. 3) delayed ref seq: we now read the tree mod seq number and use that as our sequence. This means each new delayed ref doesn't have it's own unique sequence number, rather whenever we go to lookup backrefs we inc the sequence number so we can make sure to keep any new operations from screwing up our world view at that given point. This allows us to merge delayed refs during runtime. With all of these changes the delayed ref stuff is a little saner and the qgroup accounting stuff no longer goes negative in some cases like it was before. Thanks, Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-14 00:30:47 +00:00
#include "qgroup.h"
#include "compression.h"
#include "tree-checker.h"
#include "ref-verify.h"
#include "block-group.h"
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
#include "discard.h"
#include "space-info.h"
#include "zoned.h"
#include "subpage.h"
#include "fs.h"
#include "accessors.h"
#include "extent-tree.h"
#include "root-tree.h"
#include "defrag.h"
#include "uuid-tree.h"
#include "relocation.h"
#include "scrub.h"
#include "super.h"
#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
BTRFS_HEADER_FLAG_RELOC |\
BTRFS_SUPER_FLAG_ERROR |\
BTRFS_SUPER_FLAG_SEEDING |\
BTRFS_SUPER_FLAG_METADUMP |\
BTRFS_SUPER_FLAG_METADUMP_V2)
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
{
if (fs_info->csum_shash)
crypto_free_shash(fs_info->csum_shash);
}
/*
* Compute the csum of a btree block and store the result to provided buffer.
*/
static void csum_tree_block(struct extent_buffer *buf, u8 *result)
{
struct btrfs_fs_info *fs_info = buf->fs_info;
int num_pages;
u32 first_page_part;
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
char *kaddr;
int i;
shash->tfm = fs_info->csum_shash;
crypto_shash_init(shash);
if (buf->addr) {
/* Pages are contiguous, handle them as a big one. */
kaddr = buf->addr;
first_page_part = fs_info->nodesize;
num_pages = 1;
} else {
kaddr = folio_address(buf->folios[0]);
first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
num_pages = num_extent_pages(buf);
}
crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
first_page_part - BTRFS_CSUM_SIZE);
btrfs: cleanup metadata page pointer usage Although we have migrated extent_buffer::pages[] to folios[], we're still mostly using the folio_page() help to grab the page. This patch would do the following cleanups for metadata: - Introduce num_extent_folios() helper This is to replace most num_extent_pages() callers. - Use num_extent_folios() to iterate future large folios This allows us to use things like bio_add_folio()/bio_add_folio_nofail(), and only set the needed flags for the folio (aka the leading/tailing page), which reduces the loop iteration to 1 for large folios. - Change metadata related functions to use folio pointers Including their function name, involving: * attach_extent_buffer_page() * detach_extent_buffer_page() * page_range_has_eb() * btrfs_release_extent_buffer_pages() * btree_clear_page_dirty() * btrfs_page_inc_eb_refs() * btrfs_page_dec_eb_refs() - Change btrfs_is_subpage() to accept an address_space pointer This is to allow both page->mapping and folio->mapping to be utilized. As data is still using the old per-page code, and may keep so for a while. - Special corner case place holder for future order mismatches between extent buffer and inode filemap For now it's just a block of comments and a dead ASSERT(), no real handling yet. The subpage code would still go page, just because subpage and large folio are conflicting conditions, thus we don't need to bother subpage with higher order folios at all. Just folio_page(folio, 0) would be enough. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor styling tweaks ] Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-06 23:09:28 +00:00
/*
* Multiple single-page folios case would reach here.
*
* nodesize <= PAGE_SIZE and large folio all handled by above
* crypto_shash_update() already.
*/
2023-05-23 07:09:55 +00:00
for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
kaddr = folio_address(buf->folios[i]);
crypto_shash_update(shash, kaddr, PAGE_SIZE);
}
memset(result, 0, BTRFS_CSUM_SIZE);
crypto_shash_final(shash, result);
}
/*
* we can't consider a given block up to date unless the transid of the
* block matches the transid in the parent node's pointer. This is how we
* detect blocks that either didn't get written at all or got written
* in the wrong place.
*/
int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
{
if (!extent_buffer_uptodate(eb))
return 0;
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
return 1;
if (atomic)
return -EAGAIN;
if (!extent_buffer_uptodate(eb) ||
btrfs_header_generation(eb) != parent_transid) {
btrfs_err_rl(eb->fs_info,
2022-06-19 13:47:56 +00:00
"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
eb->start, eb->read_mirror,
parent_transid, btrfs_header_generation(eb));
clear_extent_buffer_uptodate(eb);
return 0;
}
return 1;
}
static bool btrfs_supported_super_csum(u16 csum_type)
{
switch (csum_type) {
case BTRFS_CSUM_TYPE_CRC32:
case BTRFS_CSUM_TYPE_XXHASH:
case BTRFS_CSUM_TYPE_SHA256:
case BTRFS_CSUM_TYPE_BLAKE2:
return true;
default:
return false;
}
}
/*
* Return 0 if the superblock checksum type matches the checksum value of that
* algorithm. Pass the raw disk superblock data.
*/
int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
const struct btrfs_super_block *disk_sb)
{
char result[BTRFS_CSUM_SIZE];
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
shash->tfm = fs_info->csum_shash;
/*
* The super_block structure does not span the whole
* BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
* filled with zeros and is included in the checksum.
*/
crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
if (memcmp(disk_sb->csum, result, fs_info->csum_size))
return 1;
return 0;
}
static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
int mirror_num)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
btrfs: migrate btrfs_repair_io_failure() to folio interfaces [BUG] Test case btrfs/124 failed if larger metadata folio is enabled, the dying message looks like this: BTRFS error (device dm-2): bad tree block start, mirror 2 want 31686656 have 0 BTRFS info (device dm-2): read error corrected: ino 0 off 31686656 (dev /dev/mapper/test-scratch2 sector 20928) BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page CPU: 6 PID: 350881 Comm: btrfs Tainted: G OE 6.7.0-rc3-custom+ #128 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022 RIP: 0010:btrfs_read_extent_buffer+0x106/0x180 [btrfs] PKRU: 55555554 Call Trace: <TASK> read_tree_block+0x33/0xb0 [btrfs] read_block_for_search+0x23e/0x340 [btrfs] btrfs_search_slot+0x2f9/0xe60 [btrfs] btrfs_lookup_csum+0x75/0x160 [btrfs] btrfs_lookup_bio_sums+0x21a/0x560 [btrfs] btrfs_submit_chunk+0x152/0x680 [btrfs] btrfs_submit_bio+0x1c/0x50 [btrfs] submit_one_bio+0x40/0x80 [btrfs] submit_extent_page+0x158/0x390 [btrfs] btrfs_do_readpage+0x330/0x740 [btrfs] extent_readahead+0x38d/0x6c0 [btrfs] read_pages+0x94/0x2c0 page_cache_ra_unbounded+0x12d/0x190 relocate_file_extent_cluster+0x7c1/0x9d0 [btrfs] relocate_block_group+0x2d3/0x560 [btrfs] btrfs_relocate_block_group+0x2c7/0x4b0 [btrfs] btrfs_relocate_chunk+0x4c/0x1a0 [btrfs] btrfs_balance+0x925/0x13c0 [btrfs] btrfs_ioctl+0x19f1/0x25d0 [btrfs] __x64_sys_ioctl+0x90/0xd0 do_syscall_64+0x3f/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 [CAUSE] The dying line is at btrfs_repair_io_failure() call inside btrfs_repair_eb_io_failure(). The function is still relying on the extent buffer using page sized folios. When the extent buffer is using larger folio, we go into the 2nd slot of folios[], and triggered the NULL pointer dereference. [FIX] Migrate btrfs_repair_io_failure() to folio interfaces. So that when we hit a larger folio, we just submit the whole folio in one go. This also affects data repair path through btrfs_end_repair_bio(), thankfully data is still fully page based, we can just add an ASSERT(), and use page_folio() to convert the page to folio. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-12 05:24:10 +00:00
int num_folios = num_extent_folios(eb);
int ret = 0;
if (sb_rdonly(fs_info->sb))
return -EROFS;
btrfs: migrate btrfs_repair_io_failure() to folio interfaces [BUG] Test case btrfs/124 failed if larger metadata folio is enabled, the dying message looks like this: BTRFS error (device dm-2): bad tree block start, mirror 2 want 31686656 have 0 BTRFS info (device dm-2): read error corrected: ino 0 off 31686656 (dev /dev/mapper/test-scratch2 sector 20928) BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page CPU: 6 PID: 350881 Comm: btrfs Tainted: G OE 6.7.0-rc3-custom+ #128 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022 RIP: 0010:btrfs_read_extent_buffer+0x106/0x180 [btrfs] PKRU: 55555554 Call Trace: <TASK> read_tree_block+0x33/0xb0 [btrfs] read_block_for_search+0x23e/0x340 [btrfs] btrfs_search_slot+0x2f9/0xe60 [btrfs] btrfs_lookup_csum+0x75/0x160 [btrfs] btrfs_lookup_bio_sums+0x21a/0x560 [btrfs] btrfs_submit_chunk+0x152/0x680 [btrfs] btrfs_submit_bio+0x1c/0x50 [btrfs] submit_one_bio+0x40/0x80 [btrfs] submit_extent_page+0x158/0x390 [btrfs] btrfs_do_readpage+0x330/0x740 [btrfs] extent_readahead+0x38d/0x6c0 [btrfs] read_pages+0x94/0x2c0 page_cache_ra_unbounded+0x12d/0x190 relocate_file_extent_cluster+0x7c1/0x9d0 [btrfs] relocate_block_group+0x2d3/0x560 [btrfs] btrfs_relocate_block_group+0x2c7/0x4b0 [btrfs] btrfs_relocate_chunk+0x4c/0x1a0 [btrfs] btrfs_balance+0x925/0x13c0 [btrfs] btrfs_ioctl+0x19f1/0x25d0 [btrfs] __x64_sys_ioctl+0x90/0xd0 do_syscall_64+0x3f/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 [CAUSE] The dying line is at btrfs_repair_io_failure() call inside btrfs_repair_eb_io_failure(). The function is still relying on the extent buffer using page sized folios. When the extent buffer is using larger folio, we go into the 2nd slot of folios[], and triggered the NULL pointer dereference. [FIX] Migrate btrfs_repair_io_failure() to folio interfaces. So that when we hit a larger folio, we just submit the whole folio in one go. This also affects data repair path through btrfs_end_repair_bio(), thankfully data is still fully page based, we can just add an ASSERT(), and use page_folio() to convert the page to folio. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-12 05:24:10 +00:00
for (int i = 0; i < num_folios; i++) {
struct folio *folio = eb->folios[i];
u64 start = max_t(u64, eb->start, folio_pos(folio));
u64 end = min_t(u64, eb->start + eb->len,
folio_pos(folio) + eb->folio_size);
btrfs: subpage: fix a crash in metadata repair path [BUG] Test case btrfs/027 would crash with subpage (64K page size, 4K sectorsize) with the following dying messages: debug: map_length=16384 length=65536 type=metadata|raid6(0x104) assertion failed: map_length >= length, in fs/btrfs/volumes.c:8093 ------------[ cut here ]------------ kernel BUG at fs/btrfs/messages.c:259! Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 Call trace: btrfs_assertfail+0x28/0x2c [btrfs] btrfs_map_repair_block+0x150/0x2b8 [btrfs] btrfs_repair_io_failure+0xd4/0x31c [btrfs] btrfs_read_extent_buffer+0x150/0x16c [btrfs] read_tree_block+0x38/0xbc [btrfs] read_tree_root_path+0xfc/0x1bc [btrfs] btrfs_get_root_ref.part.0+0xd4/0x3a8 [btrfs] open_ctree+0xa30/0x172c [btrfs] btrfs_mount_root+0x3c4/0x4a4 [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xec vfs_kern_mount.part.0+0x90/0xd4 vfs_kern_mount+0x14/0x28 btrfs_mount+0x114/0x418 [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xec path_mount+0x3e0/0xb64 __arm64_sys_mount+0x200/0x2d8 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0x60/0x11c do_el0_svc+0x38/0x98 el0_svc+0x40/0xa8 el0t_64_sync_handler+0xf4/0x120 el0t_64_sync+0x190/0x194 Code: aa0403e2 b0fff060 91010000 959c2024 (d4210000) [CAUSE] In btrfs/027 we test RAID6 with missing devices, in this particular case, we're repairing a metadata at the end of a data stripe. But at btrfs_repair_io_failure(), we always pass a full PAGE for repair, and for subpage case this can cross stripe boundary and lead to the above BUG_ON(). This metadata repair code is always there, since the introduction of subpage support, but this can trigger BUG_ON() after the bio split ability at btrfs_map_bio(). [FIX] Instead of passing the old PAGE_SIZE, we calculate the correct length based on the eb size and page size for both regular and subpage cases. CC: stable@vger.kernel.org # 6.3+ Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-26 12:30:20 +00:00
u32 len = end - start;
btrfs: subpage: fix a crash in metadata repair path [BUG] Test case btrfs/027 would crash with subpage (64K page size, 4K sectorsize) with the following dying messages: debug: map_length=16384 length=65536 type=metadata|raid6(0x104) assertion failed: map_length >= length, in fs/btrfs/volumes.c:8093 ------------[ cut here ]------------ kernel BUG at fs/btrfs/messages.c:259! Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 Call trace: btrfs_assertfail+0x28/0x2c [btrfs] btrfs_map_repair_block+0x150/0x2b8 [btrfs] btrfs_repair_io_failure+0xd4/0x31c [btrfs] btrfs_read_extent_buffer+0x150/0x16c [btrfs] read_tree_block+0x38/0xbc [btrfs] read_tree_root_path+0xfc/0x1bc [btrfs] btrfs_get_root_ref.part.0+0xd4/0x3a8 [btrfs] open_ctree+0xa30/0x172c [btrfs] btrfs_mount_root+0x3c4/0x4a4 [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xec vfs_kern_mount.part.0+0x90/0xd4 vfs_kern_mount+0x14/0x28 btrfs_mount+0x114/0x418 [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xec path_mount+0x3e0/0xb64 __arm64_sys_mount+0x200/0x2d8 invoke_syscall+0x48/0x114 el0_svc_common.constprop.0+0x60/0x11c do_el0_svc+0x38/0x98 el0_svc+0x40/0xa8 el0t_64_sync_handler+0xf4/0x120 el0t_64_sync+0x190/0x194 Code: aa0403e2 b0fff060 91010000 959c2024 (d4210000) [CAUSE] In btrfs/027 we test RAID6 with missing devices, in this particular case, we're repairing a metadata at the end of a data stripe. But at btrfs_repair_io_failure(), we always pass a full PAGE for repair, and for subpage case this can cross stripe boundary and lead to the above BUG_ON(). This metadata repair code is always there, since the introduction of subpage support, but this can trigger BUG_ON() after the bio split ability at btrfs_map_bio(). [FIX] Instead of passing the old PAGE_SIZE, we calculate the correct length based on the eb size and page size for both regular and subpage cases. CC: stable@vger.kernel.org # 6.3+ Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-26 12:30:20 +00:00
ret = btrfs_repair_io_failure(fs_info, 0, start, len,
btrfs: migrate btrfs_repair_io_failure() to folio interfaces [BUG] Test case btrfs/124 failed if larger metadata folio is enabled, the dying message looks like this: BTRFS error (device dm-2): bad tree block start, mirror 2 want 31686656 have 0 BTRFS info (device dm-2): read error corrected: ino 0 off 31686656 (dev /dev/mapper/test-scratch2 sector 20928) BUG: kernel NULL pointer dereference, address: 0000000000000020 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page CPU: 6 PID: 350881 Comm: btrfs Tainted: G OE 6.7.0-rc3-custom+ #128 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022 RIP: 0010:btrfs_read_extent_buffer+0x106/0x180 [btrfs] PKRU: 55555554 Call Trace: <TASK> read_tree_block+0x33/0xb0 [btrfs] read_block_for_search+0x23e/0x340 [btrfs] btrfs_search_slot+0x2f9/0xe60 [btrfs] btrfs_lookup_csum+0x75/0x160 [btrfs] btrfs_lookup_bio_sums+0x21a/0x560 [btrfs] btrfs_submit_chunk+0x152/0x680 [btrfs] btrfs_submit_bio+0x1c/0x50 [btrfs] submit_one_bio+0x40/0x80 [btrfs] submit_extent_page+0x158/0x390 [btrfs] btrfs_do_readpage+0x330/0x740 [btrfs] extent_readahead+0x38d/0x6c0 [btrfs] read_pages+0x94/0x2c0 page_cache_ra_unbounded+0x12d/0x190 relocate_file_extent_cluster+0x7c1/0x9d0 [btrfs] relocate_block_group+0x2d3/0x560 [btrfs] btrfs_relocate_block_group+0x2c7/0x4b0 [btrfs] btrfs_relocate_chunk+0x4c/0x1a0 [btrfs] btrfs_balance+0x925/0x13c0 [btrfs] btrfs_ioctl+0x19f1/0x25d0 [btrfs] __x64_sys_ioctl+0x90/0xd0 do_syscall_64+0x3f/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 [CAUSE] The dying line is at btrfs_repair_io_failure() call inside btrfs_repair_eb_io_failure(). The function is still relying on the extent buffer using page sized folios. When the extent buffer is using larger folio, we go into the 2nd slot of folios[], and triggered the NULL pointer dereference. [FIX] Migrate btrfs_repair_io_failure() to folio interfaces. So that when we hit a larger folio, we just submit the whole folio in one go. This also affects data repair path through btrfs_end_repair_bio(), thankfully data is still fully page based, we can just add an ASSERT(), and use page_folio() to convert the page to folio. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-12-12 05:24:10 +00:00
start, folio, offset_in_folio(folio, start),
mirror_num);
if (ret)
break;
}
return ret;
}
/*
* helper to read a given tree block, doing retries as required when
* the checksums don't match and we have alternate mirrors to try.
*
* @check: expected tree parentness check, see the comments of the
* structure for details.
*/
int btrfs_read_extent_buffer(struct extent_buffer *eb,
struct btrfs_tree_parent_check *check)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
int failed = 0;
int ret;
int num_copies = 0;
int mirror_num = 0;
int failed_mirror = 0;
ASSERT(check);
while (1) {
btrfs: Always try all copies when reading extent buffers When a metadata read is served the endio routine btree_readpage_end_io_hook is called which eventually runs the tree-checker. If tree-checker fails to validate the read eb then it sets EXTENT_BUFFER_CORRUPT flag. This leads to btree_read_extent_buffer_pages wrongly assuming that all available copies of this extent buffer are wrong and failing prematurely. Fix this modify btree_read_extent_buffer_pages to read all copies of the data. This failure was exhibitted in xfstests btrfs/124 which would spuriously fail its balance operations. The reason was that when balance was run following re-introduction of the missing raid1 disk __btrfs_map_block would map the read request to stripe 0, which corresponded to devid 2 (the disk which is being removed in the test): item 2 key (FIRST_CHUNK_TREE CHUNK_ITEM 3553624064) itemoff 15975 itemsize 112 length 1073741824 owner 2 stripe_len 65536 type DATA|RAID1 io_align 65536 io_width 65536 sector_size 4096 num_stripes 2 sub_stripes 1 stripe 0 devid 2 offset 2156920832 dev_uuid 8466c350-ed0c-4c3b-b17d-6379b445d5c8 stripe 1 devid 1 offset 3553624064 dev_uuid 1265d8db-5596-477e-af03-df08eb38d2ca This caused read requests for a checksum item that to be routed to the stale disk which triggered the aforementioned logic involving EXTENT_BUFFER_CORRUPT flag. This then triggered cascading failures of the balance operation. Fixes: a826d6dcb32d ("Btrfs: check items for correctness as we search") CC: stable@vger.kernel.org # 4.4+ Suggested-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-06 14:40:20 +00:00
clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
if (!ret)
break;
num_copies = btrfs_num_copies(fs_info,
eb->start, eb->len);
if (num_copies == 1)
break;
if (!failed_mirror) {
failed = 1;
failed_mirror = eb->read_mirror;
}
mirror_num++;
if (mirror_num == failed_mirror)
mirror_num++;
if (mirror_num > num_copies)
break;
}
if (failed && !ret && failed_mirror)
btrfs_repair_eb_io_failure(eb, failed_mirror);
return ret;
}
/*
* Checksum a dirty tree block before IO.
*/
blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
{
struct extent_buffer *eb = bbio->private;
struct btrfs_fs_info *fs_info = eb->fs_info;
u64 found_start = btrfs_header_bytenr(eb);
u64 last_trans;
u8 result[BTRFS_CSUM_SIZE];
int ret;
/* Btree blocks are always contiguous on disk. */
if (WARN_ON_ONCE(bbio->file_offset != eb->start))
return BLK_STS_IOERR;
if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
return BLK_STS_IOERR;
/*
* If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
* checksum it but zero-out its content. This is done to preserve
* ordering of I/O without unnecessarily writing out data.
*/
if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
memzero_extent_buffer(eb, 0, eb->len);
return BLK_STS_OK;
}
if (WARN_ON_ONCE(found_start != eb->start))
return BLK_STS_IOERR;
if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
eb->start, eb->len)))
return BLK_STS_IOERR;
ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
offsetof(struct btrfs_header, fsid),
BTRFS_FSID_SIZE) == 0);
csum_tree_block(eb, result);
if (btrfs_header_level(eb))
ret = btrfs_check_node(eb);
else
ret = btrfs_check_leaf(eb);
btrfs: verify the tranisd of the to-be-written dirty extent buffer [BUG] There is a bug report that a bitflip in the transid part of an extent buffer makes btrfs to reject certain tree blocks: BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22 [CAUSE] Note the failed transid check, hex(262166) = 0x40016, while hex(22) = 0x16. It's an obvious bitflip. Furthermore, the reporter also confirmed the bitflip is from the hardware, so it's a real hardware caused bitflip, and such problem can not be detected by the existing tree-checker framework. As tree-checker can only verify the content inside one tree block, while generation of a tree block can only be verified against its parent. So such problem remain undetected. [FIX] Although tree-checker can not verify it at write-time, we still have a quick (but not the most accurate) way to catch such obvious corruption. Function csum_one_extent_buffer() is called before we submit metadata write. Thus it means, all the extent buffer passed in should be dirty tree blocks, and should be newer than last committed transaction. Using that we can catch the above bitflip. Although it's not a perfect solution, as if the corrupted generation is higher than the correct value, we have no way to catch it at all. Reported-by: Christoph Anton Mitterer <calestyo@scientia.org> Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/ CC: stable@vger.kernel.org # 5.15+ Signed-off-by: Qu Wenruo <wqu@sus,ree.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-02 01:10:21 +00:00
if (ret < 0)
goto error;
/*
* Also check the generation, the eb reached here must be newer than
* last committed. Or something seriously wrong happened.
*/
last_trans = btrfs_get_last_trans_committed(fs_info);
if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
btrfs: verify the tranisd of the to-be-written dirty extent buffer [BUG] There is a bug report that a bitflip in the transid part of an extent buffer makes btrfs to reject certain tree blocks: BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22 [CAUSE] Note the failed transid check, hex(262166) = 0x40016, while hex(22) = 0x16. It's an obvious bitflip. Furthermore, the reporter also confirmed the bitflip is from the hardware, so it's a real hardware caused bitflip, and such problem can not be detected by the existing tree-checker framework. As tree-checker can only verify the content inside one tree block, while generation of a tree block can only be verified against its parent. So such problem remain undetected. [FIX] Although tree-checker can not verify it at write-time, we still have a quick (but not the most accurate) way to catch such obvious corruption. Function csum_one_extent_buffer() is called before we submit metadata write. Thus it means, all the extent buffer passed in should be dirty tree blocks, and should be newer than last committed transaction. Using that we can catch the above bitflip. Although it's not a perfect solution, as if the corrupted generation is higher than the correct value, we have no way to catch it at all. Reported-by: Christoph Anton Mitterer <calestyo@scientia.org> Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/ CC: stable@vger.kernel.org # 5.15+ Signed-off-by: Qu Wenruo <wqu@sus,ree.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-02 01:10:21 +00:00
ret = -EUCLEAN;
btrfs_err(fs_info,
btrfs: verify the tranisd of the to-be-written dirty extent buffer [BUG] There is a bug report that a bitflip in the transid part of an extent buffer makes btrfs to reject certain tree blocks: BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22 [CAUSE] Note the failed transid check, hex(262166) = 0x40016, while hex(22) = 0x16. It's an obvious bitflip. Furthermore, the reporter also confirmed the bitflip is from the hardware, so it's a real hardware caused bitflip, and such problem can not be detected by the existing tree-checker framework. As tree-checker can only verify the content inside one tree block, while generation of a tree block can only be verified against its parent. So such problem remain undetected. [FIX] Although tree-checker can not verify it at write-time, we still have a quick (but not the most accurate) way to catch such obvious corruption. Function csum_one_extent_buffer() is called before we submit metadata write. Thus it means, all the extent buffer passed in should be dirty tree blocks, and should be newer than last committed transaction. Using that we can catch the above bitflip. Although it's not a perfect solution, as if the corrupted generation is higher than the correct value, we have no way to catch it at all. Reported-by: Christoph Anton Mitterer <calestyo@scientia.org> Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/ CC: stable@vger.kernel.org # 5.15+ Signed-off-by: Qu Wenruo <wqu@sus,ree.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-02 01:10:21 +00:00
"block=%llu bad generation, have %llu expect > %llu",
eb->start, btrfs_header_generation(eb), last_trans);
btrfs: verify the tranisd of the to-be-written dirty extent buffer [BUG] There is a bug report that a bitflip in the transid part of an extent buffer makes btrfs to reject certain tree blocks: BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22 [CAUSE] Note the failed transid check, hex(262166) = 0x40016, while hex(22) = 0x16. It's an obvious bitflip. Furthermore, the reporter also confirmed the bitflip is from the hardware, so it's a real hardware caused bitflip, and such problem can not be detected by the existing tree-checker framework. As tree-checker can only verify the content inside one tree block, while generation of a tree block can only be verified against its parent. So such problem remain undetected. [FIX] Although tree-checker can not verify it at write-time, we still have a quick (but not the most accurate) way to catch such obvious corruption. Function csum_one_extent_buffer() is called before we submit metadata write. Thus it means, all the extent buffer passed in should be dirty tree blocks, and should be newer than last committed transaction. Using that we can catch the above bitflip. Although it's not a perfect solution, as if the corrupted generation is higher than the correct value, we have no way to catch it at all. Reported-by: Christoph Anton Mitterer <calestyo@scientia.org> Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/ CC: stable@vger.kernel.org # 5.15+ Signed-off-by: Qu Wenruo <wqu@sus,ree.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-02 01:10:21 +00:00
goto error;
}
write_extent_buffer(eb, result, 0, fs_info->csum_size);
return BLK_STS_OK;
btrfs: verify the tranisd of the to-be-written dirty extent buffer [BUG] There is a bug report that a bitflip in the transid part of an extent buffer makes btrfs to reject certain tree blocks: BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22 [CAUSE] Note the failed transid check, hex(262166) = 0x40016, while hex(22) = 0x16. It's an obvious bitflip. Furthermore, the reporter also confirmed the bitflip is from the hardware, so it's a real hardware caused bitflip, and such problem can not be detected by the existing tree-checker framework. As tree-checker can only verify the content inside one tree block, while generation of a tree block can only be verified against its parent. So such problem remain undetected. [FIX] Although tree-checker can not verify it at write-time, we still have a quick (but not the most accurate) way to catch such obvious corruption. Function csum_one_extent_buffer() is called before we submit metadata write. Thus it means, all the extent buffer passed in should be dirty tree blocks, and should be newer than last committed transaction. Using that we can catch the above bitflip. Although it's not a perfect solution, as if the corrupted generation is higher than the correct value, we have no way to catch it at all. Reported-by: Christoph Anton Mitterer <calestyo@scientia.org> Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/ CC: stable@vger.kernel.org # 5.15+ Signed-off-by: Qu Wenruo <wqu@sus,ree.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-02 01:10:21 +00:00
error:
btrfs_print_tree(eb, 0);
btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
eb->start);
/*
* Be noisy if this is an extent buffer from a log tree. We don't abort
* a transaction in case there's a bad log tree extent buffer, we just
* fallback to a transaction commit. Still we want to know when there is
* a bad log tree extent buffer, as that may signal a bug somewhere.
*/
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
return errno_to_blk_status(ret);
}
static bool check_tree_block_fsid(struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
u8 fsid[BTRFS_FSID_SIZE];
read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
BTRFS_FSID_SIZE);
/*
* alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
* This is then overwritten by metadata_uuid if it is present in the
* device_list_add(). The same true for a seed device as well. So use of
* fs_devices::metadata_uuid is appropriate here.
*/
if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
return false;
list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
return false;
return true;
}
/* Do basic extent buffer checks at read time */
int btrfs_validate_extent_buffer(struct extent_buffer *eb,
struct btrfs_tree_parent_check *check)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
u64 found_start;
const u32 csum_size = fs_info->csum_size;
u8 found_level;
u8 result[BTRFS_CSUM_SIZE];
const u8 *header_csum;
int ret = 0;
ASSERT(check);
found_start = btrfs_header_bytenr(eb);
if (found_start != eb->start) {
2022-06-19 13:47:56 +00:00
btrfs_err_rl(fs_info,
"bad tree block start, mirror %u want %llu have %llu",
eb->read_mirror, eb->start, found_start);
ret = -EIO;
goto out;
}
if (check_tree_block_fsid(eb)) {
2022-06-19 13:47:56 +00:00
btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
eb->start, eb->read_mirror);
ret = -EIO;
goto out;
}
found_level = btrfs_header_level(eb);
if (found_level >= BTRFS_MAX_LEVEL) {
2022-06-19 13:47:56 +00:00
btrfs_err(fs_info,
"bad tree block level, mirror %u level %d on logical %llu",
eb->read_mirror, btrfs_header_level(eb), eb->start);
ret = -EIO;
goto out;
}
csum_tree_block(eb, result);
header_csum = folio_address(eb->folios[0]) +
get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
if (memcmp(result, header_csum, csum_size) != 0) {
btrfs_warn_rl(fs_info,
2022-06-19 13:47:56 +00:00
"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
eb->start, eb->read_mirror,
CSUM_FMT_VALUE(csum_size, header_csum),
btrfs: fix overflow when copying corrupt csums for a message Syzkaller reported a buffer overflow in btree_readpage_end_io_hook() when loop mounting a crafted image: detected buffer overflow in memcpy ------------[ cut here ]------------ kernel BUG at lib/string.c:1129! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 26 Comm: kworker/u4:2 Not tainted 5.9.0-rc4-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: btrfs-endio-meta btrfs_work_helper RIP: 0010:fortify_panic+0xf/0x20 lib/string.c:1129 RSP: 0018:ffffc90000e27980 EFLAGS: 00010286 RAX: 0000000000000022 RBX: ffff8880a80dca64 RCX: 0000000000000000 RDX: ffff8880a90860c0 RSI: ffffffff815dba07 RDI: fffff520001c4f22 RBP: ffff8880a80dca00 R08: 0000000000000022 R09: ffff8880ae7318e7 R10: 0000000000000000 R11: 0000000000077578 R12: 00000000ffffff6e R13: 0000000000000008 R14: ffffc90000e27a40 R15: 1ffff920001c4f3c FS: 0000000000000000(0000) GS:ffff8880ae700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000557335f440d0 CR3: 000000009647d000 CR4: 00000000001506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: memcpy include/linux/string.h:405 [inline] btree_readpage_end_io_hook.cold+0x206/0x221 fs/btrfs/disk-io.c:642 end_bio_extent_readpage+0x4de/0x10c0 fs/btrfs/extent_io.c:2854 bio_endio+0x3cf/0x7f0 block/bio.c:1449 end_workqueue_fn+0x114/0x170 fs/btrfs/disk-io.c:1695 btrfs_work_helper+0x221/0xe20 fs/btrfs/async-thread.c:318 process_one_work+0x94c/0x1670 kernel/workqueue.c:2269 worker_thread+0x64c/0x1120 kernel/workqueue.c:2415 kthread+0x3b5/0x4a0 kernel/kthread.c:292 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:294 Modules linked in: ---[ end trace b68924293169feef ]--- RIP: 0010:fortify_panic+0xf/0x20 lib/string.c:1129 RSP: 0018:ffffc90000e27980 EFLAGS: 00010286 RAX: 0000000000000022 RBX: ffff8880a80dca64 RCX: 0000000000000000 RDX: ffff8880a90860c0 RSI: ffffffff815dba07 RDI: fffff520001c4f22 RBP: ffff8880a80dca00 R08: 0000000000000022 R09: ffff8880ae7318e7 R10: 0000000000000000 R11: 0000000000077578 R12: 00000000ffffff6e R13: 0000000000000008 R14: ffffc90000e27a40 R15: 1ffff920001c4f3c FS: 0000000000000000(0000) GS:ffff8880ae700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f95b7c4d008 CR3: 000000009647d000 CR4: 00000000001506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 The overflow happens, because in btree_readpage_end_io_hook() we assume that we have found a 4 byte checksum instead of the real possible 32 bytes we have for the checksums. With the fix applied: [ 35.726623] BTRFS: device fsid 815caf9a-dc43-4d2a-ac54-764b8333d765 devid 1 transid 5 /dev/loop0 scanned by syz-repro (215) [ 35.738994] BTRFS info (device loop0): disk space caching is enabled [ 35.738998] BTRFS info (device loop0): has skinny extents [ 35.743337] BTRFS warning (device loop0): loop0 checksum verify failed on 1052672 wanted 0xf9c035fc8d239a54 found 0x67a25c14b7eabcf9 level 0 [ 35.743420] BTRFS error (device loop0): failed to read chunk root [ 35.745899] BTRFS error (device loop0): open_ctree failed Reported-by: syzbot+e864a35d361e1d4e29a5@syzkaller.appspotmail.com Fixes: d5178578bcd4 ("btrfs: directly call into crypto framework for checksumming") CC: stable@vger.kernel.org # 5.4+ Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-09-21 07:57:14 +00:00
CSUM_FMT_VALUE(csum_size, result),
btrfs_header_level(eb));
ret = -EUCLEAN;
goto out;
}
if (found_level != check->level) {
btrfs_err(fs_info,
"level verify failed on logical %llu mirror %u wanted %u found %u",
eb->start, eb->read_mirror, check->level, found_level);
ret = -EIO;
goto out;
}
if (unlikely(check->transid &&
btrfs_header_generation(eb) != check->transid)) {
btrfs_err_rl(eb->fs_info,
"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
eb->start, eb->read_mirror, check->transid,
btrfs_header_generation(eb));
ret = -EIO;
goto out;
}
if (check->has_first_key) {
struct btrfs_key *expect_key = &check->first_key;
struct btrfs_key found_key;
if (found_level)
btrfs_node_key_to_cpu(eb, &found_key, 0);
else
btrfs_item_key_to_cpu(eb, &found_key, 0);
if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
btrfs_err(fs_info,
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
eb->start, check->transid,
expect_key->objectid,
expect_key->type, expect_key->offset,
found_key.objectid, found_key.type,
found_key.offset);
ret = -EUCLEAN;
goto out;
}
}
if (check->owner_root) {
ret = btrfs_check_eb_owner(eb, check->owner_root);
if (ret < 0)
goto out;
}
/*
* If this is a leaf block and it is corrupt, set the corrupt bit so
* that we don't try and read the other copies of this block, just
* return -EIO.
*/
if (found_level == 0 && btrfs_check_leaf(eb)) {
set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
ret = -EIO;
}
if (found_level > 0 && btrfs_check_node(eb))
ret = -EIO;
if (ret)
btrfs_err(fs_info,
2022-06-19 13:47:56 +00:00
"read time tree block corruption detected on logical %llu mirror %u",
eb->start, eb->read_mirror);
out:
return ret;
}
#ifdef CONFIG_MIGRATION
static int btree_migrate_folio(struct address_space *mapping,
struct folio *dst, struct folio *src, enum migrate_mode mode)
{
/*
* we can't safely write a btree page from here,
* we haven't done the locking hook
*/
if (folio_test_dirty(src))
return -EAGAIN;
/*
* Buffers may be managed in a filesystem specific way.
* We must have no buffers or drop them.
*/
if (folio_get_private(src) &&
!filemap_release_folio(src, GFP_KERNEL))
return -EAGAIN;
return migrate_folio(mapping, dst, src, mode);
}
#else
#define btree_migrate_folio NULL
#endif
static int btree_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
int ret;
if (wbc->sync_mode == WB_SYNC_NONE) {
struct btrfs_fs_info *fs_info;
if (wbc->for_kupdate)
return 0;
fs_info = inode_to_fs_info(mapping->host);
/* this is a bit racy, but that's ok */
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
BTRFS_DIRTY_METADATA_THRESH,
fs_info->dirty_metadata_batch);
if (ret < 0)
return 0;
}
return btree_write_cache_pages(mapping, wbc);
}
static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
{
if (folio_test_writeback(folio) || folio_test_dirty(folio))
return false;
return try_release_extent_buffer(&folio->page);
}
static void btree_invalidate_folio(struct folio *folio, size_t offset,
size_t length)
{
struct extent_io_tree *tree;
tree = &folio_to_inode(folio)->io_tree;
extent_invalidate_folio(tree, folio, offset);
btree_release_folio(folio, GFP_NOFS);
if (folio_get_private(folio)) {
btrfs_warn(folio_to_fs_info(folio),
"folio private not zero on folio %llu",
(unsigned long long)folio_pos(folio));
folio_detach_private(folio);
}
}
#ifdef DEBUG
static bool btree_dirty_folio(struct address_space *mapping,
struct folio *folio)
{
struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
struct btrfs_subpage_info *spi = fs_info->subpage_info;
struct btrfs_subpage *subpage;
struct extent_buffer *eb;
int cur_bit = 0;
u64 page_start = folio_pos(folio);
if (fs_info->sectorsize == PAGE_SIZE) {
eb = folio_get_private(folio);
BUG_ON(!eb);
BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
BUG_ON(!atomic_read(&eb->refs));
btrfs_assert_tree_write_locked(eb);
return filemap_dirty_folio(mapping, folio);
}
ASSERT(spi);
subpage = folio_get_private(folio);
for (cur_bit = spi->dirty_offset;
cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
cur_bit++) {
unsigned long flags;
u64 cur;
spin_lock_irqsave(&subpage->lock, flags);
if (!test_bit(cur_bit, subpage->bitmaps)) {
spin_unlock_irqrestore(&subpage->lock, flags);
continue;
}
spin_unlock_irqrestore(&subpage->lock, flags);
cur = page_start + cur_bit * fs_info->sectorsize;
eb = find_extent_buffer(fs_info, cur);
ASSERT(eb);
ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
ASSERT(atomic_read(&eb->refs));
btrfs_assert_tree_write_locked(eb);
free_extent_buffer(eb);
cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
}
return filemap_dirty_folio(mapping, folio);
}
#else
#define btree_dirty_folio filemap_dirty_folio
#endif
static const struct address_space_operations btree_aops = {
.writepages = btree_writepages,
.release_folio = btree_release_folio,
.invalidate_folio = btree_invalidate_folio,
.migrate_folio = btree_migrate_folio,
.dirty_folio = btree_dirty_folio,
};
struct extent_buffer *btrfs_find_create_tree_block(
struct btrfs_fs_info *fs_info,
u64 bytenr, u64 owner_root,
int level)
{
if (btrfs_is_testing(fs_info))
return alloc_test_extent_buffer(fs_info, bytenr);
return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
}
/*
* Read tree block at logical address @bytenr and do variant basic but critical
* verification.
*
* @check: expected tree parentness check, see comments of the
* structure for details.
*/
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
struct btrfs_tree_parent_check *check)
{
struct extent_buffer *buf = NULL;
int ret;
ASSERT(check);
buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
check->level);
if (IS_ERR(buf))
return buf;
ret = btrfs_read_extent_buffer(buf, check);
if (ret) {
free_extent_buffer_stale(buf);
return ERR_PTR(ret);
}
if (btrfs_check_eb_owner(buf, check->owner_root)) {
btrfs: tree-checker: check extent buffer owner against owner rootid Btrfs doesn't check whether the tree block respects the root owner. This means, if a tree block referred by a parent in extent tree, but has owner of 5, btrfs can still continue reading the tree block, as long as it doesn't trigger other sanity checks. Normally this is fine, but combined with the empty tree check in check_leaf(), if we hit an empty extent tree, but the root node has csum tree owner, we can let such extent buffer to sneak in. Shrink the hole by: - Do extra eb owner check at tree read time - Make sure the root owner extent buffer exactly matches the root id. Unfortunately we can't yet completely patch the hole, there are several call sites can't pass all info we need: - For reloc/log trees Their owner is key::offset, not key::objectid. We need the full root key to do that accurate check. For now, we just skip the ownership check for those trees. - For add_data_references() of relocation That call site doesn't have any parent/ownership info, as all the bytenrs are all from btrfs_find_all_leafs(). - For direct backref items walk Direct backref items records the parent bytenr directly, thus unlike indirect backref item, we don't do a full tree search. Thus in that case, we don't have full parent owner to check. For the later two cases, they all pass 0 as @owner_root, thus we can skip those cases if @owner_root is 0. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-16 00:05:58 +00:00
free_extent_buffer_stale(buf);
return ERR_PTR(-EUCLEAN);
}
return buf;
}
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
u64 objectid)
{
bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
memset(&root->root_key, 0, sizeof(root->root_key));
memset(&root->root_item, 0, sizeof(root->root_item));
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
root->fs_info = fs_info;
root->root_key.objectid = objectid;
root->node = NULL;
root->commit_root = NULL;
root->state = 0;
RB_CLEAR_NODE(&root->rb_node);
root->last_trans = 0;
root->free_objectid = 0;
root->nr_delalloc_inodes = 0;
root->nr_ordered_extents = 0;
root->inode_tree = RB_ROOT;
/* GFP flags are compatible with XA_FLAGS_*. */
xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
btrfs_init_root_block_rsv(root);
INIT_LIST_HEAD(&root->dirty_list);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
INIT_LIST_HEAD(&root->root_list);
INIT_LIST_HEAD(&root->delalloc_inodes);
INIT_LIST_HEAD(&root->delalloc_root);
INIT_LIST_HEAD(&root->ordered_extents);
INIT_LIST_HEAD(&root->ordered_root);
btrfs: relocation: Delay reloc tree deletion after merge_reloc_roots Relocation code will drop btrfs_root::reloc_root as soon as merge_reloc_root() finishes. However later qgroup code will need to access btrfs_root::reloc_root after merge_reloc_root() for delayed subtree rescan. So alter the timming of resetting btrfs_root:::reloc_root, make it happens after transaction commit. With this patch, we will introduce a new btrfs_root::state, BTRFS_ROOT_DEAD_RELOC_TREE, to info part of btrfs_root::reloc_tree user that although btrfs_root::reloc_tree is still non-NULL, but still it's not used any more. The lifespan of btrfs_root::reloc tree will become: Old behavior | New ------------------------------------------------------------------------ btrfs_init_reloc_root() --- | btrfs_init_reloc_root() --- set reloc_root | | set reloc_root | | | | | | | merge_reloc_root() | | merge_reloc_root() | |- btrfs_update_reloc_root() --- | |- btrfs_update_reloc_root() -+- clear btrfs_root::reloc_root | set ROOT_DEAD_RELOC_TREE | | record root into dirty | | roots rbtree | | | | reloc_block_group() Or | | btrfs_recover_relocation() | | | After transaction commit | | |- clean_dirty_subvols() --- | clear btrfs_root::reloc_root During ROOT_DEAD_RELOC_TREE set lifespan, the only user of btrfs_root::reloc_tree should be qgroup. Since reloc root needs a longer life-span, this patch will also delay btrfs_drop_snapshot() call. Now btrfs_drop_snapshot() is called in clean_dirty_subvols(). This patch will increase the size of btrfs_root by 16 bytes. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:14 +00:00
INIT_LIST_HEAD(&root->reloc_dirty_list);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
spin_lock_init(&root->inode_lock);
spin_lock_init(&root->delalloc_lock);
spin_lock_init(&root->ordered_extent_lock);
spin_lock_init(&root->accounting_lock);
spin_lock_init(&root->qgroup_meta_rsv_lock);
mutex_init(&root->objectid_mutex);
mutex_init(&root->log_mutex);
mutex_init(&root->ordered_extent_mutex);
mutex_init(&root->delalloc_mutex);
btrfs: qgroup: try to flush qgroup space when we get -EDQUOT [PROBLEM] There are known problem related to how btrfs handles qgroup reserved space. One of the most obvious case is the the test case btrfs/153, which do fallocate, then write into the preallocated range. btrfs/153 1s ... - output mismatch (see xfstests-dev/results//btrfs/153.out.bad) --- tests/btrfs/153.out 2019-10-22 15:18:14.068965341 +0800 +++ xfstests-dev/results//btrfs/153.out.bad 2020-07-01 20:24:40.730000089 +0800 @@ -1,2 +1,5 @@ QA output created by 153 +pwrite: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded +/mnt/scratch/testfile2: Disk quota exceeded Silence is golden ... (Run 'diff -u xfstests-dev/tests/btrfs/153.out xfstests-dev/results//btrfs/153.out.bad' to see the entire diff) [CAUSE] Since commit c6887cd11149 ("Btrfs: don't do nocow check unless we have to"), we always reserve space no matter if it's COW or not. Such behavior change is mostly for performance, and reverting it is not a good idea anyway. For preallcoated extent, we reserve qgroup data space for it already, and since we also reserve data space for qgroup at buffered write time, it needs twice the space for us to write into preallocated space. This leads to the -EDQUOT in buffered write routine. And we can't follow the same solution, unlike data/meta space check, qgroup reserved space is shared between data/metadata. The EDQUOT can happen at the metadata reservation, so doing NODATACOW check after qgroup reservation failure is not a solution. [FIX] To solve the problem, we don't return -EDQUOT directly, but every time we got a -EDQUOT, we try to flush qgroup space: - Flush all inodes of the root NODATACOW writes will free the qgroup reserved at run_dealloc_range(). However we don't have the infrastructure to only flush NODATACOW inodes, here we flush all inodes anyway. - Wait for ordered extents This would convert the preallocated metadata space into per-trans metadata, which can be freed in later transaction commit. - Commit transaction This will free all per-trans metadata space. Also we don't want to trigger flush multiple times, so here we introduce a per-root wait list and a new root status, to ensure only one thread starts the flushing. Fixes: c6887cd11149 ("Btrfs: don't do nocow check unless we have to") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-07-13 10:50:48 +00:00
init_waitqueue_head(&root->qgroup_flush_wait);
init_waitqueue_head(&root->log_writer_wait);
init_waitqueue_head(&root->log_commit_wait[0]);
init_waitqueue_head(&root->log_commit_wait[1]);
INIT_LIST_HEAD(&root->log_ctxs[0]);
INIT_LIST_HEAD(&root->log_ctxs[1]);
atomic_set(&root->log_commit[0], 0);
atomic_set(&root->log_commit[1], 0);
atomic_set(&root->log_writers, 0);
atomic_set(&root->log_batch, 0);
refcount_set(&root->refs, 1);
Btrfs: fix unexpected failure of nocow buffered writes after snapshotting when low on space Commit e9894fd3e3b3 ("Btrfs: fix snapshot vs nocow writting") forced nocow writes to fallback to COW, during writeback, when a snapshot is created. This resulted in writes made before creating the snapshot to unexpectedly fail with ENOSPC during writeback when success (0) was returned to user space through the write system call. The steps leading to this problem are: 1. When it's not possible to allocate data space for a write, the buffered write path checks if a NOCOW write is possible. If it is, it will not reserve space and success (0) is returned to user space. 2. Then when a snapshot is created, the root's will_be_snapshotted atomic is incremented and writeback is triggered for all inode's that belong to the root being snapshotted. Incrementing that atomic forces all previous writes to fallback to COW during writeback (running delalloc). 3. This results in the writeback for the inodes to fail and therefore setting the ENOSPC error in their mappings, so that a subsequent fsync on them will report the error to user space. So it's not a completely silent data loss (since fsync will report ENOSPC) but it's a very unexpected and undesirable behaviour, because if a clean shutdown/unmount of the filesystem happens without previous calls to fsync, it is expected to have the data present in the files after mounting the filesystem again. So fix this by adding a new atomic named snapshot_force_cow to the root structure which prevents this behaviour and works the following way: 1. It is incremented when we start to create a snapshot after triggering writeback and before waiting for writeback to finish. 2. This new atomic is now what is used by writeback (running delalloc) to decide whether we need to fallback to COW or not. Because we incremented this new atomic after triggering writeback in the snapshot creation ioctl, we ensure that all buffered writes that happened before snapshot creation will succeed and not fallback to COW (which would make them fail with ENOSPC). 3. The existing atomic, will_be_snapshotted, is kept because it is used to force new buffered writes, that start after we started snapshotting, to reserve data space even when NOCOW is possible. This makes these writes fail early with ENOSPC when there's no available space to allocate, preventing the unexpected behaviour of writeback later failing with ENOSPC due to a fallback to COW mode. Fixes: e9894fd3e3b3 ("Btrfs: fix snapshot vs nocow writting") Signed-off-by: Robbie Ko <robbieko@synology.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06 02:30:30 +00:00
atomic_set(&root->snapshot_force_cow, 0);
atomic_set(&root->nr_swapfiles, 0);
btrfs_set_root_log_transid(root, 0);
root->log_transid_committed = -1;
btrfs_set_root_last_log_commit(root, 0);
root->anon_dev = 0;
btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents When we have extents shared amongst different inodes in the same subvolume, if we fsync them in parallel we can end up with checksum items in the log tree that represent ranges which overlap. For example, consider we have inodes A and B, both sharing an extent that covers the logical range from X to X + 64KiB: 1) Task A starts an fsync on inode A; 2) Task B starts an fsync on inode B; 3) Task A calls btrfs_csum_file_blocks(), and the first search in the log tree, through btrfs_lookup_csum(), returns -EFBIG because it finds an existing checksum item that covers the range from X - 64KiB to X; 4) Task A checks that the checksum item has not reached the maximum possible size (MAX_CSUM_ITEMS) and then releases the search path before it does another path search for insertion (through a direct call to btrfs_search_slot()); 5) As soon as task A releases the path and before it does the search for insertion, task B calls btrfs_csum_file_blocks() and gets -EFBIG too, because there is an existing checksum item that has an end offset that matches the start offset (X) of the checksum range we want to log; 6) Task B releases the path; 7) Task A does the path search for insertion (through btrfs_search_slot()) and then verifies that the checksum item that ends at offset X still exists and extends its size to insert the checksums for the range from X to X + 64KiB; 8) Task A releases the path and returns from btrfs_csum_file_blocks(), having inserted the checksums into an existing checksum item that got its size extended. At this point we have one checksum item in the log tree that covers the logical range from X - 64KiB to X + 64KiB; 9) Task B now does a search for insertion using btrfs_search_slot() too, but it finds that the previous checksum item no longer ends at the offset X, it now ends at an of offset X + 64KiB, so it leaves that item untouched. Then it releases the path and calls btrfs_insert_empty_item() that inserts a checksum item with a key offset corresponding to X and a size for inserting a single checksum (4 bytes in case of crc32c). Subsequent iterations end up extending this new checksum item so that it contains the checksums for the range from X to X + 64KiB. So after task B returns from btrfs_csum_file_blocks() we end up with two checksum items in the log tree that have overlapping ranges, one for the range from X - 64KiB to X + 64KiB, and another for the range from X to X + 64KiB. Having checksum items that represent ranges which overlap, regardless of being in the log tree or in the chekcsums tree, can lead to problems where checksums for a file range end up not being found. This type of problem has happened a few times in the past and the following commits fixed them and explain in detail why having checksum items with overlapping ranges is problematic: 27b9a8122ff71a "Btrfs: fix csum tree corruption, duplicate and outdated checksums" b84b8390d6009c "Btrfs: fix file read corruption after extent cloning and fsync" 40e046acbd2f36 "Btrfs: fix missing data checksums after replaying a log tree" Since this specific instance of the problem can only happen when logging inodes, because it is the only case where concurrent attempts to insert checksums for the same range can happen, fix the issue by using an extent io tree as a range lock to serialize checksum insertion during inode logging. This issue could often be reproduced by the test case generic/457 from fstests. When it happens it produces the following trace: BTRFS critical (device dm-0): corrupt leaf: root=18446744073709551610 block=30625792 slot=42, csum end range (15020032) goes beyond the start range (15015936) of the next csum item BTRFS info (device dm-0): leaf 30625792 gen 7 total ptrs 49 free space 2402 owner 18446744073709551610 BTRFS info (device dm-0): refs 1 lock (w:0 r:0 bw:0 br:0 sw:0 sr:0) lock_owner 0 current 15884 item 0 key (18446744073709551606 128 13979648) itemoff 3991 itemsize 4 item 1 key (18446744073709551606 128 13983744) itemoff 3987 itemsize 4 item 2 key (18446744073709551606 128 13987840) itemoff 3983 itemsize 4 item 3 key (18446744073709551606 128 13991936) itemoff 3979 itemsize 4 item 4 key (18446744073709551606 128 13996032) itemoff 3975 itemsize 4 item 5 key (18446744073709551606 128 14000128) itemoff 3971 itemsize 4 (...) BTRFS error (device dm-0): block=30625792 write time tree block corruption detected ------------[ cut here ]------------ WARNING: CPU: 1 PID: 15884 at fs/btrfs/disk-io.c:539 btree_csum_one_bio+0x268/0x2d0 [btrfs] Modules linked in: btrfs dm_thin_pool ... CPU: 1 PID: 15884 Comm: fsx Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btree_csum_one_bio+0x268/0x2d0 [btrfs] Code: c7 c7 ... RSP: 0018:ffffbb0109e6f8e0 EFLAGS: 00010296 RAX: 0000000000000000 RBX: ffffe1c0847b6080 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffffaa963988 RDI: 0000000000000001 RBP: ffff956a4f4d2000 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000526 R11: 0000000000000000 R12: ffff956a5cd28bb0 R13: 0000000000000000 R14: ffff956a649c9388 R15: 000000011ed82000 FS: 00007fb419959e80(0000) GS:ffff956a7aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000fe6d54 CR3: 0000000138696005 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btree_submit_bio_hook+0x67/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] btree_write_cache_pages+0x2db/0x4b0 [btrfs] ? __filemap_fdatawrite_range+0xb1/0x110 do_writepages+0x23/0x80 __filemap_fdatawrite_range+0xd2/0x110 btrfs_write_marked_extents+0x15e/0x180 [btrfs] btrfs_sync_log+0x206/0x10a0 [btrfs] ? kmem_cache_free+0x315/0x3b0 ? btrfs_log_inode+0x1e8/0xf90 [btrfs] ? __mutex_unlock_slowpath+0x45/0x2a0 ? lockref_put_or_lock+0x9/0x30 ? dput+0x2d/0x580 ? dput+0xb5/0x580 ? btrfs_sync_file+0x464/0x4d0 [btrfs] btrfs_sync_file+0x464/0x4d0 [btrfs] do_fsync+0x38/0x60 __x64_sys_fsync+0x10/0x20 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fb41953a6d0 Code: 48 3d ... RSP: 002b:00007ffcc86bd218 EFLAGS: 00000246 ORIG_RAX: 000000000000004a RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fb41953a6d0 RDX: 0000000000000009 RSI: 0000000000040000 RDI: 0000000000000003 RBP: 0000000000040000 R08: 0000000000000001 R09: 0000000000000009 R10: 0000000000000064 R11: 0000000000000246 R12: 0000556cf4b2c060 R13: 0000000000000100 R14: 0000000000000000 R15: 0000556cf322b420 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020 softirqs last enabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace d543fc76f5ad7fd8 ]--- In that trace the tree checker detected the overlapping checksum items at the time when we triggered writeback for the log tree when syncing the log. Another trace that can happen is due to BUG_ON() when deleting checksum items while logging an inode: BTRFS critical (device dm-0): slot 81 key (18446744073709551606 128 13635584) new key (18446744073709551606 128 13635584) BTRFS info (device dm-0): leaf 30949376 gen 7 total ptrs 98 free space 8527 owner 18446744073709551610 BTRFS info (device dm-0): refs 4 lock (w:1 r:0 bw:0 br:0 sw:1 sr:0) lock_owner 13473 current 13473 item 0 key (257 1 0) itemoff 16123 itemsize 160 inode generation 7 size 262144 mode 100600 item 1 key (257 12 256) itemoff 16103 itemsize 20 item 2 key (257 108 0) itemoff 16050 itemsize 53 extent data disk bytenr 13631488 nr 4096 extent data offset 0 nr 131072 ram 131072 (...) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:3153! invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 1 PID: 13473 Comm: fsx Not tainted 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x1ea/0x270 [btrfs] Code: 0f b6 ... RSP: 0018:ffff95e3889179d0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000051 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffffb7763988 RDI: 0000000000000001 RBP: fffffffffffffff6 R08: 0000000000000000 R09: 0000000000000001 R10: 00000000000009ef R11: 0000000000000000 R12: ffff8912a8ba5a08 R13: ffff95e388917a06 R14: ffff89138dcf68c8 R15: ffff95e388917ace FS: 00007fe587084e80(0000) GS:ffff8913baa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fe587091000 CR3: 0000000126dac005 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_del_csums+0x2f4/0x540 [btrfs] copy_items+0x4b5/0x560 [btrfs] btrfs_log_inode+0x910/0xf90 [btrfs] btrfs_log_inode_parent+0x2a0/0xe40 [btrfs] ? dget_parent+0x5/0x370 btrfs_log_dentry_safe+0x4a/0x70 [btrfs] btrfs_sync_file+0x42b/0x4d0 [btrfs] __x64_sys_msync+0x199/0x200 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fe586c65760 Code: 00 f7 ... RSP: 002b:00007ffe250f98b8 EFLAGS: 00000246 ORIG_RAX: 000000000000001a RAX: ffffffffffffffda RBX: 00000000000040e1 RCX: 00007fe586c65760 RDX: 0000000000000004 RSI: 0000000000006b51 RDI: 00007fe58708b000 RBP: 0000000000006a70 R08: 0000000000000003 R09: 00007fe58700cb61 R10: 0000000000000100 R11: 0000000000000246 R12: 00000000000000e1 R13: 00007fe58708b000 R14: 0000000000006b51 R15: 0000558de021a420 Modules linked in: dm_log_writes ... ---[ end trace c92a7f447a8515f5 ]--- CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-18 11:14:50 +00:00
if (!dummy) {
extent_io_tree_init(fs_info, &root->dirty_log_pages,
IO_TREE_ROOT_DIRTY_LOG_PAGES);
btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents When we have extents shared amongst different inodes in the same subvolume, if we fsync them in parallel we can end up with checksum items in the log tree that represent ranges which overlap. For example, consider we have inodes A and B, both sharing an extent that covers the logical range from X to X + 64KiB: 1) Task A starts an fsync on inode A; 2) Task B starts an fsync on inode B; 3) Task A calls btrfs_csum_file_blocks(), and the first search in the log tree, through btrfs_lookup_csum(), returns -EFBIG because it finds an existing checksum item that covers the range from X - 64KiB to X; 4) Task A checks that the checksum item has not reached the maximum possible size (MAX_CSUM_ITEMS) and then releases the search path before it does another path search for insertion (through a direct call to btrfs_search_slot()); 5) As soon as task A releases the path and before it does the search for insertion, task B calls btrfs_csum_file_blocks() and gets -EFBIG too, because there is an existing checksum item that has an end offset that matches the start offset (X) of the checksum range we want to log; 6) Task B releases the path; 7) Task A does the path search for insertion (through btrfs_search_slot()) and then verifies that the checksum item that ends at offset X still exists and extends its size to insert the checksums for the range from X to X + 64KiB; 8) Task A releases the path and returns from btrfs_csum_file_blocks(), having inserted the checksums into an existing checksum item that got its size extended. At this point we have one checksum item in the log tree that covers the logical range from X - 64KiB to X + 64KiB; 9) Task B now does a search for insertion using btrfs_search_slot() too, but it finds that the previous checksum item no longer ends at the offset X, it now ends at an of offset X + 64KiB, so it leaves that item untouched. Then it releases the path and calls btrfs_insert_empty_item() that inserts a checksum item with a key offset corresponding to X and a size for inserting a single checksum (4 bytes in case of crc32c). Subsequent iterations end up extending this new checksum item so that it contains the checksums for the range from X to X + 64KiB. So after task B returns from btrfs_csum_file_blocks() we end up with two checksum items in the log tree that have overlapping ranges, one for the range from X - 64KiB to X + 64KiB, and another for the range from X to X + 64KiB. Having checksum items that represent ranges which overlap, regardless of being in the log tree or in the chekcsums tree, can lead to problems where checksums for a file range end up not being found. This type of problem has happened a few times in the past and the following commits fixed them and explain in detail why having checksum items with overlapping ranges is problematic: 27b9a8122ff71a "Btrfs: fix csum tree corruption, duplicate and outdated checksums" b84b8390d6009c "Btrfs: fix file read corruption after extent cloning and fsync" 40e046acbd2f36 "Btrfs: fix missing data checksums after replaying a log tree" Since this specific instance of the problem can only happen when logging inodes, because it is the only case where concurrent attempts to insert checksums for the same range can happen, fix the issue by using an extent io tree as a range lock to serialize checksum insertion during inode logging. This issue could often be reproduced by the test case generic/457 from fstests. When it happens it produces the following trace: BTRFS critical (device dm-0): corrupt leaf: root=18446744073709551610 block=30625792 slot=42, csum end range (15020032) goes beyond the start range (15015936) of the next csum item BTRFS info (device dm-0): leaf 30625792 gen 7 total ptrs 49 free space 2402 owner 18446744073709551610 BTRFS info (device dm-0): refs 1 lock (w:0 r:0 bw:0 br:0 sw:0 sr:0) lock_owner 0 current 15884 item 0 key (18446744073709551606 128 13979648) itemoff 3991 itemsize 4 item 1 key (18446744073709551606 128 13983744) itemoff 3987 itemsize 4 item 2 key (18446744073709551606 128 13987840) itemoff 3983 itemsize 4 item 3 key (18446744073709551606 128 13991936) itemoff 3979 itemsize 4 item 4 key (18446744073709551606 128 13996032) itemoff 3975 itemsize 4 item 5 key (18446744073709551606 128 14000128) itemoff 3971 itemsize 4 (...) BTRFS error (device dm-0): block=30625792 write time tree block corruption detected ------------[ cut here ]------------ WARNING: CPU: 1 PID: 15884 at fs/btrfs/disk-io.c:539 btree_csum_one_bio+0x268/0x2d0 [btrfs] Modules linked in: btrfs dm_thin_pool ... CPU: 1 PID: 15884 Comm: fsx Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btree_csum_one_bio+0x268/0x2d0 [btrfs] Code: c7 c7 ... RSP: 0018:ffffbb0109e6f8e0 EFLAGS: 00010296 RAX: 0000000000000000 RBX: ffffe1c0847b6080 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffffaa963988 RDI: 0000000000000001 RBP: ffff956a4f4d2000 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000526 R11: 0000000000000000 R12: ffff956a5cd28bb0 R13: 0000000000000000 R14: ffff956a649c9388 R15: 000000011ed82000 FS: 00007fb419959e80(0000) GS:ffff956a7aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000fe6d54 CR3: 0000000138696005 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btree_submit_bio_hook+0x67/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] btree_write_cache_pages+0x2db/0x4b0 [btrfs] ? __filemap_fdatawrite_range+0xb1/0x110 do_writepages+0x23/0x80 __filemap_fdatawrite_range+0xd2/0x110 btrfs_write_marked_extents+0x15e/0x180 [btrfs] btrfs_sync_log+0x206/0x10a0 [btrfs] ? kmem_cache_free+0x315/0x3b0 ? btrfs_log_inode+0x1e8/0xf90 [btrfs] ? __mutex_unlock_slowpath+0x45/0x2a0 ? lockref_put_or_lock+0x9/0x30 ? dput+0x2d/0x580 ? dput+0xb5/0x580 ? btrfs_sync_file+0x464/0x4d0 [btrfs] btrfs_sync_file+0x464/0x4d0 [btrfs] do_fsync+0x38/0x60 __x64_sys_fsync+0x10/0x20 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fb41953a6d0 Code: 48 3d ... RSP: 002b:00007ffcc86bd218 EFLAGS: 00000246 ORIG_RAX: 000000000000004a RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fb41953a6d0 RDX: 0000000000000009 RSI: 0000000000040000 RDI: 0000000000000003 RBP: 0000000000040000 R08: 0000000000000001 R09: 0000000000000009 R10: 0000000000000064 R11: 0000000000000246 R12: 0000556cf4b2c060 R13: 0000000000000100 R14: 0000000000000000 R15: 0000556cf322b420 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020 softirqs last enabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace d543fc76f5ad7fd8 ]--- In that trace the tree checker detected the overlapping checksum items at the time when we triggered writeback for the log tree when syncing the log. Another trace that can happen is due to BUG_ON() when deleting checksum items while logging an inode: BTRFS critical (device dm-0): slot 81 key (18446744073709551606 128 13635584) new key (18446744073709551606 128 13635584) BTRFS info (device dm-0): leaf 30949376 gen 7 total ptrs 98 free space 8527 owner 18446744073709551610 BTRFS info (device dm-0): refs 4 lock (w:1 r:0 bw:0 br:0 sw:1 sr:0) lock_owner 13473 current 13473 item 0 key (257 1 0) itemoff 16123 itemsize 160 inode generation 7 size 262144 mode 100600 item 1 key (257 12 256) itemoff 16103 itemsize 20 item 2 key (257 108 0) itemoff 16050 itemsize 53 extent data disk bytenr 13631488 nr 4096 extent data offset 0 nr 131072 ram 131072 (...) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:3153! invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 1 PID: 13473 Comm: fsx Not tainted 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x1ea/0x270 [btrfs] Code: 0f b6 ... RSP: 0018:ffff95e3889179d0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000051 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffffb7763988 RDI: 0000000000000001 RBP: fffffffffffffff6 R08: 0000000000000000 R09: 0000000000000001 R10: 00000000000009ef R11: 0000000000000000 R12: ffff8912a8ba5a08 R13: ffff95e388917a06 R14: ffff89138dcf68c8 R15: ffff95e388917ace FS: 00007fe587084e80(0000) GS:ffff8913baa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fe587091000 CR3: 0000000126dac005 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_del_csums+0x2f4/0x540 [btrfs] copy_items+0x4b5/0x560 [btrfs] btrfs_log_inode+0x910/0xf90 [btrfs] btrfs_log_inode_parent+0x2a0/0xe40 [btrfs] ? dget_parent+0x5/0x370 btrfs_log_dentry_safe+0x4a/0x70 [btrfs] btrfs_sync_file+0x42b/0x4d0 [btrfs] __x64_sys_msync+0x199/0x200 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fe586c65760 Code: 00 f7 ... RSP: 002b:00007ffe250f98b8 EFLAGS: 00000246 ORIG_RAX: 000000000000001a RAX: ffffffffffffffda RBX: 00000000000040e1 RCX: 00007fe586c65760 RDX: 0000000000000004 RSI: 0000000000006b51 RDI: 00007fe58708b000 RBP: 0000000000006a70 R08: 0000000000000003 R09: 00007fe58700cb61 R10: 0000000000000100 R11: 0000000000000246 R12: 00000000000000e1 R13: 00007fe58708b000 R14: 0000000000006b51 R15: 0000558de021a420 Modules linked in: dm_log_writes ... ---[ end trace c92a7f447a8515f5 ]--- CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-18 11:14:50 +00:00
extent_io_tree_init(fs_info, &root->log_csum_range,
IO_TREE_LOG_CSUM_RANGE);
btrfs: fix corrupt log due to concurrent fsync of inodes with shared extents When we have extents shared amongst different inodes in the same subvolume, if we fsync them in parallel we can end up with checksum items in the log tree that represent ranges which overlap. For example, consider we have inodes A and B, both sharing an extent that covers the logical range from X to X + 64KiB: 1) Task A starts an fsync on inode A; 2) Task B starts an fsync on inode B; 3) Task A calls btrfs_csum_file_blocks(), and the first search in the log tree, through btrfs_lookup_csum(), returns -EFBIG because it finds an existing checksum item that covers the range from X - 64KiB to X; 4) Task A checks that the checksum item has not reached the maximum possible size (MAX_CSUM_ITEMS) and then releases the search path before it does another path search for insertion (through a direct call to btrfs_search_slot()); 5) As soon as task A releases the path and before it does the search for insertion, task B calls btrfs_csum_file_blocks() and gets -EFBIG too, because there is an existing checksum item that has an end offset that matches the start offset (X) of the checksum range we want to log; 6) Task B releases the path; 7) Task A does the path search for insertion (through btrfs_search_slot()) and then verifies that the checksum item that ends at offset X still exists and extends its size to insert the checksums for the range from X to X + 64KiB; 8) Task A releases the path and returns from btrfs_csum_file_blocks(), having inserted the checksums into an existing checksum item that got its size extended. At this point we have one checksum item in the log tree that covers the logical range from X - 64KiB to X + 64KiB; 9) Task B now does a search for insertion using btrfs_search_slot() too, but it finds that the previous checksum item no longer ends at the offset X, it now ends at an of offset X + 64KiB, so it leaves that item untouched. Then it releases the path and calls btrfs_insert_empty_item() that inserts a checksum item with a key offset corresponding to X and a size for inserting a single checksum (4 bytes in case of crc32c). Subsequent iterations end up extending this new checksum item so that it contains the checksums for the range from X to X + 64KiB. So after task B returns from btrfs_csum_file_blocks() we end up with two checksum items in the log tree that have overlapping ranges, one for the range from X - 64KiB to X + 64KiB, and another for the range from X to X + 64KiB. Having checksum items that represent ranges which overlap, regardless of being in the log tree or in the chekcsums tree, can lead to problems where checksums for a file range end up not being found. This type of problem has happened a few times in the past and the following commits fixed them and explain in detail why having checksum items with overlapping ranges is problematic: 27b9a8122ff71a "Btrfs: fix csum tree corruption, duplicate and outdated checksums" b84b8390d6009c "Btrfs: fix file read corruption after extent cloning and fsync" 40e046acbd2f36 "Btrfs: fix missing data checksums after replaying a log tree" Since this specific instance of the problem can only happen when logging inodes, because it is the only case where concurrent attempts to insert checksums for the same range can happen, fix the issue by using an extent io tree as a range lock to serialize checksum insertion during inode logging. This issue could often be reproduced by the test case generic/457 from fstests. When it happens it produces the following trace: BTRFS critical (device dm-0): corrupt leaf: root=18446744073709551610 block=30625792 slot=42, csum end range (15020032) goes beyond the start range (15015936) of the next csum item BTRFS info (device dm-0): leaf 30625792 gen 7 total ptrs 49 free space 2402 owner 18446744073709551610 BTRFS info (device dm-0): refs 1 lock (w:0 r:0 bw:0 br:0 sw:0 sr:0) lock_owner 0 current 15884 item 0 key (18446744073709551606 128 13979648) itemoff 3991 itemsize 4 item 1 key (18446744073709551606 128 13983744) itemoff 3987 itemsize 4 item 2 key (18446744073709551606 128 13987840) itemoff 3983 itemsize 4 item 3 key (18446744073709551606 128 13991936) itemoff 3979 itemsize 4 item 4 key (18446744073709551606 128 13996032) itemoff 3975 itemsize 4 item 5 key (18446744073709551606 128 14000128) itemoff 3971 itemsize 4 (...) BTRFS error (device dm-0): block=30625792 write time tree block corruption detected ------------[ cut here ]------------ WARNING: CPU: 1 PID: 15884 at fs/btrfs/disk-io.c:539 btree_csum_one_bio+0x268/0x2d0 [btrfs] Modules linked in: btrfs dm_thin_pool ... CPU: 1 PID: 15884 Comm: fsx Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btree_csum_one_bio+0x268/0x2d0 [btrfs] Code: c7 c7 ... RSP: 0018:ffffbb0109e6f8e0 EFLAGS: 00010296 RAX: 0000000000000000 RBX: ffffe1c0847b6080 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffffaa963988 RDI: 0000000000000001 RBP: ffff956a4f4d2000 R08: 0000000000000000 R09: 0000000000000001 R10: 0000000000000526 R11: 0000000000000000 R12: ffff956a5cd28bb0 R13: 0000000000000000 R14: ffff956a649c9388 R15: 000000011ed82000 FS: 00007fb419959e80(0000) GS:ffff956a7aa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000fe6d54 CR3: 0000000138696005 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btree_submit_bio_hook+0x67/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] btree_write_cache_pages+0x2db/0x4b0 [btrfs] ? __filemap_fdatawrite_range+0xb1/0x110 do_writepages+0x23/0x80 __filemap_fdatawrite_range+0xd2/0x110 btrfs_write_marked_extents+0x15e/0x180 [btrfs] btrfs_sync_log+0x206/0x10a0 [btrfs] ? kmem_cache_free+0x315/0x3b0 ? btrfs_log_inode+0x1e8/0xf90 [btrfs] ? __mutex_unlock_slowpath+0x45/0x2a0 ? lockref_put_or_lock+0x9/0x30 ? dput+0x2d/0x580 ? dput+0xb5/0x580 ? btrfs_sync_file+0x464/0x4d0 [btrfs] btrfs_sync_file+0x464/0x4d0 [btrfs] do_fsync+0x38/0x60 __x64_sys_fsync+0x10/0x20 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fb41953a6d0 Code: 48 3d ... RSP: 002b:00007ffcc86bd218 EFLAGS: 00000246 ORIG_RAX: 000000000000004a RAX: ffffffffffffffda RBX: 000000000000000d RCX: 00007fb41953a6d0 RDX: 0000000000000009 RSI: 0000000000040000 RDI: 0000000000000003 RBP: 0000000000040000 R08: 0000000000000001 R09: 0000000000000009 R10: 0000000000000064 R11: 0000000000000246 R12: 0000556cf4b2c060 R13: 0000000000000100 R14: 0000000000000000 R15: 0000556cf322b420 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020 softirqs last enabled at (0): [<ffffffffa96bdedf>] copy_process+0x74f/0x2020 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace d543fc76f5ad7fd8 ]--- In that trace the tree checker detected the overlapping checksum items at the time when we triggered writeback for the log tree when syncing the log. Another trace that can happen is due to BUG_ON() when deleting checksum items while logging an inode: BTRFS critical (device dm-0): slot 81 key (18446744073709551606 128 13635584) new key (18446744073709551606 128 13635584) BTRFS info (device dm-0): leaf 30949376 gen 7 total ptrs 98 free space 8527 owner 18446744073709551610 BTRFS info (device dm-0): refs 4 lock (w:1 r:0 bw:0 br:0 sw:1 sr:0) lock_owner 13473 current 13473 item 0 key (257 1 0) itemoff 16123 itemsize 160 inode generation 7 size 262144 mode 100600 item 1 key (257 12 256) itemoff 16103 itemsize 20 item 2 key (257 108 0) itemoff 16050 itemsize 53 extent data disk bytenr 13631488 nr 4096 extent data offset 0 nr 131072 ram 131072 (...) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:3153! invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 1 PID: 13473 Comm: fsx Not tainted 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0x1ea/0x270 [btrfs] Code: 0f b6 ... RSP: 0018:ffff95e3889179d0 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000051 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffffb7763988 RDI: 0000000000000001 RBP: fffffffffffffff6 R08: 0000000000000000 R09: 0000000000000001 R10: 00000000000009ef R11: 0000000000000000 R12: ffff8912a8ba5a08 R13: ffff95e388917a06 R14: ffff89138dcf68c8 R15: ffff95e388917ace FS: 00007fe587084e80(0000) GS:ffff8913baa00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fe587091000 CR3: 0000000126dac005 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_del_csums+0x2f4/0x540 [btrfs] copy_items+0x4b5/0x560 [btrfs] btrfs_log_inode+0x910/0xf90 [btrfs] btrfs_log_inode_parent+0x2a0/0xe40 [btrfs] ? dget_parent+0x5/0x370 btrfs_log_dentry_safe+0x4a/0x70 [btrfs] btrfs_sync_file+0x42b/0x4d0 [btrfs] __x64_sys_msync+0x199/0x200 do_syscall_64+0x5c/0x280 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x7fe586c65760 Code: 00 f7 ... RSP: 002b:00007ffe250f98b8 EFLAGS: 00000246 ORIG_RAX: 000000000000001a RAX: ffffffffffffffda RBX: 00000000000040e1 RCX: 00007fe586c65760 RDX: 0000000000000004 RSI: 0000000000006b51 RDI: 00007fe58708b000 RBP: 0000000000006a70 R08: 0000000000000003 R09: 00007fe58700cb61 R10: 0000000000000100 R11: 0000000000000246 R12: 00000000000000e1 R13: 00007fe58708b000 R14: 0000000000006b51 R15: 0000558de021a420 Modules linked in: dm_log_writes ... ---[ end trace c92a7f447a8515f5 ]--- CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-05-18 11:14:50 +00:00
}
spin_lock_init(&root->root_item_lock);
btrfs: qgroup: Introduce per-root swapped blocks infrastructure To allow delayed subtree swap rescan, btrfs needs to record per-root information about which tree blocks get swapped. This patch introduces the required infrastructure. The designed workflow will be: 1) Record the subtree root block that gets swapped. During subtree swap: O = Old tree blocks N = New tree blocks reloc tree subvolume tree X Root Root / \ / \ NA OB OA OB / | | \ / | | \ NC ND OE OF OC OD OE OF In this case, NA and OA are going to be swapped, record (NA, OA) into subvolume tree X. 2) After subtree swap. reloc tree subvolume tree X Root Root / \ / \ OA OB NA OB / | | \ / | | \ OC OD OE OF NC ND OE OF 3a) COW happens for OB If we are going to COW tree block OB, we check OB's bytenr against tree X's swapped_blocks structure. If it doesn't fit any, nothing will happen. 3b) COW happens for NA Check NA's bytenr against tree X's swapped_blocks, and get a hit. Then we do subtree scan on both subtrees OA and NA. Resulting 6 tree blocks to be scanned (OA, OC, OD, NA, NC, ND). Then no matter what we do to subvolume tree X, qgroup numbers will still be correct. Then NA's record gets removed from X's swapped_blocks. 4) Transaction commit Any record in X's swapped_blocks gets removed, since there is no modification to swapped subtrees, no need to trigger heavy qgroup subtree rescan for them. This will introduce 128 bytes overhead for each btrfs_root even qgroup is not enabled. This is to reduce memory allocations and potential failures. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-23 07:15:16 +00:00
btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
#ifdef CONFIG_BTRFS_DEBUG
INIT_LIST_HEAD(&root->leak_list);
spin_lock(&fs_info->fs_roots_radix_lock);
list_add_tail(&root->leak_list, &fs_info->allocated_roots);
spin_unlock(&fs_info->fs_roots_radix_lock);
#endif
}
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
u64 objectid, gfp_t flags)
{
struct btrfs_root *root = kzalloc(sizeof(*root), flags);
if (root)
__setup_root(root, fs_info, objectid);
return root;
}
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
if (!fs_info)
return ERR_PTR(-EINVAL);
root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
if (!root)
return ERR_PTR(-ENOMEM);
/* We don't use the stripesize in selftest, set it as sectorsize */
root->alloc_bytenr = 0;
return root;
}
#endif
static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
{
const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
}
static int global_root_key_cmp(const void *k, const struct rb_node *node)
{
const struct btrfs_key *key = k;
const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
return btrfs_comp_cpu_keys(key, &root->root_key);
}
int btrfs_global_root_insert(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct rb_node *tmp;
btrfs: do not ASSERT() on duplicated global roots [BUG] Syzbot reports a reproducible ASSERT() when using rescue=usebackuproot mount option on a corrupted fs. The full report can be found here: https://syzkaller.appspot.com/bug?extid=c4614eae20a166c25bf0 BTRFS error (device loop0: state C): failed to load root csum assertion failed: !tmp, in fs/btrfs/disk-io.c:1103 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3664! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 3608 Comm: syz-executor356 Not tainted 6.0.0-rc7-syzkaller-00029-g3800a713b607 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 RIP: 0010:assertfail+0x1a/0x1c fs/btrfs/ctree.h:3663 RSP: 0018:ffffc90003aaf250 EFLAGS: 00010246 RAX: 0000000000000032 RBX: 0000000000000000 RCX: f21c13f886638400 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: ffff888021c640a0 R08: ffffffff816bd38d R09: ffffed10173667f1 R10: ffffed10173667f1 R11: 1ffff110173667f0 R12: dffffc0000000000 R13: ffff8880229c21f7 R14: ffff888021c64060 R15: ffff8880226c0000 FS: 0000555556a73300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055a2637d7a00 CR3: 00000000709c4000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_global_root_insert+0x1a7/0x1b0 fs/btrfs/disk-io.c:1103 load_global_roots_objectid+0x482/0x8c0 fs/btrfs/disk-io.c:2467 load_global_roots fs/btrfs/disk-io.c:2501 [inline] btrfs_read_roots fs/btrfs/disk-io.c:2528 [inline] init_tree_roots+0xccb/0x203c fs/btrfs/disk-io.c:2939 open_ctree+0x1e53/0x33df fs/btrfs/disk-io.c:3574 btrfs_fill_super+0x1c6/0x2d0 fs/btrfs/super.c:1456 btrfs_mount_root+0x885/0x9a0 fs/btrfs/super.c:1824 legacy_get_tree+0xea/0x180 fs/fs_context.c:610 vfs_get_tree+0x88/0x270 fs/super.c:1530 fc_mount fs/namespace.c:1043 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1073 btrfs_mount+0x3d3/0xbb0 fs/btrfs/super.c:1884 [CAUSE] Since the introduction of global roots, we handle csum/extent/free-space-tree roots as global roots, even if no extent-tree-v2 feature is enabled. So for regular csum/extent/fst roots, we load them into fs_info::global_root_tree rb tree. And we should not expect any conflicts in that rb tree, thus we have an ASSERT() inside btrfs_global_root_insert(). But rescue=usebackuproot can break the assumption, as we will try to load those trees again and again as long as we have bad roots and have backup roots slot remaining. So in that case we can have conflicting roots in the rb tree, and triggering the ASSERT() crash. [FIX] We can safely remove that ASSERT(), as the caller will properly put the offending root. To make further debugging easier, also add two explicit error messages: - Error message for conflicting global roots - Error message when using backup roots slot Reported-by: syzbot+a694851c6ab28cbcfb9c@syzkaller.appspotmail.com Fixes: abed4aaae4f7 ("btrfs: track the csum, extent, and free space trees in a rb tree") CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-11 00:09:13 +00:00
int ret = 0;
write_lock(&fs_info->global_root_lock);
tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
write_unlock(&fs_info->global_root_lock);
btrfs: do not ASSERT() on duplicated global roots [BUG] Syzbot reports a reproducible ASSERT() when using rescue=usebackuproot mount option on a corrupted fs. The full report can be found here: https://syzkaller.appspot.com/bug?extid=c4614eae20a166c25bf0 BTRFS error (device loop0: state C): failed to load root csum assertion failed: !tmp, in fs/btrfs/disk-io.c:1103 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3664! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 3608 Comm: syz-executor356 Not tainted 6.0.0-rc7-syzkaller-00029-g3800a713b607 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 RIP: 0010:assertfail+0x1a/0x1c fs/btrfs/ctree.h:3663 RSP: 0018:ffffc90003aaf250 EFLAGS: 00010246 RAX: 0000000000000032 RBX: 0000000000000000 RCX: f21c13f886638400 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: ffff888021c640a0 R08: ffffffff816bd38d R09: ffffed10173667f1 R10: ffffed10173667f1 R11: 1ffff110173667f0 R12: dffffc0000000000 R13: ffff8880229c21f7 R14: ffff888021c64060 R15: ffff8880226c0000 FS: 0000555556a73300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055a2637d7a00 CR3: 00000000709c4000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_global_root_insert+0x1a7/0x1b0 fs/btrfs/disk-io.c:1103 load_global_roots_objectid+0x482/0x8c0 fs/btrfs/disk-io.c:2467 load_global_roots fs/btrfs/disk-io.c:2501 [inline] btrfs_read_roots fs/btrfs/disk-io.c:2528 [inline] init_tree_roots+0xccb/0x203c fs/btrfs/disk-io.c:2939 open_ctree+0x1e53/0x33df fs/btrfs/disk-io.c:3574 btrfs_fill_super+0x1c6/0x2d0 fs/btrfs/super.c:1456 btrfs_mount_root+0x885/0x9a0 fs/btrfs/super.c:1824 legacy_get_tree+0xea/0x180 fs/fs_context.c:610 vfs_get_tree+0x88/0x270 fs/super.c:1530 fc_mount fs/namespace.c:1043 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1073 btrfs_mount+0x3d3/0xbb0 fs/btrfs/super.c:1884 [CAUSE] Since the introduction of global roots, we handle csum/extent/free-space-tree roots as global roots, even if no extent-tree-v2 feature is enabled. So for regular csum/extent/fst roots, we load them into fs_info::global_root_tree rb tree. And we should not expect any conflicts in that rb tree, thus we have an ASSERT() inside btrfs_global_root_insert(). But rescue=usebackuproot can break the assumption, as we will try to load those trees again and again as long as we have bad roots and have backup roots slot remaining. So in that case we can have conflicting roots in the rb tree, and triggering the ASSERT() crash. [FIX] We can safely remove that ASSERT(), as the caller will properly put the offending root. To make further debugging easier, also add two explicit error messages: - Error message for conflicting global roots - Error message when using backup roots slot Reported-by: syzbot+a694851c6ab28cbcfb9c@syzkaller.appspotmail.com Fixes: abed4aaae4f7 ("btrfs: track the csum, extent, and free space trees in a rb tree") CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-11 00:09:13 +00:00
if (tmp) {
ret = -EEXIST;
btrfs_warn(fs_info, "global root %llu %llu already exists",
root->root_key.objectid, root->root_key.offset);
}
return ret;
}
void btrfs_global_root_delete(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
write_lock(&fs_info->global_root_lock);
rb_erase(&root->rb_node, &fs_info->global_root_tree);
write_unlock(&fs_info->global_root_lock);
}
struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
struct btrfs_key *key)
{
struct rb_node *node;
struct btrfs_root *root = NULL;
read_lock(&fs_info->global_root_lock);
node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
if (node)
root = container_of(node, struct btrfs_root, rb_node);
read_unlock(&fs_info->global_root_lock);
return root;
}
static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_block_group *block_group;
u64 ret;
if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
return 0;
if (bytenr)
block_group = btrfs_lookup_block_group(fs_info, bytenr);
else
block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
ASSERT(block_group);
if (!block_group)
return 0;
ret = block_group->global_root_id;
btrfs_put_block_group(block_group);
return ret;
}
struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_key key = {
.objectid = BTRFS_CSUM_TREE_OBJECTID,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = btrfs_global_root_id(fs_info, bytenr),
};
return btrfs_global_root(fs_info, &key);
}
struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_key key = {
.objectid = BTRFS_EXTENT_TREE_OBJECTID,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = btrfs_global_root_id(fs_info, bytenr),
};
return btrfs_global_root(fs_info, &key);
}
struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
{
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
return fs_info->block_group_root;
return btrfs_extent_root(fs_info, 0);
}
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
u64 objectid)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct extent_buffer *leaf;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *root;
struct btrfs_key key;
unsigned int nofs_flag;
int ret = 0;
/*
* We're holding a transaction handle, so use a NOFS memory allocation
* context to avoid deadlock if reclaim happens.
*/
nofs_flag = memalloc_nofs_save();
root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
memalloc_nofs_restore(nofs_flag);
if (!root)
return ERR_PTR(-ENOMEM);
root->root_key.objectid = objectid;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = 0;
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
btrfs: qgroup: track metadata relocation COW with simple quota Relocation COWs metadata blocks in two cases for the reloc root: - copying the subvolume root item when creating the reloc root - copying a btree node when there is a COW during relocation In both cases, the resulting btree node hits an abnormal code path with respect to the owner field in its btrfs_header. It first creates the root item for the new objectid, which populates the reloc root id, and it at this point that delayed refs are created. Later, it fully copies the old node into the new node (including the original owner field) which overwrites it. This results in a simple quotas mismatch where we run the delayed ref for the reloc root which has no simple quota effect (reloc root is not an fstree) but when we ultimately delete the node, the owner is the real original fstree and we do free the space. To work around this without tampering with the behavior of relocation, add a parameter to btrfs_add_tree_block that lets the relocation code path specify a different owning root than the "operating" root (in this case, owning root is the real root and the operating root is the reloc root). These can naturally be plumbed into delayed refs that have the same concept. Note that this is a double count in some sense, but a relatively natural one, as there are really two extents, and the old one will be deleted soon. This is consistent with how data relocation extents are accounted by simple quotas. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-22 00:37:23 +00:00
0, BTRFS_NESTING_NORMAL);
if (IS_ERR(leaf)) {
ret = PTR_ERR(leaf);
leaf = NULL;
goto fail;
}
root->node = leaf;
btrfs_mark_buffer_dirty(trans, leaf);
root->commit_root = btrfs_root_node(root);
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
btrfs_set_root_flags(&root->root_item, 0);
btrfs_set_root_limit(&root->root_item, 0);
btrfs_set_root_bytenr(&root->root_item, leaf->start);
btrfs_set_root_generation(&root->root_item, trans->transid);
btrfs_set_root_level(&root->root_item, 0);
btrfs_set_root_refs(&root->root_item, 1);
btrfs_set_root_used(&root->root_item, leaf->len);
btrfs_set_root_last_snapshot(&root->root_item, 0);
btrfs_set_root_dirid(&root->root_item, 0);
if (is_fstree(objectid))
generate_random_guid(root->root_item.uuid);
else
export_guid(root->root_item.uuid, &guid_null);
btrfs_set_root_drop_level(&root->root_item, 0);
btrfs: fix lockdep warning when creating free space tree A lock dependency loop exists between the root tree lock, the extent tree lock, and the free space tree lock. The root tree lock depends on the free space tree lock because btrfs_create_tree holds the new tree's lock while adding it to the root tree. The extent tree lock depends on the root tree lock because during umount, we write out space cache v1, which writes inodes in the root tree, which results in holding the root tree lock while doing a lookup in the extent tree. Finally, the free space tree depends on the extent tree because populate_free_space_tree holds a locked path in the extent tree and then does a lookup in the free space tree to add the new item. The simplest of the three to break is the one during tree creation: we unlock the leaf before inserting the tree node into the root tree, which fixes the lockdep warning. [30.480136] ====================================================== [30.480830] WARNING: possible circular locking dependency detected [30.481457] 5.9.0-rc8+ #76 Not tainted [30.481897] ------------------------------------------------------ [30.482500] mount/520 is trying to acquire lock: [30.483064] ffff9babebe03908 (btrfs-free-space-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 [30.484054] but task is already holding lock: [30.484637] ffff9babebe24468 (btrfs-extent-01#2){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 [30.485581] which lock already depends on the new lock. [30.486397] the existing dependency chain (in reverse order) is: [30.487205] -> #2 (btrfs-extent-01#2){++++}-{3:3}: [30.487825] down_read_nested+0x43/0x150 [30.488306] __btrfs_tree_read_lock+0x39/0x180 [30.488868] __btrfs_read_lock_root_node+0x3a/0x50 [30.489477] btrfs_search_slot+0x464/0x9b0 [30.490009] check_committed_ref+0x59/0x1d0 [30.490603] btrfs_cross_ref_exist+0x65/0xb0 [30.491108] run_delalloc_nocow+0x405/0x930 [30.491651] btrfs_run_delalloc_range+0x60/0x6b0 [30.492203] writepage_delalloc+0xd4/0x150 [30.492688] __extent_writepage+0x18d/0x3a0 [30.493199] extent_write_cache_pages+0x2af/0x450 [30.493743] extent_writepages+0x34/0x70 [30.494231] do_writepages+0x31/0xd0 [30.494642] __filemap_fdatawrite_range+0xad/0xe0 [30.495194] btrfs_fdatawrite_range+0x1b/0x50 [30.495677] __btrfs_write_out_cache+0x40d/0x460 [30.496227] btrfs_write_out_cache+0x8b/0x110 [30.496716] btrfs_start_dirty_block_groups+0x211/0x4e0 [30.497317] btrfs_commit_transaction+0xc0/0xba0 [30.497861] sync_filesystem+0x71/0x90 [30.498303] btrfs_remount+0x81/0x433 [30.498767] reconfigure_super+0x9f/0x210 [30.499261] path_mount+0x9d1/0xa30 [30.499722] do_mount+0x55/0x70 [30.500158] __x64_sys_mount+0xc4/0xe0 [30.500616] do_syscall_64+0x33/0x40 [30.501091] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.501629] -> #1 (btrfs-root-00){++++}-{3:3}: [30.502241] down_read_nested+0x43/0x150 [30.502727] __btrfs_tree_read_lock+0x39/0x180 [30.503291] __btrfs_read_lock_root_node+0x3a/0x50 [30.503903] btrfs_search_slot+0x464/0x9b0 [30.504405] btrfs_insert_empty_items+0x60/0xa0 [30.504973] btrfs_insert_item+0x60/0xd0 [30.505412] btrfs_create_tree+0x1b6/0x210 [30.505913] btrfs_create_free_space_tree+0x54/0x110 [30.506460] btrfs_mount_rw+0x15d/0x20f [30.506937] btrfs_remount+0x356/0x433 [30.507369] reconfigure_super+0x9f/0x210 [30.507868] path_mount+0x9d1/0xa30 [30.508264] do_mount+0x55/0x70 [30.508668] __x64_sys_mount+0xc4/0xe0 [30.509186] do_syscall_64+0x33/0x40 [30.509652] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.510271] -> #0 (btrfs-free-space-00){++++}-{3:3}: [30.510972] __lock_acquire+0x11ad/0x1b60 [30.511432] lock_acquire+0xa2/0x360 [30.511917] down_read_nested+0x43/0x150 [30.512383] __btrfs_tree_read_lock+0x39/0x180 [30.512947] __btrfs_read_lock_root_node+0x3a/0x50 [30.513455] btrfs_search_slot+0x464/0x9b0 [30.513947] search_free_space_info+0x45/0x90 [30.514465] __add_to_free_space_tree+0x92/0x39d [30.515010] btrfs_create_free_space_tree.cold.22+0x1ee/0x45d [30.515639] btrfs_mount_rw+0x15d/0x20f [30.516142] btrfs_remount+0x356/0x433 [30.516538] reconfigure_super+0x9f/0x210 [30.517065] path_mount+0x9d1/0xa30 [30.517438] do_mount+0x55/0x70 [30.517824] __x64_sys_mount+0xc4/0xe0 [30.518293] do_syscall_64+0x33/0x40 [30.518776] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.519335] other info that might help us debug this: [30.520210] Chain exists of: btrfs-free-space-00 --> btrfs-root-00 --> btrfs-extent-01#2 [30.521407] Possible unsafe locking scenario: [30.522037] CPU0 CPU1 [30.522456] ---- ---- [30.522941] lock(btrfs-extent-01#2); [30.523311] lock(btrfs-root-00); [30.523952] lock(btrfs-extent-01#2); [30.524620] lock(btrfs-free-space-00); [30.525068] *** DEADLOCK *** [30.525669] 5 locks held by mount/520: [30.526116] #0: ffff9babebc520e0 (&type->s_umount_key#37){+.+.}-{3:3}, at: path_mount+0x7ef/0xa30 [30.527056] #1: ffff9babebc52640 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x3d5/0x5c0 [30.527960] #2: ffff9babeae8f2e8 (&cache->free_space_lock#2){+.+.}-{3:3}, at: btrfs_create_free_space_tree.cold.22+0x101/0x45d [30.529118] #3: ffff9babebe24468 (btrfs-extent-01#2){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 [30.530113] #4: ffff9babebd52eb8 (btrfs-extent-00){++++}-{3:3}, at: btrfs_try_tree_read_lock+0x16/0x100 [30.531124] stack backtrace: [30.531528] CPU: 0 PID: 520 Comm: mount Not tainted 5.9.0-rc8+ #76 [30.532166] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.1-4.module_el8.1.0+248+298dec18 04/01/2014 [30.533215] Call Trace: [30.533452] dump_stack+0x8d/0xc0 [30.533797] check_noncircular+0x13c/0x150 [30.534233] __lock_acquire+0x11ad/0x1b60 [30.534667] lock_acquire+0xa2/0x360 [30.535063] ? __btrfs_tree_read_lock+0x39/0x180 [30.535525] down_read_nested+0x43/0x150 [30.535939] ? __btrfs_tree_read_lock+0x39/0x180 [30.536400] __btrfs_tree_read_lock+0x39/0x180 [30.536862] __btrfs_read_lock_root_node+0x3a/0x50 [30.537304] btrfs_search_slot+0x464/0x9b0 [30.537713] ? trace_hardirqs_on+0x1c/0xf0 [30.538148] search_free_space_info+0x45/0x90 [30.538572] __add_to_free_space_tree+0x92/0x39d [30.539071] ? printk+0x48/0x4a [30.539367] btrfs_create_free_space_tree.cold.22+0x1ee/0x45d [30.539972] btrfs_mount_rw+0x15d/0x20f [30.540350] btrfs_remount+0x356/0x433 [30.540773] ? shrink_dcache_sb+0xd9/0x100 [30.541203] reconfigure_super+0x9f/0x210 [30.541642] path_mount+0x9d1/0xa30 [30.542040] do_mount+0x55/0x70 [30.542366] __x64_sys_mount+0xc4/0xe0 [30.542822] do_syscall_64+0x33/0x40 [30.543197] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.543691] RIP: 0033:0x7f109f7ab93a [30.546042] RSP: 002b:00007ffc47c4f858 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [30.546770] RAX: ffffffffffffffda RBX: 00007f109f8cf264 RCX: 00007f109f7ab93a [30.547485] RDX: 0000557e6fc10770 RSI: 0000557e6fc19cf0 RDI: 0000557e6fc19cd0 [30.548185] RBP: 0000557e6fc10520 R08: 0000557e6fc18e30 R09: 0000557e6fc18cb0 [30.548911] R10: 0000000000200020 R11: 0000000000000246 R12: 0000000000000000 [30.549606] R13: 0000557e6fc19cd0 R14: 0000557e6fc10770 R15: 0000557e6fc10520 Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-18 23:06:27 +00:00
btrfs_tree_unlock(leaf);
key.objectid = objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = 0;
ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
if (ret)
goto fail;
return root;
btrfs: fix lockdep warning when creating free space tree A lock dependency loop exists between the root tree lock, the extent tree lock, and the free space tree lock. The root tree lock depends on the free space tree lock because btrfs_create_tree holds the new tree's lock while adding it to the root tree. The extent tree lock depends on the root tree lock because during umount, we write out space cache v1, which writes inodes in the root tree, which results in holding the root tree lock while doing a lookup in the extent tree. Finally, the free space tree depends on the extent tree because populate_free_space_tree holds a locked path in the extent tree and then does a lookup in the free space tree to add the new item. The simplest of the three to break is the one during tree creation: we unlock the leaf before inserting the tree node into the root tree, which fixes the lockdep warning. [30.480136] ====================================================== [30.480830] WARNING: possible circular locking dependency detected [30.481457] 5.9.0-rc8+ #76 Not tainted [30.481897] ------------------------------------------------------ [30.482500] mount/520 is trying to acquire lock: [30.483064] ffff9babebe03908 (btrfs-free-space-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 [30.484054] but task is already holding lock: [30.484637] ffff9babebe24468 (btrfs-extent-01#2){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 [30.485581] which lock already depends on the new lock. [30.486397] the existing dependency chain (in reverse order) is: [30.487205] -> #2 (btrfs-extent-01#2){++++}-{3:3}: [30.487825] down_read_nested+0x43/0x150 [30.488306] __btrfs_tree_read_lock+0x39/0x180 [30.488868] __btrfs_read_lock_root_node+0x3a/0x50 [30.489477] btrfs_search_slot+0x464/0x9b0 [30.490009] check_committed_ref+0x59/0x1d0 [30.490603] btrfs_cross_ref_exist+0x65/0xb0 [30.491108] run_delalloc_nocow+0x405/0x930 [30.491651] btrfs_run_delalloc_range+0x60/0x6b0 [30.492203] writepage_delalloc+0xd4/0x150 [30.492688] __extent_writepage+0x18d/0x3a0 [30.493199] extent_write_cache_pages+0x2af/0x450 [30.493743] extent_writepages+0x34/0x70 [30.494231] do_writepages+0x31/0xd0 [30.494642] __filemap_fdatawrite_range+0xad/0xe0 [30.495194] btrfs_fdatawrite_range+0x1b/0x50 [30.495677] __btrfs_write_out_cache+0x40d/0x460 [30.496227] btrfs_write_out_cache+0x8b/0x110 [30.496716] btrfs_start_dirty_block_groups+0x211/0x4e0 [30.497317] btrfs_commit_transaction+0xc0/0xba0 [30.497861] sync_filesystem+0x71/0x90 [30.498303] btrfs_remount+0x81/0x433 [30.498767] reconfigure_super+0x9f/0x210 [30.499261] path_mount+0x9d1/0xa30 [30.499722] do_mount+0x55/0x70 [30.500158] __x64_sys_mount+0xc4/0xe0 [30.500616] do_syscall_64+0x33/0x40 [30.501091] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.501629] -> #1 (btrfs-root-00){++++}-{3:3}: [30.502241] down_read_nested+0x43/0x150 [30.502727] __btrfs_tree_read_lock+0x39/0x180 [30.503291] __btrfs_read_lock_root_node+0x3a/0x50 [30.503903] btrfs_search_slot+0x464/0x9b0 [30.504405] btrfs_insert_empty_items+0x60/0xa0 [30.504973] btrfs_insert_item+0x60/0xd0 [30.505412] btrfs_create_tree+0x1b6/0x210 [30.505913] btrfs_create_free_space_tree+0x54/0x110 [30.506460] btrfs_mount_rw+0x15d/0x20f [30.506937] btrfs_remount+0x356/0x433 [30.507369] reconfigure_super+0x9f/0x210 [30.507868] path_mount+0x9d1/0xa30 [30.508264] do_mount+0x55/0x70 [30.508668] __x64_sys_mount+0xc4/0xe0 [30.509186] do_syscall_64+0x33/0x40 [30.509652] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.510271] -> #0 (btrfs-free-space-00){++++}-{3:3}: [30.510972] __lock_acquire+0x11ad/0x1b60 [30.511432] lock_acquire+0xa2/0x360 [30.511917] down_read_nested+0x43/0x150 [30.512383] __btrfs_tree_read_lock+0x39/0x180 [30.512947] __btrfs_read_lock_root_node+0x3a/0x50 [30.513455] btrfs_search_slot+0x464/0x9b0 [30.513947] search_free_space_info+0x45/0x90 [30.514465] __add_to_free_space_tree+0x92/0x39d [30.515010] btrfs_create_free_space_tree.cold.22+0x1ee/0x45d [30.515639] btrfs_mount_rw+0x15d/0x20f [30.516142] btrfs_remount+0x356/0x433 [30.516538] reconfigure_super+0x9f/0x210 [30.517065] path_mount+0x9d1/0xa30 [30.517438] do_mount+0x55/0x70 [30.517824] __x64_sys_mount+0xc4/0xe0 [30.518293] do_syscall_64+0x33/0x40 [30.518776] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.519335] other info that might help us debug this: [30.520210] Chain exists of: btrfs-free-space-00 --> btrfs-root-00 --> btrfs-extent-01#2 [30.521407] Possible unsafe locking scenario: [30.522037] CPU0 CPU1 [30.522456] ---- ---- [30.522941] lock(btrfs-extent-01#2); [30.523311] lock(btrfs-root-00); [30.523952] lock(btrfs-extent-01#2); [30.524620] lock(btrfs-free-space-00); [30.525068] *** DEADLOCK *** [30.525669] 5 locks held by mount/520: [30.526116] #0: ffff9babebc520e0 (&type->s_umount_key#37){+.+.}-{3:3}, at: path_mount+0x7ef/0xa30 [30.527056] #1: ffff9babebc52640 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x3d5/0x5c0 [30.527960] #2: ffff9babeae8f2e8 (&cache->free_space_lock#2){+.+.}-{3:3}, at: btrfs_create_free_space_tree.cold.22+0x101/0x45d [30.529118] #3: ffff9babebe24468 (btrfs-extent-01#2){++++}-{3:3}, at: __btrfs_tree_read_lock+0x39/0x180 [30.530113] #4: ffff9babebd52eb8 (btrfs-extent-00){++++}-{3:3}, at: btrfs_try_tree_read_lock+0x16/0x100 [30.531124] stack backtrace: [30.531528] CPU: 0 PID: 520 Comm: mount Not tainted 5.9.0-rc8+ #76 [30.532166] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.1-4.module_el8.1.0+248+298dec18 04/01/2014 [30.533215] Call Trace: [30.533452] dump_stack+0x8d/0xc0 [30.533797] check_noncircular+0x13c/0x150 [30.534233] __lock_acquire+0x11ad/0x1b60 [30.534667] lock_acquire+0xa2/0x360 [30.535063] ? __btrfs_tree_read_lock+0x39/0x180 [30.535525] down_read_nested+0x43/0x150 [30.535939] ? __btrfs_tree_read_lock+0x39/0x180 [30.536400] __btrfs_tree_read_lock+0x39/0x180 [30.536862] __btrfs_read_lock_root_node+0x3a/0x50 [30.537304] btrfs_search_slot+0x464/0x9b0 [30.537713] ? trace_hardirqs_on+0x1c/0xf0 [30.538148] search_free_space_info+0x45/0x90 [30.538572] __add_to_free_space_tree+0x92/0x39d [30.539071] ? printk+0x48/0x4a [30.539367] btrfs_create_free_space_tree.cold.22+0x1ee/0x45d [30.539972] btrfs_mount_rw+0x15d/0x20f [30.540350] btrfs_remount+0x356/0x433 [30.540773] ? shrink_dcache_sb+0xd9/0x100 [30.541203] reconfigure_super+0x9f/0x210 [30.541642] path_mount+0x9d1/0xa30 [30.542040] do_mount+0x55/0x70 [30.542366] __x64_sys_mount+0xc4/0xe0 [30.542822] do_syscall_64+0x33/0x40 [30.543197] entry_SYSCALL_64_after_hwframe+0x44/0xa9 [30.543691] RIP: 0033:0x7f109f7ab93a [30.546042] RSP: 002b:00007ffc47c4f858 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 [30.546770] RAX: ffffffffffffffda RBX: 00007f109f8cf264 RCX: 00007f109f7ab93a [30.547485] RDX: 0000557e6fc10770 RSI: 0000557e6fc19cf0 RDI: 0000557e6fc19cd0 [30.548185] RBP: 0000557e6fc10520 R08: 0000557e6fc18e30 R09: 0000557e6fc18cb0 [30.548911] R10: 0000000000200020 R11: 0000000000000246 R12: 0000000000000000 [30.549606] R13: 0000557e6fc19cd0 R14: 0000557e6fc10770 R15: 0000557e6fc10520 Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-18 23:06:27 +00:00
fail:
btrfs_put_root(root);
return ERR_PTR(ret);
}
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
if (!root)
return ERR_PTR(-ENOMEM);
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
return root;
}
int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct extent_buffer *leaf;
/*
* DON'T set SHAREABLE bit for log trees.
*
* Log trees are not exposed to user space thus can't be snapshotted,
* and they go away before a real commit is actually done.
*
* They do store pointers to file data extents, and those reference
* counts still get updated (along with back refs to the log tree).
*/
leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
btrfs: qgroup: track metadata relocation COW with simple quota Relocation COWs metadata blocks in two cases for the reloc root: - copying the subvolume root item when creating the reloc root - copying a btree node when there is a COW during relocation In both cases, the resulting btree node hits an abnormal code path with respect to the owner field in its btrfs_header. It first creates the root item for the new objectid, which populates the reloc root id, and it at this point that delayed refs are created. Later, it fully copies the old node into the new node (including the original owner field) which overwrites it. This results in a simple quotas mismatch where we run the delayed ref for the reloc root which has no simple quota effect (reloc root is not an fstree) but when we ultimately delete the node, the owner is the real original fstree and we do free the space. To work around this without tampering with the behavior of relocation, add a parameter to btrfs_add_tree_block that lets the relocation code path specify a different owning root than the "operating" root (in this case, owning root is the real root and the operating root is the reloc root). These can naturally be plumbed into delayed refs that have the same concept. Note that this is a double count in some sense, but a relatively natural one, as there are really two extents, and the old one will be deleted soon. This is consistent with how data relocation extents are accounted by simple quotas. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-22 00:37:23 +00:00
NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
if (IS_ERR(leaf))
return PTR_ERR(leaf);
root->node = leaf;
btrfs_mark_buffer_dirty(trans, root->node);
btrfs_tree_unlock(root->node);
return 0;
}
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *log_root;
log_root = alloc_log_tree(trans, fs_info);
if (IS_ERR(log_root))
return PTR_ERR(log_root);
if (!btrfs_is_zoned(fs_info)) {
int ret = btrfs_alloc_log_tree_node(trans, log_root);
if (ret) {
btrfs_put_root(log_root);
return ret;
}
}
WARN_ON(fs_info->log_root_tree);
fs_info->log_root_tree = log_root;
return 0;
}
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_root *log_root;
struct btrfs_inode_item *inode_item;
int ret;
log_root = alloc_log_tree(trans, fs_info);
if (IS_ERR(log_root))
return PTR_ERR(log_root);
ret = btrfs_alloc_log_tree_node(trans, log_root);
if (ret) {
btrfs_put_root(log_root);
return ret;
}
log_root->last_trans = trans->transid;
log_root->root_key.offset = root->root_key.objectid;
inode_item = &log_root->root_item.inode;
btrfs_set_stack_inode_generation(inode_item, 1);
btrfs_set_stack_inode_size(inode_item, 3);
btrfs_set_stack_inode_nlink(inode_item, 1);
btrfs_set_stack_inode_nbytes(inode_item,
fs_info->nodesize);
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
btrfs_set_root_node(&log_root->root_item, log_root->node);
WARN_ON(root->log_root);
root->log_root = log_root;
btrfs_set_root_log_transid(root, 0);
root->log_transid_committed = -1;
btrfs_set_root_last_log_commit(root, 0);
return 0;
}
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
struct btrfs_path *path,
struct btrfs_key *key)
{
struct btrfs_root *root;
struct btrfs_tree_parent_check check = { 0 };
struct btrfs_fs_info *fs_info = tree_root->fs_info;
u64 generation;
int ret;
int level;
root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
if (!root)
return ERR_PTR(-ENOMEM);
ret = btrfs_find_root(tree_root, key, path,
&root->root_item, &root->root_key);
if (ret) {
if (ret > 0)
ret = -ENOENT;
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
goto fail;
}
generation = btrfs_root_generation(&root->root_item);
level = btrfs_root_level(&root->root_item);
check.level = level;
check.transid = generation;
check.owner_root = key->objectid;
root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
&check);
if (IS_ERR(root->node)) {
ret = PTR_ERR(root->node);
root->node = NULL;
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
goto fail;
}
if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
ret = -EIO;
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
goto fail;
}
btrfs: tree-checker: check extent buffer owner against owner rootid Btrfs doesn't check whether the tree block respects the root owner. This means, if a tree block referred by a parent in extent tree, but has owner of 5, btrfs can still continue reading the tree block, as long as it doesn't trigger other sanity checks. Normally this is fine, but combined with the empty tree check in check_leaf(), if we hit an empty extent tree, but the root node has csum tree owner, we can let such extent buffer to sneak in. Shrink the hole by: - Do extra eb owner check at tree read time - Make sure the root owner extent buffer exactly matches the root id. Unfortunately we can't yet completely patch the hole, there are several call sites can't pass all info we need: - For reloc/log trees Their owner is key::offset, not key::objectid. We need the full root key to do that accurate check. For now, we just skip the ownership check for those trees. - For add_data_references() of relocation That call site doesn't have any parent/ownership info, as all the bytenrs are all from btrfs_find_all_leafs(). - For direct backref items walk Direct backref items records the parent bytenr directly, thus unlike indirect backref item, we don't do a full tree search. Thus in that case, we don't have full parent owner to check. For the later two cases, they all pass 0 as @owner_root, thus we can skip those cases if @owner_root is 0. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-16 00:05:58 +00:00
/*
* For real fs, and not log/reloc trees, root owner must
* match its root node owner
*/
if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
root->root_key.objectid != btrfs_header_owner(root->node)) {
btrfs_crit(fs_info,
"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
root->root_key.objectid, root->node->start,
btrfs_header_owner(root->node),
root->root_key.objectid);
ret = -EUCLEAN;
goto fail;
}
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
root->commit_root = btrfs_root_node(root);
return root;
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
fail:
btrfs_put_root(root);
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
return ERR_PTR(ret);
}
struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
struct btrfs_key *key)
{
struct btrfs_root *root;
struct btrfs_path *path;
path = btrfs_alloc_path();
if (!path)
return ERR_PTR(-ENOMEM);
root = read_tree_root_path(tree_root, path, key);
btrfs_free_path(path);
return root;
}
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:36 +00:00
/*
* Initialize subvolume root in-memory structure
*
* @anon_dev: anonymous device to attach to the root, if zero, allocate new
*/
static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
{
int ret;
btrfs_drew_lock_init(&root->snapshot_lock);
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
!btrfs_is_data_reloc_root(root) &&
is_fstree(root->root_key.objectid)) {
set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
btrfs_check_and_init_root_item(&root->root_item);
}
btrfs: don't allocate anonymous block device for user invisible roots [BUG] When a lot of subvolumes are created, there is a user report about transaction aborted: BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] The error is EMFILE (Too many files open) and comes from the anonymous block device allocation. The ids are in a shared pool of size 1<<20. The ids are assigned to live subvolumes, ie. the root structure exists in memory (eg. after creation or after the root appears in some path). The pool could be exhausted if the numbers are not reclaimed fast enough, after subvolume deletion or if other system component uses the anon block devices. [WORKAROUND] Since it's not possible to completely solve the problem, we can only minimize the time the id is allocated to a subvolume root. Firstly, we can reduce the use of anon_dev by trees that are not subvolume roots, like data reloc tree. This patch will do extra check on root objectid, to skip roots that don't need anon_dev. Currently it's only data reloc tree and orphan roots. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:34 +00:00
/*
* Don't assign anonymous block device to roots that are not exposed to
* userspace, the id pool is limited to 1M
*/
if (is_fstree(root->root_key.objectid) &&
btrfs_root_refs(&root->root_item) > 0) {
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:36 +00:00
if (!anon_dev) {
ret = get_anon_bdev(&root->anon_dev);
if (ret)
goto fail;
} else {
root->anon_dev = anon_dev;
}
btrfs: don't allocate anonymous block device for user invisible roots [BUG] When a lot of subvolumes are created, there is a user report about transaction aborted: BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] The error is EMFILE (Too many files open) and comes from the anonymous block device allocation. The ids are in a shared pool of size 1<<20. The ids are assigned to live subvolumes, ie. the root structure exists in memory (eg. after creation or after the root appears in some path). The pool could be exhausted if the numbers are not reclaimed fast enough, after subvolume deletion or if other system component uses the anon block devices. [WORKAROUND] Since it's not possible to completely solve the problem, we can only minimize the time the id is allocated to a subvolume root. Firstly, we can reduce the use of anon_dev by trees that are not subvolume roots, like data reloc tree. This patch will do extra check on root objectid, to skip roots that don't need anon_dev. Currently it's only data reloc tree and orphan roots. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:34 +00:00
}
Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots The following call trace is seen when btrfs/031 test is executed in a loop, [ 158.661848] ------------[ cut here ]------------ [ 158.662634] WARNING: CPU: 2 PID: 890 at /home/chandan/repos/linux/fs/btrfs/ioctl.c:558 create_subvol+0x3d1/0x6ea() [ 158.664102] BTRFS: Transaction aborted (error -2) [ 158.664774] Modules linked in: [ 158.665266] CPU: 2 PID: 890 Comm: btrfs Not tainted 4.4.0-rc6-g511711a #2 [ 158.666251] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 [ 158.667392] ffffffff81c0a6b0 ffff8806c7c4f8e8 ffffffff81431fc8 ffff8806c7c4f930 [ 158.668515] ffff8806c7c4f920 ffffffff81051aa1 ffff880c85aff000 ffff8800bb44d000 [ 158.669647] ffff8808863b5c98 0000000000000000 00000000fffffffe ffff8806c7c4f980 [ 158.670769] Call Trace: [ 158.671153] [<ffffffff81431fc8>] dump_stack+0x44/0x5c [ 158.671884] [<ffffffff81051aa1>] warn_slowpath_common+0x81/0xc0 [ 158.672769] [<ffffffff81051b27>] warn_slowpath_fmt+0x47/0x50 [ 158.673620] [<ffffffff813bc98d>] create_subvol+0x3d1/0x6ea [ 158.674440] [<ffffffff813777c9>] btrfs_mksubvol.isra.30+0x369/0x520 [ 158.675376] [<ffffffff8108a4aa>] ? percpu_down_read+0x1a/0x50 [ 158.676235] [<ffffffff81377a81>] btrfs_ioctl_snap_create_transid+0x101/0x180 [ 158.677268] [<ffffffff81377b52>] btrfs_ioctl_snap_create+0x52/0x70 [ 158.678183] [<ffffffff8137afb4>] btrfs_ioctl+0x474/0x2f90 [ 158.678975] [<ffffffff81144b8e>] ? vma_merge+0xee/0x300 [ 158.679751] [<ffffffff8115be31>] ? alloc_pages_vma+0x91/0x170 [ 158.680599] [<ffffffff81123f62>] ? lru_cache_add_active_or_unevictable+0x22/0x70 [ 158.681686] [<ffffffff813d99cf>] ? selinux_file_ioctl+0xff/0x1d0 [ 158.682581] [<ffffffff8117b791>] do_vfs_ioctl+0x2c1/0x490 [ 158.683399] [<ffffffff813d3cde>] ? security_file_ioctl+0x3e/0x60 [ 158.684297] [<ffffffff8117b9d4>] SyS_ioctl+0x74/0x80 [ 158.685051] [<ffffffff819b2bd7>] entry_SYSCALL_64_fastpath+0x12/0x6a [ 158.685958] ---[ end trace 4b63312de5a2cb76 ]--- [ 158.686647] BTRFS: error (device loop0) in create_subvol:558: errno=-2 No such entry [ 158.709508] BTRFS info (device loop0): forced readonly [ 158.737113] BTRFS info (device loop0): disk space caching is enabled [ 158.738096] BTRFS error (device loop0): Remounting read-write after error is not allowed [ 158.851303] BTRFS error (device loop0): cleaner transaction attach returned -30 This occurs because, Mount filesystem Create subvol with ID 257 Unmount filesystem Mount filesystem Delete subvol with ID 257 btrfs_drop_snapshot() Add root corresponding to subvol 257 into btrfs_transaction->dropped_roots list Create new subvol (i.e. create_subvol()) 257 is returned as the next free objectid btrfs_read_fs_root_no_name() Finds the btrfs_root instance corresponding to the old subvol with ID 257 in btrfs_fs_info->fs_roots_radix. Returns error since btrfs_root_item->refs has the value of 0. To fix the issue the commit initializes tree root's and subvolume root's highest_objectid when loading the roots from disk. Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 13:26:59 +00:00
mutex_lock(&root->objectid_mutex);
ret = btrfs_init_root_free_objectid(root);
Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots The following call trace is seen when btrfs/031 test is executed in a loop, [ 158.661848] ------------[ cut here ]------------ [ 158.662634] WARNING: CPU: 2 PID: 890 at /home/chandan/repos/linux/fs/btrfs/ioctl.c:558 create_subvol+0x3d1/0x6ea() [ 158.664102] BTRFS: Transaction aborted (error -2) [ 158.664774] Modules linked in: [ 158.665266] CPU: 2 PID: 890 Comm: btrfs Not tainted 4.4.0-rc6-g511711a #2 [ 158.666251] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 [ 158.667392] ffffffff81c0a6b0 ffff8806c7c4f8e8 ffffffff81431fc8 ffff8806c7c4f930 [ 158.668515] ffff8806c7c4f920 ffffffff81051aa1 ffff880c85aff000 ffff8800bb44d000 [ 158.669647] ffff8808863b5c98 0000000000000000 00000000fffffffe ffff8806c7c4f980 [ 158.670769] Call Trace: [ 158.671153] [<ffffffff81431fc8>] dump_stack+0x44/0x5c [ 158.671884] [<ffffffff81051aa1>] warn_slowpath_common+0x81/0xc0 [ 158.672769] [<ffffffff81051b27>] warn_slowpath_fmt+0x47/0x50 [ 158.673620] [<ffffffff813bc98d>] create_subvol+0x3d1/0x6ea [ 158.674440] [<ffffffff813777c9>] btrfs_mksubvol.isra.30+0x369/0x520 [ 158.675376] [<ffffffff8108a4aa>] ? percpu_down_read+0x1a/0x50 [ 158.676235] [<ffffffff81377a81>] btrfs_ioctl_snap_create_transid+0x101/0x180 [ 158.677268] [<ffffffff81377b52>] btrfs_ioctl_snap_create+0x52/0x70 [ 158.678183] [<ffffffff8137afb4>] btrfs_ioctl+0x474/0x2f90 [ 158.678975] [<ffffffff81144b8e>] ? vma_merge+0xee/0x300 [ 158.679751] [<ffffffff8115be31>] ? alloc_pages_vma+0x91/0x170 [ 158.680599] [<ffffffff81123f62>] ? lru_cache_add_active_or_unevictable+0x22/0x70 [ 158.681686] [<ffffffff813d99cf>] ? selinux_file_ioctl+0xff/0x1d0 [ 158.682581] [<ffffffff8117b791>] do_vfs_ioctl+0x2c1/0x490 [ 158.683399] [<ffffffff813d3cde>] ? security_file_ioctl+0x3e/0x60 [ 158.684297] [<ffffffff8117b9d4>] SyS_ioctl+0x74/0x80 [ 158.685051] [<ffffffff819b2bd7>] entry_SYSCALL_64_fastpath+0x12/0x6a [ 158.685958] ---[ end trace 4b63312de5a2cb76 ]--- [ 158.686647] BTRFS: error (device loop0) in create_subvol:558: errno=-2 No such entry [ 158.709508] BTRFS info (device loop0): forced readonly [ 158.737113] BTRFS info (device loop0): disk space caching is enabled [ 158.738096] BTRFS error (device loop0): Remounting read-write after error is not allowed [ 158.851303] BTRFS error (device loop0): cleaner transaction attach returned -30 This occurs because, Mount filesystem Create subvol with ID 257 Unmount filesystem Mount filesystem Delete subvol with ID 257 btrfs_drop_snapshot() Add root corresponding to subvol 257 into btrfs_transaction->dropped_roots list Create new subvol (i.e. create_subvol()) 257 is returned as the next free objectid btrfs_read_fs_root_no_name() Finds the btrfs_root instance corresponding to the old subvol with ID 257 in btrfs_fs_info->fs_roots_radix. Returns error since btrfs_root_item->refs has the value of 0. To fix the issue the commit initializes tree root's and subvolume root's highest_objectid when loading the roots from disk. Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 13:26:59 +00:00
if (ret) {
mutex_unlock(&root->objectid_mutex);
Btrfs: fix double free of fs root I got this warning while mounting a btrfs image, [ 3020.509606] ------------[ cut here ]------------ [ 3020.510107] WARNING: CPU: 3 PID: 5581 at lib/idr.c:1051 ida_remove+0xca/0x190 [ 3020.510853] ida_remove called for id=42 which is not allocated. [ 3020.511466] Modules linked in: [ 3020.511802] CPU: 3 PID: 5581 Comm: mount Not tainted 4.7.0-rc5+ #274 [ 3020.512438] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.8.2-20150714_191134- 04/01/2014 [ 3020.513385] 0000000000000286 0000000021295d86 ffff88006c66b8f0 ffffffff8182ba5a [ 3020.514153] 0000000000000000 0000000000000009 ffff88006c66b930 ffffffff810e0ed7 [ 3020.514928] 0000041b00000000 ffffffff8289a8c0 ffff88007f437880 0000000000000000 [ 3020.515717] Call Trace: [ 3020.515965] [<ffffffff8182ba5a>] dump_stack+0xc9/0x13f [ 3020.516487] [<ffffffff810e0ed7>] __warn+0x147/0x160 [ 3020.517005] [<ffffffff810e0f4f>] warn_slowpath_fmt+0x5f/0x80 [ 3020.517572] [<ffffffff8182e6ca>] ida_remove+0xca/0x190 [ 3020.518075] [<ffffffff813a2bcc>] free_anon_bdev+0x2c/0x60 [ 3020.518609] [<ffffffff81657a9f>] free_fs_root+0x13f/0x160 [ 3020.519138] [<ffffffff8165c679>] btrfs_get_fs_root+0x379/0x3d0 [ 3020.519710] [<ffffffff81e6e975>] ? __mutex_unlock_slowpath+0x155/0x2c0 [ 3020.520366] [<ffffffff816615b1>] open_ctree+0x2e91/0x3200 [ 3020.520965] [<ffffffff8161ede2>] btrfs_mount+0x1322/0x15b0 [ 3020.521536] [<ffffffff81e60e74>] ? kmemleak_alloc_percpu+0x44/0x170 [ 3020.522167] [<ffffffff8115f5e1>] ? lockdep_init_map+0x61/0x210 [ 3020.522780] [<ffffffff813a4f59>] mount_fs+0x49/0x2c0 [ 3020.523305] [<ffffffff813d840c>] vfs_kern_mount+0xac/0x1b0 [ 3020.523872] [<ffffffff8161dee1>] btrfs_mount+0x421/0x15b0 [ 3020.524402] [<ffffffff81e60e74>] ? kmemleak_alloc_percpu+0x44/0x170 [ 3020.525045] [<ffffffff8115f5e1>] ? lockdep_init_map+0x61/0x210 [ 3020.525657] [<ffffffff8115f5e1>] ? lockdep_init_map+0x61/0x210 [ 3020.526289] [<ffffffff813a4f59>] mount_fs+0x49/0x2c0 [ 3020.526803] [<ffffffff813d840c>] vfs_kern_mount+0xac/0x1b0 [ 3020.527365] [<ffffffff813dc27a>] do_mount+0x41a/0x1770 [ 3020.527899] [<ffffffff812e800d>] ? strndup_user+0x6d/0xc0 [ 3020.528447] [<ffffffff812e7f68>] ? memdup_user+0x78/0xb0 [ 3020.528987] [<ffffffff813ddad0>] SyS_mount+0x150/0x160 [ 3020.529493] [<ffffffff81e72b7c>] entry_SYSCALL_64_fastpath+0x1f/0xbd It turns out that we free fs root twice, btrfs_init_fs_root() calls free_anon_bdev(root->anon_dev) and later then btrfs_get_fs_root() cals free_fs_root which does another free_anon_bdev() and it ends up with the above warning. Instead of reset root->anon_dev to 0 after free_anon_bdev(), we can let btrfs_init_fs_root() return directly since its callers have already done the free job by calling free_fs_root(). Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Reviewed-by: David Sterba <dsterba@suse.com> Reviewed-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-06-28 20:44:38 +00:00
goto fail;
Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots The following call trace is seen when btrfs/031 test is executed in a loop, [ 158.661848] ------------[ cut here ]------------ [ 158.662634] WARNING: CPU: 2 PID: 890 at /home/chandan/repos/linux/fs/btrfs/ioctl.c:558 create_subvol+0x3d1/0x6ea() [ 158.664102] BTRFS: Transaction aborted (error -2) [ 158.664774] Modules linked in: [ 158.665266] CPU: 2 PID: 890 Comm: btrfs Not tainted 4.4.0-rc6-g511711a #2 [ 158.666251] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 [ 158.667392] ffffffff81c0a6b0 ffff8806c7c4f8e8 ffffffff81431fc8 ffff8806c7c4f930 [ 158.668515] ffff8806c7c4f920 ffffffff81051aa1 ffff880c85aff000 ffff8800bb44d000 [ 158.669647] ffff8808863b5c98 0000000000000000 00000000fffffffe ffff8806c7c4f980 [ 158.670769] Call Trace: [ 158.671153] [<ffffffff81431fc8>] dump_stack+0x44/0x5c [ 158.671884] [<ffffffff81051aa1>] warn_slowpath_common+0x81/0xc0 [ 158.672769] [<ffffffff81051b27>] warn_slowpath_fmt+0x47/0x50 [ 158.673620] [<ffffffff813bc98d>] create_subvol+0x3d1/0x6ea [ 158.674440] [<ffffffff813777c9>] btrfs_mksubvol.isra.30+0x369/0x520 [ 158.675376] [<ffffffff8108a4aa>] ? percpu_down_read+0x1a/0x50 [ 158.676235] [<ffffffff81377a81>] btrfs_ioctl_snap_create_transid+0x101/0x180 [ 158.677268] [<ffffffff81377b52>] btrfs_ioctl_snap_create+0x52/0x70 [ 158.678183] [<ffffffff8137afb4>] btrfs_ioctl+0x474/0x2f90 [ 158.678975] [<ffffffff81144b8e>] ? vma_merge+0xee/0x300 [ 158.679751] [<ffffffff8115be31>] ? alloc_pages_vma+0x91/0x170 [ 158.680599] [<ffffffff81123f62>] ? lru_cache_add_active_or_unevictable+0x22/0x70 [ 158.681686] [<ffffffff813d99cf>] ? selinux_file_ioctl+0xff/0x1d0 [ 158.682581] [<ffffffff8117b791>] do_vfs_ioctl+0x2c1/0x490 [ 158.683399] [<ffffffff813d3cde>] ? security_file_ioctl+0x3e/0x60 [ 158.684297] [<ffffffff8117b9d4>] SyS_ioctl+0x74/0x80 [ 158.685051] [<ffffffff819b2bd7>] entry_SYSCALL_64_fastpath+0x12/0x6a [ 158.685958] ---[ end trace 4b63312de5a2cb76 ]--- [ 158.686647] BTRFS: error (device loop0) in create_subvol:558: errno=-2 No such entry [ 158.709508] BTRFS info (device loop0): forced readonly [ 158.737113] BTRFS info (device loop0): disk space caching is enabled [ 158.738096] BTRFS error (device loop0): Remounting read-write after error is not allowed [ 158.851303] BTRFS error (device loop0): cleaner transaction attach returned -30 This occurs because, Mount filesystem Create subvol with ID 257 Unmount filesystem Mount filesystem Delete subvol with ID 257 btrfs_drop_snapshot() Add root corresponding to subvol 257 into btrfs_transaction->dropped_roots list Create new subvol (i.e. create_subvol()) 257 is returned as the next free objectid btrfs_read_fs_root_no_name() Finds the btrfs_root instance corresponding to the old subvol with ID 257 in btrfs_fs_info->fs_roots_radix. Returns error since btrfs_root_item->refs has the value of 0. To fix the issue the commit initializes tree root's and subvolume root's highest_objectid when loading the roots from disk. Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 13:26:59 +00:00
}
ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
Btrfs: Initialize btrfs_root->highest_objectid when loading tree root and subvolume roots The following call trace is seen when btrfs/031 test is executed in a loop, [ 158.661848] ------------[ cut here ]------------ [ 158.662634] WARNING: CPU: 2 PID: 890 at /home/chandan/repos/linux/fs/btrfs/ioctl.c:558 create_subvol+0x3d1/0x6ea() [ 158.664102] BTRFS: Transaction aborted (error -2) [ 158.664774] Modules linked in: [ 158.665266] CPU: 2 PID: 890 Comm: btrfs Not tainted 4.4.0-rc6-g511711a #2 [ 158.666251] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 [ 158.667392] ffffffff81c0a6b0 ffff8806c7c4f8e8 ffffffff81431fc8 ffff8806c7c4f930 [ 158.668515] ffff8806c7c4f920 ffffffff81051aa1 ffff880c85aff000 ffff8800bb44d000 [ 158.669647] ffff8808863b5c98 0000000000000000 00000000fffffffe ffff8806c7c4f980 [ 158.670769] Call Trace: [ 158.671153] [<ffffffff81431fc8>] dump_stack+0x44/0x5c [ 158.671884] [<ffffffff81051aa1>] warn_slowpath_common+0x81/0xc0 [ 158.672769] [<ffffffff81051b27>] warn_slowpath_fmt+0x47/0x50 [ 158.673620] [<ffffffff813bc98d>] create_subvol+0x3d1/0x6ea [ 158.674440] [<ffffffff813777c9>] btrfs_mksubvol.isra.30+0x369/0x520 [ 158.675376] [<ffffffff8108a4aa>] ? percpu_down_read+0x1a/0x50 [ 158.676235] [<ffffffff81377a81>] btrfs_ioctl_snap_create_transid+0x101/0x180 [ 158.677268] [<ffffffff81377b52>] btrfs_ioctl_snap_create+0x52/0x70 [ 158.678183] [<ffffffff8137afb4>] btrfs_ioctl+0x474/0x2f90 [ 158.678975] [<ffffffff81144b8e>] ? vma_merge+0xee/0x300 [ 158.679751] [<ffffffff8115be31>] ? alloc_pages_vma+0x91/0x170 [ 158.680599] [<ffffffff81123f62>] ? lru_cache_add_active_or_unevictable+0x22/0x70 [ 158.681686] [<ffffffff813d99cf>] ? selinux_file_ioctl+0xff/0x1d0 [ 158.682581] [<ffffffff8117b791>] do_vfs_ioctl+0x2c1/0x490 [ 158.683399] [<ffffffff813d3cde>] ? security_file_ioctl+0x3e/0x60 [ 158.684297] [<ffffffff8117b9d4>] SyS_ioctl+0x74/0x80 [ 158.685051] [<ffffffff819b2bd7>] entry_SYSCALL_64_fastpath+0x12/0x6a [ 158.685958] ---[ end trace 4b63312de5a2cb76 ]--- [ 158.686647] BTRFS: error (device loop0) in create_subvol:558: errno=-2 No such entry [ 158.709508] BTRFS info (device loop0): forced readonly [ 158.737113] BTRFS info (device loop0): disk space caching is enabled [ 158.738096] BTRFS error (device loop0): Remounting read-write after error is not allowed [ 158.851303] BTRFS error (device loop0): cleaner transaction attach returned -30 This occurs because, Mount filesystem Create subvol with ID 257 Unmount filesystem Mount filesystem Delete subvol with ID 257 btrfs_drop_snapshot() Add root corresponding to subvol 257 into btrfs_transaction->dropped_roots list Create new subvol (i.e. create_subvol()) 257 is returned as the next free objectid btrfs_read_fs_root_no_name() Finds the btrfs_root instance corresponding to the old subvol with ID 257 in btrfs_fs_info->fs_roots_radix. Returns error since btrfs_root_item->refs has the value of 0. To fix the issue the commit initializes tree root's and subvolume root's highest_objectid when loading the roots from disk. Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-01-07 13:26:59 +00:00
mutex_unlock(&root->objectid_mutex);
return 0;
fail:
/* The caller is responsible to call btrfs_free_fs_root */
return ret;
}
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
u64 root_id)
{
struct btrfs_root *root;
spin_lock(&fs_info->fs_roots_radix_lock);
root = radix_tree_lookup(&fs_info->fs_roots_radix,
(unsigned long)root_id);
root = btrfs_grab_root(root);
spin_unlock(&fs_info->fs_roots_radix_lock);
return root;
}
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
u64 objectid)
{
struct btrfs_key key = {
.objectid = objectid,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = 0,
};
switch (objectid) {
case BTRFS_ROOT_TREE_OBJECTID:
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
return btrfs_grab_root(fs_info->tree_root);
case BTRFS_EXTENT_TREE_OBJECTID:
return btrfs_grab_root(btrfs_global_root(fs_info, &key));
case BTRFS_CHUNK_TREE_OBJECTID:
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
return btrfs_grab_root(fs_info->chunk_root);
case BTRFS_DEV_TREE_OBJECTID:
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
return btrfs_grab_root(fs_info->dev_root);
case BTRFS_CSUM_TREE_OBJECTID:
return btrfs_grab_root(btrfs_global_root(fs_info, &key));
case BTRFS_QUOTA_TREE_OBJECTID:
return btrfs_grab_root(fs_info->quota_root);
case BTRFS_UUID_TREE_OBJECTID:
return btrfs_grab_root(fs_info->uuid_root);
case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
return btrfs_grab_root(fs_info->block_group_root);
case BTRFS_FREE_SPACE_TREE_OBJECTID:
return btrfs_grab_root(btrfs_global_root(fs_info, &key));
case BTRFS_RAID_STRIPE_TREE_OBJECTID:
return btrfs_grab_root(fs_info->stripe_root);
default:
return NULL;
}
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
}
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_root *root)
{
int ret;
ret = radix_tree_preload(GFP_NOFS);
if (ret)
return ret;
spin_lock(&fs_info->fs_roots_radix_lock);
ret = radix_tree_insert(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid,
root);
if (ret == 0) {
btrfs_grab_root(root);
set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
}
spin_unlock(&fs_info->fs_roots_radix_lock);
radix_tree_preload_end();
return ret;
}
void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
{
#ifdef CONFIG_BTRFS_DEBUG
struct btrfs_root *root;
while (!list_empty(&fs_info->allocated_roots)) {
char buf[BTRFS_ROOT_NAME_BUF_LEN];
root = list_first_entry(&fs_info->allocated_roots,
struct btrfs_root, leak_list);
btrfs_err(fs_info, "leaked root %s refcount %d",
btrfs_root_name(&root->root_key, buf),
refcount_read(&root->refs));
WARN_ON_ONCE(1);
while (refcount_read(&root->refs) > 1)
btrfs_put_root(root);
btrfs_put_root(root);
}
#endif
}
static void free_global_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct rb_node *node;
while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
root = rb_entry(node, struct btrfs_root, rb_node);
rb_erase(&root->rb_node, &fs_info->global_root_tree);
btrfs_put_root(root);
}
}
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
{
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
percpu_counter_destroy(&fs_info->delalloc_bytes);
percpu_counter_destroy(&fs_info->ordered_bytes);
percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
btrfs_free_csum_hash(fs_info);
btrfs_free_stripe_hash_table(fs_info);
btrfs_free_ref_cache(fs_info);
kfree(fs_info->balance_ctl);
kfree(fs_info->delayed_root);
free_global_roots(fs_info);
btrfs_put_root(fs_info->tree_root);
btrfs_put_root(fs_info->chunk_root);
btrfs_put_root(fs_info->dev_root);
btrfs_put_root(fs_info->quota_root);
btrfs_put_root(fs_info->uuid_root);
btrfs_put_root(fs_info->fs_root);
btrfs_put_root(fs_info->data_reloc_root);
btrfs_put_root(fs_info->block_group_root);
btrfs_put_root(fs_info->stripe_root);
btrfs_check_leaked_roots(fs_info);
btrfs_extent_buffer_leak_debug_check(fs_info);
kfree(fs_info->super_copy);
kfree(fs_info->super_for_commit);
kfree(fs_info->subpage_info);
kvfree(fs_info);
}
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:36 +00:00
/*
* Get an in-memory reference of a root structure.
*
* For essential trees like root/extent tree, we grab it from fs_info directly.
* For subvolume trees, we check the cached filesystem roots first. If not
* found, then read it from disk and add it to cached fs roots.
*
* Caller should release the root by calling btrfs_put_root() after the usage.
*
* NOTE: Reloc and log trees can't be read by this function as they share the
* same root objectid.
*
* @objectid: root id
* @anon_dev: preallocated anonymous block device number for new roots,
btrfs: fix double free of anonymous device after snapshot creation failure When creating a snapshot we may do a double free of an anonymous device in case there's an error committing the transaction. The second free may result in freeing an anonymous device number that was allocated by some other subsystem in the kernel or another btrfs filesystem. The steps that lead to this: 1) At ioctl.c:create_snapshot() we allocate an anonymous device number and assign it to pending_snapshot->anon_dev; 2) Then we call btrfs_commit_transaction() and end up at transaction.c:create_pending_snapshot(); 3) There we call btrfs_get_new_fs_root() and pass it the anonymous device number stored in pending_snapshot->anon_dev; 4) btrfs_get_new_fs_root() frees that anonymous device number because btrfs_lookup_fs_root() returned a root - someone else did a lookup of the new root already, which could some task doing backref walking; 5) After that some error happens in the transaction commit path, and at ioctl.c:create_snapshot() we jump to the 'fail' label, and after that we free again the same anonymous device number, which in the meanwhile may have been reallocated somewhere else, because pending_snapshot->anon_dev still has the same value as in step 1. Recently syzbot ran into this and reported the following trace: ------------[ cut here ]------------ ida_free called for id=51 which is not allocated. WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525 Modules linked in: CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525 Code: 10 42 80 3c 28 (...) RSP: 0018:ffffc90015a67300 EFLAGS: 00010246 RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000 RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4 R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246 R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246 FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0 Call Trace: <TASK> btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346 create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931 btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404 create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306 btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393 btrfs_ioctl+0xa74/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7fca3e67dda9 Code: 28 00 00 00 (...) RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9 RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658 </TASK> Where we get an explicit message where we attempt to free an anonymous device number that is not currently allocated. It happens in a different code path from the example below, at btrfs_get_root_ref(), so this change may not fix the case triggered by syzbot. To fix at least the code path from the example above, change btrfs_get_root_ref() and its callers to receive a dev_t pointer argument for the anonymous device number, so that in case it frees the number, it also resets it to 0, so that up in the call chain we don't attempt to do the double free. CC: stable@vger.kernel.org # 5.10+ Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/ Fixes: e03ee2fe873e ("btrfs: do not ASSERT() if the newly created subvolume already got read") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-02-23 16:38:43 +00:00
* pass NULL for a new allocation.
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:36 +00:00
* @check_ref: whether to check root item references, If true, return -ENOENT
* for orphan roots
*/
static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
btrfs: fix double free of anonymous device after snapshot creation failure When creating a snapshot we may do a double free of an anonymous device in case there's an error committing the transaction. The second free may result in freeing an anonymous device number that was allocated by some other subsystem in the kernel or another btrfs filesystem. The steps that lead to this: 1) At ioctl.c:create_snapshot() we allocate an anonymous device number and assign it to pending_snapshot->anon_dev; 2) Then we call btrfs_commit_transaction() and end up at transaction.c:create_pending_snapshot(); 3) There we call btrfs_get_new_fs_root() and pass it the anonymous device number stored in pending_snapshot->anon_dev; 4) btrfs_get_new_fs_root() frees that anonymous device number because btrfs_lookup_fs_root() returned a root - someone else did a lookup of the new root already, which could some task doing backref walking; 5) After that some error happens in the transaction commit path, and at ioctl.c:create_snapshot() we jump to the 'fail' label, and after that we free again the same anonymous device number, which in the meanwhile may have been reallocated somewhere else, because pending_snapshot->anon_dev still has the same value as in step 1. Recently syzbot ran into this and reported the following trace: ------------[ cut here ]------------ ida_free called for id=51 which is not allocated. WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525 Modules linked in: CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525 Code: 10 42 80 3c 28 (...) RSP: 0018:ffffc90015a67300 EFLAGS: 00010246 RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000 RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4 R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246 R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246 FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0 Call Trace: <TASK> btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346 create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931 btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404 create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306 btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393 btrfs_ioctl+0xa74/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7fca3e67dda9 Code: 28 00 00 00 (...) RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9 RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658 </TASK> Where we get an explicit message where we attempt to free an anonymous device number that is not currently allocated. It happens in a different code path from the example below, at btrfs_get_root_ref(), so this change may not fix the case triggered by syzbot. To fix at least the code path from the example above, change btrfs_get_root_ref() and its callers to receive a dev_t pointer argument for the anonymous device number, so that in case it frees the number, it also resets it to 0, so that up in the call chain we don't attempt to do the double free. CC: stable@vger.kernel.org # 5.10+ Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/ Fixes: e03ee2fe873e ("btrfs: do not ASSERT() if the newly created subvolume already got read") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-02-23 16:38:43 +00:00
u64 objectid, dev_t *anon_dev,
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:36 +00:00
bool check_ref)
{
struct btrfs_root *root;
struct btrfs_path *path;
struct btrfs_key key;
int ret;
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
root = btrfs_get_global_root(fs_info, objectid);
if (root)
return root;
btrfs: avoid race between qgroup tree creation and relocation [BUG] Syzbot reported a weird ASSERT() triggered inside prepare_to_merge(). assertion failed: root->reloc_root == reloc_root, in fs/btrfs/relocation.c:1919 ------------[ cut here ]------------ kernel BUG at fs/btrfs/relocation.c:1919! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 9904 Comm: syz-executor.3 Not tainted 6.4.0-syzkaller-08881-g533925cb7604 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023 RIP: 0010:prepare_to_merge+0xbb2/0xc40 fs/btrfs/relocation.c:1919 Code: fe e9 f5 (...) RSP: 0018:ffffc9000325f760 EFLAGS: 00010246 RAX: 000000000000004f RBX: ffff888075644030 RCX: 1481ccc522da5800 RDX: ffffc90005c09000 RSI: 00000000000364ca RDI: 00000000000364cb RBP: ffffc9000325f870 R08: ffffffff816f33ac R09: 1ffff9200064bea0 R10: dffffc0000000000 R11: fffff5200064bea1 R12: ffff888075644000 R13: ffff88803b166000 R14: ffff88803b166560 R15: ffff88803b166558 FS: 00007f4e305fd700(0000) GS:ffff8880b9800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000056080679c000 CR3: 00000000193ad000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> relocate_block_group+0xa5d/0xcd0 fs/btrfs/relocation.c:3749 btrfs_relocate_block_group+0x7ab/0xd70 fs/btrfs/relocation.c:4087 btrfs_relocate_chunk+0x12c/0x3b0 fs/btrfs/volumes.c:3283 __btrfs_balance+0x1b06/0x2690 fs/btrfs/volumes.c:4018 btrfs_balance+0xbdb/0x1120 fs/btrfs/volumes.c:4402 btrfs_ioctl_balance+0x496/0x7c0 fs/btrfs/ioctl.c:3604 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:870 [inline] __se_sys_ioctl+0xf8/0x170 fs/ioctl.c:856 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd RIP: 0033:0x7f4e2f88c389 [CAUSE] With extra debugging, the offending reloc_root is for quota tree (rootid 8). Normally we should not use the reloc tree for quota root at all, as reloc trees are only for subvolume trees. But there is a race between quota enabling and relocation, this happens after commit 85724171b302 ("btrfs: fix the btrfs_get_global_root return value"). Before that commit, for quota and free space tree, we exit immediately if we cannot grab it from fs_info. But now we would try to read it from disk, just as if they are fs trees, this sets ROOT_SHAREABLE flags in such race: Thread A | Thread B ---------------------------------+------------------------------ btrfs_quota_enable() | | | btrfs_get_root_ref() | | |- btrfs_get_global_root() | | | Returned NULL | | |- btrfs_lookup_fs_root() | | | Returned NULL |- btrfs_create_tree() | | | Now quota root item is | | | inserted | |- btrfs_read_tree_root() | | | Got the newly inserted quota root | | |- btrfs_init_fs_root() | | | Set ROOT_SHAREABLE flag [FIX] Get back to the old behavior by returning PTR_ERR(-ENOENT) if the target objectid is not a subvolume tree or data reloc tree. Reported-and-tested-by: syzbot+ae97a827ae1c3336bbb4@syzkaller.appspotmail.com Fixes: 85724171b302 ("btrfs: fix the btrfs_get_global_root return value") Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-03 09:20:41 +00:00
/*
* If we're called for non-subvolume trees, and above function didn't
* find one, do not try to read it from disk.
*
* This is namely for free-space-tree and quota tree, which can change
* at runtime and should only be grabbed from fs_info.
*/
if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
return ERR_PTR(-ENOENT);
again:
root = btrfs_lookup_fs_root(fs_info, objectid);
if (root) {
btrfs: do not ASSERT() if the newly created subvolume already got read [BUG] There is a syzbot crash, triggered by the ASSERT() during subvolume creation: assertion failed: !anon_dev, in fs/btrfs/disk-io.c:1319 ------------[ cut here ]------------ kernel BUG at fs/btrfs/disk-io.c:1319! invalid opcode: 0000 [#1] PREEMPT SMP KASAN RIP: 0010:btrfs_get_root_ref.part.0+0x9aa/0xa60 <TASK> btrfs_get_new_fs_root+0xd3/0xf0 create_subvol+0xd02/0x1650 btrfs_mksubvol+0xe95/0x12b0 __btrfs_ioctl_snap_create+0x2f9/0x4f0 btrfs_ioctl_snap_create+0x16b/0x200 btrfs_ioctl+0x35f0/0x5cf0 __x64_sys_ioctl+0x19d/0x210 do_syscall_64+0x3f/0xe0 entry_SYSCALL_64_after_hwframe+0x63/0x6b ---[ end trace 0000000000000000 ]--- [CAUSE] During create_subvol(), after inserting root item for the newly created subvolume, we would trigger btrfs_get_new_fs_root() to get the btrfs_root of that subvolume. The idea here is, we have preallocated an anonymous device number for the subvolume, thus we can assign it to the new subvolume. But there is really nothing preventing things like backref walk to read the new subvolume. If that happens before we call btrfs_get_new_fs_root(), the subvolume would be read out, with a new anonymous device number assigned already. In that case, we would trigger ASSERT(), as we really expect no one to read out that subvolume (which is not yet accessible from the fs). But things like backref walk is still possible to trigger the read on the subvolume. Thus our assumption on the ASSERT() is not correct in the first place. [FIX] Fix it by removing the ASSERT(), and just free the @anon_dev, reset it to 0, and continue. If the subvolume tree is read out by something else, it should have already get a new anon_dev assigned thus we only need to free the preallocated one. Reported-by: Chenyuan Yang <chenyuan0y@gmail.com> Fixes: 2dfb1e43f57d ("btrfs: preallocate anon block device at first phase of snapshot creation") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-01-20 09:11:28 +00:00
/*
* Some other caller may have read out the newly inserted
* subvolume already (for things like backref walk etc). Not
* that common but still possible. In that case, we just need
* to free the anon_dev.
*/
btrfs: fix double free of anonymous device after snapshot creation failure When creating a snapshot we may do a double free of an anonymous device in case there's an error committing the transaction. The second free may result in freeing an anonymous device number that was allocated by some other subsystem in the kernel or another btrfs filesystem. The steps that lead to this: 1) At ioctl.c:create_snapshot() we allocate an anonymous device number and assign it to pending_snapshot->anon_dev; 2) Then we call btrfs_commit_transaction() and end up at transaction.c:create_pending_snapshot(); 3) There we call btrfs_get_new_fs_root() and pass it the anonymous device number stored in pending_snapshot->anon_dev; 4) btrfs_get_new_fs_root() frees that anonymous device number because btrfs_lookup_fs_root() returned a root - someone else did a lookup of the new root already, which could some task doing backref walking; 5) After that some error happens in the transaction commit path, and at ioctl.c:create_snapshot() we jump to the 'fail' label, and after that we free again the same anonymous device number, which in the meanwhile may have been reallocated somewhere else, because pending_snapshot->anon_dev still has the same value as in step 1. Recently syzbot ran into this and reported the following trace: ------------[ cut here ]------------ ida_free called for id=51 which is not allocated. WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525 Modules linked in: CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525 Code: 10 42 80 3c 28 (...) RSP: 0018:ffffc90015a67300 EFLAGS: 00010246 RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000 RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4 R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246 R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246 FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0 Call Trace: <TASK> btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346 create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931 btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404 create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306 btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393 btrfs_ioctl+0xa74/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7fca3e67dda9 Code: 28 00 00 00 (...) RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9 RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658 </TASK> Where we get an explicit message where we attempt to free an anonymous device number that is not currently allocated. It happens in a different code path from the example below, at btrfs_get_root_ref(), so this change may not fix the case triggered by syzbot. To fix at least the code path from the example above, change btrfs_get_root_ref() and its callers to receive a dev_t pointer argument for the anonymous device number, so that in case it frees the number, it also resets it to 0, so that up in the call chain we don't attempt to do the double free. CC: stable@vger.kernel.org # 5.10+ Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/ Fixes: e03ee2fe873e ("btrfs: do not ASSERT() if the newly created subvolume already got read") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-02-23 16:38:43 +00:00
if (unlikely(anon_dev && *anon_dev)) {
free_anon_bdev(*anon_dev);
*anon_dev = 0;
btrfs: do not ASSERT() if the newly created subvolume already got read [BUG] There is a syzbot crash, triggered by the ASSERT() during subvolume creation: assertion failed: !anon_dev, in fs/btrfs/disk-io.c:1319 ------------[ cut here ]------------ kernel BUG at fs/btrfs/disk-io.c:1319! invalid opcode: 0000 [#1] PREEMPT SMP KASAN RIP: 0010:btrfs_get_root_ref.part.0+0x9aa/0xa60 <TASK> btrfs_get_new_fs_root+0xd3/0xf0 create_subvol+0xd02/0x1650 btrfs_mksubvol+0xe95/0x12b0 __btrfs_ioctl_snap_create+0x2f9/0x4f0 btrfs_ioctl_snap_create+0x16b/0x200 btrfs_ioctl+0x35f0/0x5cf0 __x64_sys_ioctl+0x19d/0x210 do_syscall_64+0x3f/0xe0 entry_SYSCALL_64_after_hwframe+0x63/0x6b ---[ end trace 0000000000000000 ]--- [CAUSE] During create_subvol(), after inserting root item for the newly created subvolume, we would trigger btrfs_get_new_fs_root() to get the btrfs_root of that subvolume. The idea here is, we have preallocated an anonymous device number for the subvolume, thus we can assign it to the new subvolume. But there is really nothing preventing things like backref walk to read the new subvolume. If that happens before we call btrfs_get_new_fs_root(), the subvolume would be read out, with a new anonymous device number assigned already. In that case, we would trigger ASSERT(), as we really expect no one to read out that subvolume (which is not yet accessible from the fs). But things like backref walk is still possible to trigger the read on the subvolume. Thus our assumption on the ASSERT() is not correct in the first place. [FIX] Fix it by removing the ASSERT(), and just free the @anon_dev, reset it to 0, and continue. If the subvolume tree is read out by something else, it should have already get a new anon_dev assigned thus we only need to free the preallocated one. Reported-by: Chenyuan Yang <chenyuan0y@gmail.com> Fixes: 2dfb1e43f57d ("btrfs: preallocate anon block device at first phase of snapshot creation") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-01-20 09:11:28 +00:00
}
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
btrfs_put_root(root);
return ERR_PTR(-ENOENT);
}
return root;
}
key.objectid = objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
root = btrfs_read_tree_root(fs_info->tree_root, &key);
if (IS_ERR(root))
return root;
Btrfs: fix oops caused by the space balance and dead roots When doing space balance and subvolume destroy at the same time, we met the following oops: kernel BUG at fs/btrfs/relocation.c:2247! RIP: 0010: [<ffffffffa04cec16>] prepare_to_merge+0x154/0x1f0 [btrfs] Call Trace: [<ffffffffa04b5ab7>] relocate_block_group+0x466/0x4e6 [btrfs] [<ffffffffa04b5c7a>] btrfs_relocate_block_group+0x143/0x275 [btrfs] [<ffffffffa0495c56>] btrfs_relocate_chunk.isra.27+0x5c/0x5a2 [btrfs] [<ffffffffa0459871>] ? btrfs_item_key_to_cpu+0x15/0x31 [btrfs] [<ffffffffa048b46a>] ? btrfs_get_token_64+0x7e/0xcd [btrfs] [<ffffffffa04a3467>] ? btrfs_tree_read_unlock_blocking+0xb2/0xb7 [btrfs] [<ffffffffa049907d>] btrfs_balance+0x9c7/0xb6f [btrfs] [<ffffffffa049ef84>] btrfs_ioctl_balance+0x234/0x2ac [btrfs] [<ffffffffa04a1e8e>] btrfs_ioctl+0xd87/0x1ef9 [btrfs] [<ffffffff81122f53>] ? path_openat+0x234/0x4db [<ffffffff813c3b78>] ? __do_page_fault+0x31d/0x391 [<ffffffff810f8ab6>] ? vma_link+0x74/0x94 [<ffffffff811250f5>] vfs_ioctl+0x1d/0x39 [<ffffffff811258c8>] do_vfs_ioctl+0x32d/0x3e2 [<ffffffff811259d4>] SyS_ioctl+0x57/0x83 [<ffffffff813c3bfa>] ? do_page_fault+0xe/0x10 [<ffffffff813c73c2>] system_call_fastpath+0x16/0x1b It is because we returned the error number if the reference of the root was 0 when doing space relocation. It was not right here, because though the root was dead(refs == 0), but the space it held still need be relocated, or we could not remove the block group. So in this case, we should return the root no matter it is dead or not. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com> Signed-off-by: Chris Mason <chris.mason@fusionio.com>
2013-09-25 13:47:44 +00:00
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
ret = -ENOENT;
goto fail;
}
btrfs: fix double free of anonymous device after snapshot creation failure When creating a snapshot we may do a double free of an anonymous device in case there's an error committing the transaction. The second free may result in freeing an anonymous device number that was allocated by some other subsystem in the kernel or another btrfs filesystem. The steps that lead to this: 1) At ioctl.c:create_snapshot() we allocate an anonymous device number and assign it to pending_snapshot->anon_dev; 2) Then we call btrfs_commit_transaction() and end up at transaction.c:create_pending_snapshot(); 3) There we call btrfs_get_new_fs_root() and pass it the anonymous device number stored in pending_snapshot->anon_dev; 4) btrfs_get_new_fs_root() frees that anonymous device number because btrfs_lookup_fs_root() returned a root - someone else did a lookup of the new root already, which could some task doing backref walking; 5) After that some error happens in the transaction commit path, and at ioctl.c:create_snapshot() we jump to the 'fail' label, and after that we free again the same anonymous device number, which in the meanwhile may have been reallocated somewhere else, because pending_snapshot->anon_dev still has the same value as in step 1. Recently syzbot ran into this and reported the following trace: ------------[ cut here ]------------ ida_free called for id=51 which is not allocated. WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525 Modules linked in: CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525 Code: 10 42 80 3c 28 (...) RSP: 0018:ffffc90015a67300 EFLAGS: 00010246 RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000 RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4 R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246 R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246 FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0 Call Trace: <TASK> btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346 create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931 btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404 create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306 btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393 btrfs_ioctl+0xa74/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7fca3e67dda9 Code: 28 00 00 00 (...) RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9 RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658 </TASK> Where we get an explicit message where we attempt to free an anonymous device number that is not currently allocated. It happens in a different code path from the example below, at btrfs_get_root_ref(), so this change may not fix the case triggered by syzbot. To fix at least the code path from the example above, change btrfs_get_root_ref() and its callers to receive a dev_t pointer argument for the anonymous device number, so that in case it frees the number, it also resets it to 0, so that up in the call chain we don't attempt to do the double free. CC: stable@vger.kernel.org # 5.10+ Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/ Fixes: e03ee2fe873e ("btrfs: do not ASSERT() if the newly created subvolume already got read") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-02-23 16:38:43 +00:00
ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
if (ret)
goto fail;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto fail;
}
key.objectid = BTRFS_ORPHAN_OBJECTID;
key.type = BTRFS_ORPHAN_ITEM_KEY;
key.offset = objectid;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
btrfs_free_path(path);
if (ret < 0)
goto fail;
if (ret == 0)
set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
ret = btrfs_insert_fs_root(fs_info, root);
if (ret) {
if (ret == -EEXIST) {
btrfs_put_root(root);
goto again;
}
goto fail;
}
return root;
fail:
btrfs: fix double free of anon_dev after failure to create subvolume When creating a subvolume, at create_subvol(), we allocate an anonymous device and later call btrfs_get_new_fs_root(), which in turn just calls btrfs_get_root_ref(). There we call btrfs_init_fs_root() which assigns the anonymous device to the root, but if after that call there's an error, when we jump to 'fail' label, we call btrfs_put_root(), which frees the anonymous device and then returns an error that is propagated back to create_subvol(). Than create_subvol() frees the anonymous device again. When this happens, if the anonymous device was not reallocated after the first time it was freed with btrfs_put_root(), we get a kernel message like the following: (...) [13950.282466] BTRFS: error (device dm-0) in create_subvol:663: errno=-5 IO failure [13950.283027] ida_free called for id=65 which is not allocated. [13950.285974] BTRFS info (device dm-0): forced readonly (...) If the anonymous device gets reallocated by another btrfs filesystem or any other kernel subsystem, then bad things can happen. So fix this by setting the root's anonymous device to 0 at btrfs_get_root_ref(), before we call btrfs_put_root(), if an error happened. Fixes: 2dfb1e43f57dd3 ("btrfs: preallocate anon block device at first phase of snapshot creation") CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-10 19:02:18 +00:00
/*
* If our caller provided us an anonymous device, then it's his
* responsibility to free it in case we fail. So we have to set our
btrfs: fix double free of anon_dev after failure to create subvolume When creating a subvolume, at create_subvol(), we allocate an anonymous device and later call btrfs_get_new_fs_root(), which in turn just calls btrfs_get_root_ref(). There we call btrfs_init_fs_root() which assigns the anonymous device to the root, but if after that call there's an error, when we jump to 'fail' label, we call btrfs_put_root(), which frees the anonymous device and then returns an error that is propagated back to create_subvol(). Than create_subvol() frees the anonymous device again. When this happens, if the anonymous device was not reallocated after the first time it was freed with btrfs_put_root(), we get a kernel message like the following: (...) [13950.282466] BTRFS: error (device dm-0) in create_subvol:663: errno=-5 IO failure [13950.283027] ida_free called for id=65 which is not allocated. [13950.285974] BTRFS info (device dm-0): forced readonly (...) If the anonymous device gets reallocated by another btrfs filesystem or any other kernel subsystem, then bad things can happen. So fix this by setting the root's anonymous device to 0 at btrfs_get_root_ref(), before we call btrfs_put_root(), if an error happened. Fixes: 2dfb1e43f57dd3 ("btrfs: preallocate anon block device at first phase of snapshot creation") CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-10 19:02:18 +00:00
* root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
* and once again by our caller.
*/
btrfs: fix double free of anonymous device after snapshot creation failure When creating a snapshot we may do a double free of an anonymous device in case there's an error committing the transaction. The second free may result in freeing an anonymous device number that was allocated by some other subsystem in the kernel or another btrfs filesystem. The steps that lead to this: 1) At ioctl.c:create_snapshot() we allocate an anonymous device number and assign it to pending_snapshot->anon_dev; 2) Then we call btrfs_commit_transaction() and end up at transaction.c:create_pending_snapshot(); 3) There we call btrfs_get_new_fs_root() and pass it the anonymous device number stored in pending_snapshot->anon_dev; 4) btrfs_get_new_fs_root() frees that anonymous device number because btrfs_lookup_fs_root() returned a root - someone else did a lookup of the new root already, which could some task doing backref walking; 5) After that some error happens in the transaction commit path, and at ioctl.c:create_snapshot() we jump to the 'fail' label, and after that we free again the same anonymous device number, which in the meanwhile may have been reallocated somewhere else, because pending_snapshot->anon_dev still has the same value as in step 1. Recently syzbot ran into this and reported the following trace: ------------[ cut here ]------------ ida_free called for id=51 which is not allocated. WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525 Modules linked in: CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525 Code: 10 42 80 3c 28 (...) RSP: 0018:ffffc90015a67300 EFLAGS: 00010246 RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000 RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4 R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246 R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246 FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0 Call Trace: <TASK> btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346 create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931 btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404 create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306 btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393 btrfs_ioctl+0xa74/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7fca3e67dda9 Code: 28 00 00 00 (...) RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9 RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658 </TASK> Where we get an explicit message where we attempt to free an anonymous device number that is not currently allocated. It happens in a different code path from the example below, at btrfs_get_root_ref(), so this change may not fix the case triggered by syzbot. To fix at least the code path from the example above, change btrfs_get_root_ref() and its callers to receive a dev_t pointer argument for the anonymous device number, so that in case it frees the number, it also resets it to 0, so that up in the call chain we don't attempt to do the double free. CC: stable@vger.kernel.org # 5.10+ Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/ Fixes: e03ee2fe873e ("btrfs: do not ASSERT() if the newly created subvolume already got read") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-02-23 16:38:43 +00:00
if (anon_dev && *anon_dev)
btrfs: fix double free of anon_dev after failure to create subvolume When creating a subvolume, at create_subvol(), we allocate an anonymous device and later call btrfs_get_new_fs_root(), which in turn just calls btrfs_get_root_ref(). There we call btrfs_init_fs_root() which assigns the anonymous device to the root, but if after that call there's an error, when we jump to 'fail' label, we call btrfs_put_root(), which frees the anonymous device and then returns an error that is propagated back to create_subvol(). Than create_subvol() frees the anonymous device again. When this happens, if the anonymous device was not reallocated after the first time it was freed with btrfs_put_root(), we get a kernel message like the following: (...) [13950.282466] BTRFS: error (device dm-0) in create_subvol:663: errno=-5 IO failure [13950.283027] ida_free called for id=65 which is not allocated. [13950.285974] BTRFS info (device dm-0): forced readonly (...) If the anonymous device gets reallocated by another btrfs filesystem or any other kernel subsystem, then bad things can happen. So fix this by setting the root's anonymous device to 0 at btrfs_get_root_ref(), before we call btrfs_put_root(), if an error happened. Fixes: 2dfb1e43f57dd3 ("btrfs: preallocate anon block device at first phase of snapshot creation") CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-10 19:02:18 +00:00
root->anon_dev = 0;
btrfs_put_root(root);
return ERR_PTR(ret);
}
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:36 +00:00
/*
* Get in-memory reference of a root structure
*
* @objectid: tree objectid
* @check_ref: if set, verify that the tree exists and the item has at least
* one reference
*/
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
u64 objectid, bool check_ref)
{
btrfs: fix double free of anonymous device after snapshot creation failure When creating a snapshot we may do a double free of an anonymous device in case there's an error committing the transaction. The second free may result in freeing an anonymous device number that was allocated by some other subsystem in the kernel or another btrfs filesystem. The steps that lead to this: 1) At ioctl.c:create_snapshot() we allocate an anonymous device number and assign it to pending_snapshot->anon_dev; 2) Then we call btrfs_commit_transaction() and end up at transaction.c:create_pending_snapshot(); 3) There we call btrfs_get_new_fs_root() and pass it the anonymous device number stored in pending_snapshot->anon_dev; 4) btrfs_get_new_fs_root() frees that anonymous device number because btrfs_lookup_fs_root() returned a root - someone else did a lookup of the new root already, which could some task doing backref walking; 5) After that some error happens in the transaction commit path, and at ioctl.c:create_snapshot() we jump to the 'fail' label, and after that we free again the same anonymous device number, which in the meanwhile may have been reallocated somewhere else, because pending_snapshot->anon_dev still has the same value as in step 1. Recently syzbot ran into this and reported the following trace: ------------[ cut here ]------------ ida_free called for id=51 which is not allocated. WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525 Modules linked in: CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525 Code: 10 42 80 3c 28 (...) RSP: 0018:ffffc90015a67300 EFLAGS: 00010246 RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000 RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4 R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246 R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246 FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0 Call Trace: <TASK> btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346 create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931 btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404 create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306 btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393 btrfs_ioctl+0xa74/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7fca3e67dda9 Code: 28 00 00 00 (...) RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9 RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658 </TASK> Where we get an explicit message where we attempt to free an anonymous device number that is not currently allocated. It happens in a different code path from the example below, at btrfs_get_root_ref(), so this change may not fix the case triggered by syzbot. To fix at least the code path from the example above, change btrfs_get_root_ref() and its callers to receive a dev_t pointer argument for the anonymous device number, so that in case it frees the number, it also resets it to 0, so that up in the call chain we don't attempt to do the double free. CC: stable@vger.kernel.org # 5.10+ Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/ Fixes: e03ee2fe873e ("btrfs: do not ASSERT() if the newly created subvolume already got read") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-02-23 16:38:43 +00:00
return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:36 +00:00
}
/*
* Get in-memory reference of a root structure, created as new, optionally pass
* the anonymous block device id
*
* @objectid: tree objectid
btrfs: fix double free of anonymous device after snapshot creation failure When creating a snapshot we may do a double free of an anonymous device in case there's an error committing the transaction. The second free may result in freeing an anonymous device number that was allocated by some other subsystem in the kernel or another btrfs filesystem. The steps that lead to this: 1) At ioctl.c:create_snapshot() we allocate an anonymous device number and assign it to pending_snapshot->anon_dev; 2) Then we call btrfs_commit_transaction() and end up at transaction.c:create_pending_snapshot(); 3) There we call btrfs_get_new_fs_root() and pass it the anonymous device number stored in pending_snapshot->anon_dev; 4) btrfs_get_new_fs_root() frees that anonymous device number because btrfs_lookup_fs_root() returned a root - someone else did a lookup of the new root already, which could some task doing backref walking; 5) After that some error happens in the transaction commit path, and at ioctl.c:create_snapshot() we jump to the 'fail' label, and after that we free again the same anonymous device number, which in the meanwhile may have been reallocated somewhere else, because pending_snapshot->anon_dev still has the same value as in step 1. Recently syzbot ran into this and reported the following trace: ------------[ cut here ]------------ ida_free called for id=51 which is not allocated. WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525 Modules linked in: CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525 Code: 10 42 80 3c 28 (...) RSP: 0018:ffffc90015a67300 EFLAGS: 00010246 RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000 RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4 R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246 R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246 FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0 Call Trace: <TASK> btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346 create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931 btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404 create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306 btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393 btrfs_ioctl+0xa74/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7fca3e67dda9 Code: 28 00 00 00 (...) RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9 RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658 </TASK> Where we get an explicit message where we attempt to free an anonymous device number that is not currently allocated. It happens in a different code path from the example below, at btrfs_get_root_ref(), so this change may not fix the case triggered by syzbot. To fix at least the code path from the example above, change btrfs_get_root_ref() and its callers to receive a dev_t pointer argument for the anonymous device number, so that in case it frees the number, it also resets it to 0, so that up in the call chain we don't attempt to do the double free. CC: stable@vger.kernel.org # 5.10+ Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/ Fixes: e03ee2fe873e ("btrfs: do not ASSERT() if the newly created subvolume already got read") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-02-23 16:38:43 +00:00
* @anon_dev: if NULL, allocate a new anonymous block device or use the
* parameter value if not NULL
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:36 +00:00
*/
struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
btrfs: fix double free of anonymous device after snapshot creation failure When creating a snapshot we may do a double free of an anonymous device in case there's an error committing the transaction. The second free may result in freeing an anonymous device number that was allocated by some other subsystem in the kernel or another btrfs filesystem. The steps that lead to this: 1) At ioctl.c:create_snapshot() we allocate an anonymous device number and assign it to pending_snapshot->anon_dev; 2) Then we call btrfs_commit_transaction() and end up at transaction.c:create_pending_snapshot(); 3) There we call btrfs_get_new_fs_root() and pass it the anonymous device number stored in pending_snapshot->anon_dev; 4) btrfs_get_new_fs_root() frees that anonymous device number because btrfs_lookup_fs_root() returned a root - someone else did a lookup of the new root already, which could some task doing backref walking; 5) After that some error happens in the transaction commit path, and at ioctl.c:create_snapshot() we jump to the 'fail' label, and after that we free again the same anonymous device number, which in the meanwhile may have been reallocated somewhere else, because pending_snapshot->anon_dev still has the same value as in step 1. Recently syzbot ran into this and reported the following trace: ------------[ cut here ]------------ ida_free called for id=51 which is not allocated. WARNING: CPU: 1 PID: 31038 at lib/idr.c:525 ida_free+0x370/0x420 lib/idr.c:525 Modules linked in: CPU: 1 PID: 31038 Comm: syz-executor.2 Not tainted 6.8.0-rc4-syzkaller-00410-gc02197fc9076 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:ida_free+0x370/0x420 lib/idr.c:525 Code: 10 42 80 3c 28 (...) RSP: 0018:ffffc90015a67300 EFLAGS: 00010246 RAX: be5130472f5dd000 RBX: 0000000000000033 RCX: 0000000000040000 RDX: ffffc90009a7a000 RSI: 000000000003ffff RDI: 0000000000040000 RBP: ffffc90015a673f0 R08: ffffffff81577992 R09: 1ffff92002b4cdb4 R10: dffffc0000000000 R11: fffff52002b4cdb5 R12: 0000000000000246 R13: dffffc0000000000 R14: ffffffff8e256b80 R15: 0000000000000246 FS: 00007fca3f4b46c0(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167a17b978 CR3: 000000001ed26000 CR4: 0000000000350ef0 Call Trace: <TASK> btrfs_get_root_ref+0xa48/0xaf0 fs/btrfs/disk-io.c:1346 create_pending_snapshot+0xff2/0x2bc0 fs/btrfs/transaction.c:1837 create_pending_snapshots+0x195/0x1d0 fs/btrfs/transaction.c:1931 btrfs_commit_transaction+0xf1c/0x3740 fs/btrfs/transaction.c:2404 create_snapshot+0x507/0x880 fs/btrfs/ioctl.c:848 btrfs_mksubvol+0x5d0/0x750 fs/btrfs/ioctl.c:998 btrfs_mksnapshot+0xb5/0xf0 fs/btrfs/ioctl.c:1044 __btrfs_ioctl_snap_create+0x387/0x4b0 fs/btrfs/ioctl.c:1306 btrfs_ioctl_snap_create_v2+0x1ca/0x400 fs/btrfs/ioctl.c:1393 btrfs_ioctl+0xa74/0xd40 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:871 [inline] __se_sys_ioctl+0xfe/0x170 fs/ioctl.c:857 do_syscall_64+0xfb/0x240 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7fca3e67dda9 Code: 28 00 00 00 (...) RSP: 002b:00007fca3f4b40c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 00007fca3e7abf80 RCX: 00007fca3e67dda9 RDX: 00000000200005c0 RSI: 0000000050009417 RDI: 0000000000000003 RBP: 00007fca3e6ca47a R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 000000000000000b R14: 00007fca3e7abf80 R15: 00007fff6bf95658 </TASK> Where we get an explicit message where we attempt to free an anonymous device number that is not currently allocated. It happens in a different code path from the example below, at btrfs_get_root_ref(), so this change may not fix the case triggered by syzbot. To fix at least the code path from the example above, change btrfs_get_root_ref() and its callers to receive a dev_t pointer argument for the anonymous device number, so that in case it frees the number, it also resets it to 0, so that up in the call chain we don't attempt to do the double free. CC: stable@vger.kernel.org # 5.10+ Link: https://lore.kernel.org/linux-btrfs/000000000000f673a1061202f630@google.com/ Fixes: e03ee2fe873e ("btrfs: do not ASSERT() if the newly created subvolume already got read") Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2024-02-23 16:38:43 +00:00
u64 objectid, dev_t *anon_dev)
btrfs: preallocate anon block device at first phase of snapshot creation [BUG] When the anonymous block device pool is exhausted, subvolume/snapshot creation fails with EMFILE (Too many files open). This has been reported by a user. The allocation happens in the second phase during transaction commit where it's only way out is to abort the transaction BTRFS: Transaction aborted (error -24) WARNING: CPU: 17 PID: 17041 at fs/btrfs/transaction.c:1576 create_pending_snapshot+0xbc4/0xd10 [btrfs] RIP: 0010:create_pending_snapshot+0xbc4/0xd10 [btrfs] Call Trace: create_pending_snapshots+0x82/0xa0 [btrfs] btrfs_commit_transaction+0x275/0x8c0 [btrfs] btrfs_mksubvol+0x4b9/0x500 [btrfs] btrfs_ioctl_snap_create_transid+0x174/0x180 [btrfs] btrfs_ioctl_snap_create_v2+0x11c/0x180 [btrfs] btrfs_ioctl+0x11a4/0x2da0 [btrfs] do_vfs_ioctl+0xa9/0x640 ksys_ioctl+0x67/0x90 __x64_sys_ioctl+0x1a/0x20 do_syscall_64+0x5a/0x110 entry_SYSCALL_64_after_hwframe+0x44/0xa9 ---[ end trace 33f2f83f3d5250e9 ]--- BTRFS: error (device sda1) in create_pending_snapshot:1576: errno=-24 unknown BTRFS info (device sda1): forced readonly BTRFS warning (device sda1): Skipping commit of aborted transaction. BTRFS: error (device sda1) in cleanup_transaction:1831: errno=-24 unknown [CAUSE] When the global anonymous block device pool is exhausted, the following call chain will fail, and lead to transaction abort: btrfs_ioctl_snap_create_v2() |- btrfs_ioctl_snap_create_transid() |- btrfs_mksubvol() |- btrfs_commit_transaction() |- create_pending_snapshot() |- btrfs_get_fs_root() |- btrfs_init_fs_root() |- get_anon_bdev() [FIX] Although we can't enlarge the anonymous block device pool, at least we can preallocate anon_dev for subvolume/snapshot in the first phase, outside of transaction context and exactly at the moment the user calls the creation ioctl. Reported-by: Greed Rong <greedrong@gmail.com> Link: https://lore.kernel.org/linux-btrfs/CA+UqX+NTrZ6boGnWHhSeZmEY5J76CTqmYjO2S+=tHJX7nb9DPw@mail.gmail.com/ CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-06-16 02:17:36 +00:00
{
return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
}
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
/*
* Return a root for the given objectid.
*
btrfs: add a helper to read the tree_root commit root for backref lookup I got the following lockdep splat with tree locks converted to rwsem patches on btrfs/104: ====================================================== WARNING: possible circular locking dependency detected 5.9.0+ #102 Not tainted ------------------------------------------------------ btrfs-cleaner/903 is trying to acquire lock: ffff8e7fab6ffe30 (btrfs-root-00){++++}-{3:3}, at: __btrfs_tree_read_lock+0x32/0x170 but task is already holding lock: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 (&fs_info->commit_root_sem){++++}-{3:3}: down_read+0x40/0x130 caching_thread+0x53/0x5a0 btrfs_work_helper+0xfa/0x520 process_one_work+0x238/0x540 worker_thread+0x55/0x3c0 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 -> #2 (&caching_ctl->mutex){+.+.}-{3:3}: __mutex_lock+0x7e/0x7b0 btrfs_cache_block_group+0x1e0/0x510 find_free_extent+0xb6e/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #1 (&space_info->groups_sem){++++}-{3:3}: down_read+0x40/0x130 find_free_extent+0x2ed/0x12f0 btrfs_reserve_extent+0xb3/0x1b0 btrfs_alloc_tree_block+0xb1/0x330 alloc_tree_block_no_bg_flush+0x4f/0x60 __btrfs_cow_block+0x11d/0x580 btrfs_cow_block+0x10c/0x220 commit_cowonly_roots+0x47/0x2e0 btrfs_commit_transaction+0x595/0xbd0 sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 deactivate_locked_super+0x36/0xa0 cleanup_mnt+0x12d/0x190 task_work_run+0x5c/0xa0 exit_to_user_mode_prepare+0x1df/0x200 syscall_exit_to_user_mode+0x54/0x280 entry_SYSCALL_64_after_hwframe+0x44/0xa9 -> #0 (btrfs-root-00){++++}-{3:3}: __lock_acquire+0x1167/0x2150 lock_acquire+0xb9/0x3d0 down_read_nested+0x43/0x130 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 btrfs_find_root+0x35/0x1b0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 kthread+0x13a/0x150 ret_from_fork+0x1f/0x30 other info that might help us debug this: Chain exists of: btrfs-root-00 --> &caching_ctl->mutex --> &fs_info->commit_root_sem Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&fs_info->commit_root_sem); lock(&caching_ctl->mutex); lock(&fs_info->commit_root_sem); lock(btrfs-root-00); *** DEADLOCK *** 3 locks held by btrfs-cleaner/903: #0: ffff8e7fab628838 (&fs_info->cleaner_mutex){+.+.}-{3:3}, at: cleaner_kthread+0x6e/0x140 #1: ffff8e7faadac640 (sb_internal){.+.+}-{0:0}, at: start_transaction+0x40b/0x5c0 #2: ffff8e7fab628a88 (&fs_info->commit_root_sem){++++}-{3:3}, at: btrfs_find_all_roots+0x41/0x80 stack backtrace: CPU: 0 PID: 903 Comm: btrfs-cleaner Not tainted 5.9.0+ #102 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: dump_stack+0x8b/0xb0 check_noncircular+0xcf/0xf0 __lock_acquire+0x1167/0x2150 ? __bfs+0x42/0x210 lock_acquire+0xb9/0x3d0 ? __btrfs_tree_read_lock+0x32/0x170 down_read_nested+0x43/0x130 ? __btrfs_tree_read_lock+0x32/0x170 __btrfs_tree_read_lock+0x32/0x170 __btrfs_read_lock_root_node+0x3a/0x50 btrfs_search_slot+0x614/0x9d0 ? find_held_lock+0x2b/0x80 btrfs_find_root+0x35/0x1b0 ? do_raw_spin_unlock+0x4b/0xa0 btrfs_read_tree_root+0x61/0x120 btrfs_get_root_ref+0x14b/0x600 find_parent_nodes+0x3e6/0x1b30 btrfs_find_all_roots_safe+0xb4/0x130 btrfs_find_all_roots+0x60/0x80 btrfs_qgroup_trace_extent_post+0x27/0x40 btrfs_add_delayed_data_ref+0x3fd/0x460 btrfs_free_extent+0x42/0x100 __btrfs_mod_ref+0x1d7/0x2f0 walk_up_proc+0x11c/0x400 walk_up_tree+0xf0/0x180 btrfs_drop_snapshot+0x1c7/0x780 ? btrfs_clean_one_deleted_snapshot+0x73/0x110 btrfs_clean_one_deleted_snapshot+0xfb/0x110 cleaner_kthread+0xd4/0x140 ? btrfs_alloc_root+0x50/0x50 kthread+0x13a/0x150 ? kthread_create_worker_on_cpu+0x40/0x40 ret_from_fork+0x1f/0x30 BTRFS info (device sdb): disk space caching is enabled BTRFS info (device sdb): has skinny extents This happens because qgroups does a backref lookup when we create a delayed ref. From here it may have to look up a root from an indirect ref, which does a normal lookup on the tree_root, which takes the read lock on the tree_root nodes. To fix this we need to add a variant for looking up roots that searches the commit root of the tree_root. Then when we do the backref search using the commit root we are sure to not take any locks on the tree_root nodes. This gets rid of the lockdep splat when running btrfs/104. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-19 20:02:31 +00:00
* @fs_info: the fs_info
* @objectid: the objectid we need to lookup
*
* This is exclusively used for backref walking, and exists specifically because
* of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
* creation time, which means we may have to read the tree_root in order to look
* up a fs root that is not in memory. If the root is not in memory we will
* read the tree root commit root and look up the fs root from there. This is a
* temporary root, it will not be inserted into the radix tree as it doesn't
* have the most uptodate information, it'll simply be discarded once the
* backref code is finished using the root.
*/
struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
u64 objectid)
{
struct btrfs_root *root;
struct btrfs_key key;
ASSERT(path->search_commit_root && path->skip_locking);
/*
* This can return -ENOENT if we ask for a root that doesn't exist, but
* since this is called via the backref walking code we won't be looking
* up a root that doesn't exist, unless there's corruption. So if root
* != NULL just return it.
*/
root = btrfs_get_global_root(fs_info, objectid);
if (root)
return root;
root = btrfs_lookup_fs_root(fs_info, objectid);
if (root)
return root;
key.objectid = objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
root = read_tree_root_path(fs_info->tree_root, path, &key);
btrfs_release_path(path);
return root;
}
static int cleaner_kthread(void *arg)
{
struct btrfs_fs_info *fs_info = arg;
int again;
Btrfs: fix missing delayed iputs on unmount There's a race between close_ctree() and cleaner_kthread(). close_ctree() sets btrfs_fs_closing(), and the cleaner stops when it sees it set, but this is racy; the cleaner might have already checked the bit and could be cleaning stuff. In particular, if it deletes unused block groups, it will create delayed iputs for the free space cache inodes. As of "btrfs: don't run delayed_iputs in commit", we're no longer running delayed iputs after a commit. Therefore, if the cleaner creates more delayed iputs after delayed iputs are run in btrfs_commit_super(), we will leak inodes on unmount and get a busy inode crash from the VFS. Fix it by parking the cleaner before we actually close anything. Then, any remaining delayed iputs will always be handled in btrfs_commit_super(). This also ensures that the commit in close_ctree() is really the last commit, so we can get rid of the commit in cleaner_kthread(). The fstest/generic/475 followed by 476 can trigger a crash that manifests as a slab corruption caused by accessing the freed kthread structure by a wake up function. Sample trace: [ 5657.077612] BUG: unable to handle kernel NULL pointer dereference at 00000000000000cc [ 5657.079432] PGD 1c57a067 P4D 1c57a067 PUD da10067 PMD 0 [ 5657.080661] Oops: 0000 [#1] PREEMPT SMP [ 5657.081592] CPU: 1 PID: 5157 Comm: fsstress Tainted: G W 4.19.0-rc8-default+ #323 [ 5657.083703] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014 [ 5657.086577] RIP: 0010:shrink_page_list+0x2f9/0xe90 [ 5657.091937] RSP: 0018:ffffb5c745c8f728 EFLAGS: 00010287 [ 5657.092953] RAX: 0000000000000074 RBX: ffffb5c745c8f830 RCX: 0000000000000000 [ 5657.094590] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff9a8747fdf3d0 [ 5657.095987] RBP: ffffb5c745c8f9e0 R08: 0000000000000000 R09: 0000000000000000 [ 5657.097159] R10: ffff9a8747fdf5e8 R11: 0000000000000000 R12: ffffb5c745c8f788 [ 5657.098513] R13: ffff9a877f6ff2c0 R14: ffff9a877f6ff2c8 R15: dead000000000200 [ 5657.099689] FS: 00007f948d853b80(0000) GS:ffff9a877d600000(0000) knlGS:0000000000000000 [ 5657.101032] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5657.101953] CR2: 00000000000000cc CR3: 00000000684bd000 CR4: 00000000000006e0 [ 5657.103159] Call Trace: [ 5657.103776] shrink_inactive_list+0x194/0x410 [ 5657.104671] shrink_node_memcg.constprop.84+0x39a/0x6a0 [ 5657.105750] shrink_node+0x62/0x1c0 [ 5657.106529] try_to_free_pages+0x1a4/0x500 [ 5657.107408] __alloc_pages_slowpath+0x2c9/0xb20 [ 5657.108418] __alloc_pages_nodemask+0x268/0x2b0 [ 5657.109348] kmalloc_large_node+0x37/0x90 [ 5657.110205] __kmalloc_node+0x236/0x310 [ 5657.111014] kvmalloc_node+0x3e/0x70 Fixes: 30928e9baac2 ("btrfs: don't run delayed_iputs in commit") Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add trace ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-31 17:06:08 +00:00
while (1) {
again = 0;
set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
/* Make the cleaner go to sleep early. */
if (btrfs_need_cleaner_sleep(fs_info))
goto sleep;
/*
* Do not do anything if we might cause open_ctree() to block
* before we have finished mounting the filesystem.
*/
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
goto sleep;
if (!mutex_trylock(&fs_info->cleaner_mutex))
goto sleep;
/*
* Avoid the problem that we change the status of the fs
* during the above check and trylock.
*/
if (btrfs_need_cleaner_sleep(fs_info)) {
mutex_unlock(&fs_info->cleaner_mutex);
goto sleep;
}
btrfs: sysfs: update fs features directory asynchronously [BUG] Since the introduction of per-fs feature sysfs interface (/sys/fs/btrfs/<UUID>/features/), the content of that directory is never updated. Thus for the following case, that directory will not show the new features like RAID56: # mkfs.btrfs -f $dev1 $dev2 $dev3 # mount $dev1 $mnt # btrfs balance start -f -mconvert=raid5 $mnt # ls /sys/fs/btrfs/$uuid/features/ extended_iref free_space_tree no_holes skinny_metadata While after unmount and mount, we got the correct features: # umount $mnt # mount $dev1 $mnt # ls /sys/fs/btrfs/$uuid/features/ extended_iref free_space_tree no_holes raid56 skinny_metadata [CAUSE] Because we never really try to update the content of per-fs features/ directory. We had an attempt to update the features directory dynamically in commit 14e46e04958d ("btrfs: synchronize incompat feature bits with sysfs files"), but unfortunately it get reverted in commit e410e34fad91 ("Revert "btrfs: synchronize incompat feature bits with sysfs files""). The problem in the original patch is, in the context of btrfs_create_chunk(), we can not afford to update the sysfs group. The exported but never utilized function, btrfs_sysfs_feature_update() is the leftover of such attempt. As even if we go sysfs_update_group(), new files will need extra memory allocation, and we have no way to specify the sysfs update to go GFP_NOFS. [FIX] This patch will address the old problem by doing asynchronous sysfs update in the cleaner thread. This involves the following changes: - Make __btrfs_(set|clear)_fs_(incompat|compat_ro) helpers to set BTRFS_FS_FEATURE_CHANGED flag when needed - Update btrfs_sysfs_feature_update() to use sysfs_update_group() And drop unnecessary arguments. - Call btrfs_sysfs_feature_update() in cleaner_kthread If we have the BTRFS_FS_FEATURE_CHANGED flag set. - Wake up cleaner_kthread in btrfs_commit_transaction if we have BTRFS_FS_FEATURE_CHANGED flag By this, all the previously dangerous call sites like btrfs_create_chunk() need no new changes, as above helpers would have already set the BTRFS_FS_FEATURE_CHANGED flag. The real work happens at cleaner_kthread, thus we pay the cost of delaying the update to sysfs directory, but the delayed time should be small enough that end user can not distinguish though it might get delayed if the cleaner thread is busy with removing subvolumes or defrag. CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-01-13 11:11:39 +00:00
if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
btrfs_sysfs_feature_update(fs_info);
btrfs_run_delayed_iputs(fs_info);
Btrfs: fix deadlock running delayed iputs at transaction commit time While running a stress test I ran into a deadlock when running the delayed iputs at transaction time, which produced the following report and trace: [ 886.399989] ============================================= [ 886.400871] [ INFO: possible recursive locking detected ] [ 886.401663] 4.4.0-rc6-btrfs-next-18+ #1 Not tainted [ 886.402384] --------------------------------------------- [ 886.403182] fio/8277 is trying to acquire lock: [ 886.403568] (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.403568] [ 886.403568] but task is already holding lock: [ 886.403568] (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.403568] [ 886.403568] other info that might help us debug this: [ 886.403568] Possible unsafe locking scenario: [ 886.403568] [ 886.403568] CPU0 [ 886.403568] ---- [ 886.403568] lock(&fs_info->delayed_iput_sem); [ 886.403568] lock(&fs_info->delayed_iput_sem); [ 886.403568] [ 886.403568] *** DEADLOCK *** [ 886.403568] [ 886.403568] May be due to missing lock nesting notation [ 886.403568] [ 886.403568] 3 locks held by fio/8277: [ 886.403568] #0: (sb_writers#11){.+.+.+}, at: [<ffffffff81174c4c>] __sb_start_write+0x5f/0xb0 [ 886.403568] #1: (&sb->s_type->i_mutex_key#15){+.+.+.}, at: [<ffffffffa054620d>] btrfs_file_write_iter+0x73/0x408 [btrfs] [ 886.403568] #2: (&fs_info->delayed_iput_sem){++++..}, at: [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.403568] [ 886.403568] stack backtrace: [ 886.403568] CPU: 6 PID: 8277 Comm: fio Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [ 886.403568] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS by qemu-project.org 04/01/2014 [ 886.403568] 0000000000000000 ffff88009f80f770 ffffffff8125d4fd ffffffff82af1fc0 [ 886.403568] ffff88009f80f830 ffffffff8108e5f9 0000000200000000 ffff88009fd92290 [ 886.403568] 0000000000000000 ffffffff82af1fc0 ffffffff829cfb01 00042b216d008804 [ 886.403568] Call Trace: [ 886.403568] [<ffffffff8125d4fd>] dump_stack+0x4e/0x79 [ 886.403568] [<ffffffff8108e5f9>] __lock_acquire+0xd42/0xf0b [ 886.403568] [<ffffffff810c22db>] ? __module_address+0xdf/0x108 [ 886.403568] [<ffffffff8108eb77>] lock_acquire+0x10d/0x194 [ 886.403568] [<ffffffff8108eb77>] ? lock_acquire+0x10d/0x194 [ 886.403568] [<ffffffffa0538823>] ? btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.489542] [<ffffffff8148556b>] down_read+0x3e/0x4d [ 886.489542] [<ffffffffa0538823>] ? btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.489542] [<ffffffffa0538823>] btrfs_run_delayed_iputs+0x36/0xbf [btrfs] [ 886.489542] [<ffffffffa0533953>] btrfs_commit_transaction+0x8f5/0x96e [btrfs] [ 886.489542] [<ffffffffa0521d7a>] flush_space+0x435/0x44a [btrfs] [ 886.489542] [<ffffffffa052218b>] ? reserve_metadata_bytes+0x26a/0x384 [btrfs] [ 886.489542] [<ffffffffa05221ae>] reserve_metadata_bytes+0x28d/0x384 [btrfs] [ 886.489542] [<ffffffffa052256c>] ? btrfs_block_rsv_refill+0x58/0x96 [btrfs] [ 886.489542] [<ffffffffa0522584>] btrfs_block_rsv_refill+0x70/0x96 [btrfs] [ 886.489542] [<ffffffffa053d747>] btrfs_evict_inode+0x394/0x55a [btrfs] [ 886.489542] [<ffffffff81188e31>] evict+0xa7/0x15c [ 886.489542] [<ffffffff81189878>] iput+0x1d3/0x266 [ 886.489542] [<ffffffffa053887c>] btrfs_run_delayed_iputs+0x8f/0xbf [btrfs] [ 886.489542] [<ffffffffa0533953>] btrfs_commit_transaction+0x8f5/0x96e [btrfs] [ 886.489542] [<ffffffff81085096>] ? signal_pending_state+0x31/0x31 [ 886.489542] [<ffffffffa0521191>] btrfs_alloc_data_chunk_ondemand+0x1d7/0x288 [btrfs] [ 886.489542] [<ffffffffa0521282>] btrfs_check_data_free_space+0x40/0x59 [btrfs] [ 886.489542] [<ffffffffa05228f5>] btrfs_delalloc_reserve_space+0x1e/0x4e [btrfs] [ 886.489542] [<ffffffffa053620a>] btrfs_direct_IO+0x10c/0x27e [btrfs] [ 886.489542] [<ffffffff8111d9a1>] generic_file_direct_write+0xb3/0x128 [ 886.489542] [<ffffffffa05463c3>] btrfs_file_write_iter+0x229/0x408 [btrfs] [ 886.489542] [<ffffffff8108ae38>] ? __lock_is_held+0x38/0x50 [ 886.489542] [<ffffffff8117279e>] __vfs_write+0x7c/0xa5 [ 886.489542] [<ffffffff81172cda>] vfs_write+0xa0/0xe4 [ 886.489542] [<ffffffff811734cc>] SyS_write+0x50/0x7e [ 886.489542] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [ 1081.852335] INFO: task fio:8244 blocked for more than 120 seconds. [ 1081.854348] Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [ 1081.857560] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1081.863227] fio D ffff880213f9bb28 0 8244 8240 0x00000000 [ 1081.868719] ffff880213f9bb28 00ffffff810fc6b0 ffffffff0000000a ffff88023ed55240 [ 1081.872499] ffff880206b5d400 ffff880213f9c000 ffff88020a4d5318 ffff880206b5d400 [ 1081.876834] ffffffff00000001 ffff880206b5d400 ffff880213f9bb40 ffffffff81482ba4 [ 1081.880782] Call Trace: [ 1081.881793] [<ffffffff81482ba4>] schedule+0x7f/0x97 [ 1081.883340] [<ffffffff81485eb5>] rwsem_down_write_failed+0x2d5/0x325 [ 1081.895525] [<ffffffff8108d48d>] ? trace_hardirqs_on_caller+0x16/0x1ab [ 1081.897419] [<ffffffff81269723>] call_rwsem_down_write_failed+0x13/0x20 [ 1081.899251] [<ffffffff81269723>] ? call_rwsem_down_write_failed+0x13/0x20 [ 1081.901063] [<ffffffff81089fae>] ? __down_write_nested.isra.0+0x1f/0x21 [ 1081.902365] [<ffffffff814855bd>] down_write+0x43/0x57 [ 1081.903846] [<ffffffffa05211b0>] ? btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1081.906078] [<ffffffffa05211b0>] btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1081.908846] [<ffffffff8108d461>] ? mark_held_locks+0x56/0x6c [ 1081.910409] [<ffffffffa0521282>] btrfs_check_data_free_space+0x40/0x59 [btrfs] [ 1081.912482] [<ffffffffa05228f5>] btrfs_delalloc_reserve_space+0x1e/0x4e [btrfs] [ 1081.914597] [<ffffffffa053620a>] btrfs_direct_IO+0x10c/0x27e [btrfs] [ 1081.919037] [<ffffffff8111d9a1>] generic_file_direct_write+0xb3/0x128 [ 1081.920754] [<ffffffffa05463c3>] btrfs_file_write_iter+0x229/0x408 [btrfs] [ 1081.922496] [<ffffffff8108ae38>] ? __lock_is_held+0x38/0x50 [ 1081.923922] [<ffffffff8117279e>] __vfs_write+0x7c/0xa5 [ 1081.925275] [<ffffffff81172cda>] vfs_write+0xa0/0xe4 [ 1081.926584] [<ffffffff811734cc>] SyS_write+0x50/0x7e [ 1081.927968] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f [ 1081.985293] INFO: lockdep is turned off. [ 1081.986132] INFO: task fio:8249 blocked for more than 120 seconds. [ 1081.987434] Not tainted 4.4.0-rc6-btrfs-next-18+ #1 [ 1081.988534] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1081.990147] fio D ffff880218febbb8 0 8249 8240 0x00000000 [ 1081.991626] ffff880218febbb8 00ffffff81486b8e ffff88020000000b ffff88023ed75240 [ 1081.993258] ffff8802120a9a00 ffff880218fec000 ffff88020a4d5318 ffff8802120a9a00 [ 1081.994850] ffffffff00000001 ffff8802120a9a00 ffff880218febbd0 ffffffff81482ba4 [ 1081.996485] Call Trace: [ 1081.997037] [<ffffffff81482ba4>] schedule+0x7f/0x97 [ 1081.998017] [<ffffffff81485eb5>] rwsem_down_write_failed+0x2d5/0x325 [ 1081.999241] [<ffffffff810852a5>] ? finish_wait+0x6d/0x76 [ 1082.000306] [<ffffffff81269723>] call_rwsem_down_write_failed+0x13/0x20 [ 1082.001533] [<ffffffff81269723>] ? call_rwsem_down_write_failed+0x13/0x20 [ 1082.002776] [<ffffffff81089fae>] ? __down_write_nested.isra.0+0x1f/0x21 [ 1082.003995] [<ffffffff814855bd>] down_write+0x43/0x57 [ 1082.005000] [<ffffffffa05211b0>] ? btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1082.007403] [<ffffffffa05211b0>] btrfs_alloc_data_chunk_ondemand+0x1f6/0x288 [btrfs] [ 1082.008988] [<ffffffffa0545064>] btrfs_fallocate+0x7c1/0xc2f [btrfs] [ 1082.010193] [<ffffffff8108a1ba>] ? percpu_down_read+0x4e/0x77 [ 1082.011280] [<ffffffff81174c4c>] ? __sb_start_write+0x5f/0xb0 [ 1082.012265] [<ffffffff81174c4c>] ? __sb_start_write+0x5f/0xb0 [ 1082.013021] [<ffffffff811712e4>] vfs_fallocate+0x170/0x1ff [ 1082.013738] [<ffffffff81181ebb>] ioctl_preallocate+0x89/0x9b [ 1082.014778] [<ffffffff811822d7>] do_vfs_ioctl+0x40a/0x4ea [ 1082.015778] [<ffffffff81176ea7>] ? SYSC_newfstat+0x25/0x2e [ 1082.016806] [<ffffffff8118b4de>] ? __fget_light+0x4d/0x71 [ 1082.017789] [<ffffffff8118240e>] SyS_ioctl+0x57/0x79 [ 1082.018706] [<ffffffff814872d7>] entry_SYSCALL_64_fastpath+0x12/0x6f This happens because we can recursively acquire the semaphore fs_info->delayed_iput_sem when attempting to allocate space to satisfy a file write request as shown in the first trace above - when committing a transaction we acquire (down_read) the semaphore before running the delayed iputs, and when running a delayed iput() we can end up calling an inode's eviction handler, which in turn commits another transaction and attempts to acquire (down_read) again the semaphore to run more delayed iput operations. This results in a deadlock because if a task acquires multiple times a semaphore it should invoke down_read_nested() with a different lockdep class for each level of recursion. Fix this by simplifying the implementation and use a mutex instead that is acquired by the cleaner kthread before it runs the delayed iputs instead of always acquiring a semaphore before delayed references are run from anywhere. Fixes: d7c151717a1e (btrfs: Fix NO_SPACE bug caused by delayed-iput) Cc: stable@vger.kernel.org # 4.1+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2016-01-15 11:05:12 +00:00
again = btrfs_clean_one_deleted_snapshot(fs_info);
mutex_unlock(&fs_info->cleaner_mutex);
/*
* The defragger has dealt with the R/O remount and umount,
* needn't do anything special here.
*/
btrfs_run_defrag_inodes(fs_info);
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
/*
* Acquires fs_info->reclaim_bgs_lock to avoid racing
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
* with relocation (btrfs_relocate_chunk) and relocation
* acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
* after acquiring fs_info->reclaim_bgs_lock. So we
Btrfs: fix race between balance and unused block group deletion We have a race between deleting an unused block group and balancing the same block group that leads to an assertion failure/BUG(), producing the following trace: [181631.208236] BTRFS: assertion failed: 0, file: fs/btrfs/volumes.c, line: 2622 [181631.220591] ------------[ cut here ]------------ [181631.222959] kernel BUG at fs/btrfs/ctree.h:4062! [181631.223932] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [181631.224566] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse acpi_cpufreq parpor$ [181631.224566] CPU: 8 PID: 17451 Comm: btrfs Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [181631.224566] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [181631.224566] task: ffff880127e09590 ti: ffff8800b5824000 task.ti: ffff8800b5824000 [181631.224566] RIP: 0010:[<ffffffffa03f19f6>] [<ffffffffa03f19f6>] assfail.constprop.50+0x1e/0x20 [btrfs] [181631.224566] RSP: 0018:ffff8800b5827ae8 EFLAGS: 00010246 [181631.224566] RAX: 0000000000000040 RBX: ffff8800109fc218 RCX: ffffffff81095dce [181631.224566] RDX: 0000000000005124 RSI: ffffffff81464819 RDI: 00000000ffffffff [181631.224566] RBP: ffff8800b5827ae8 R08: 0000000000000001 R09: 0000000000000000 [181631.224566] R10: 0000000000000000 R11: 0000000000000000 R12: ffff8800109fc200 [181631.224566] R13: ffff880020095000 R14: ffff8800b1a13f38 R15: ffff880020095000 [181631.224566] FS: 00007f70ca0b0c80(0000) GS:ffff88013ec00000(0000) knlGS:0000000000000000 [181631.224566] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [181631.224566] CR2: 00007f2872ab6e68 CR3: 00000000a717c000 CR4: 00000000000006e0 [181631.224566] Stack: [181631.224566] ffff8800b5827ba8 ffffffffa03f3916 ffff8800b5827b38 ffffffffa03d080e [181631.224566] ffffffffa03d1423 ffff880020095000 ffff88001233c000 0000000000000001 [181631.224566] ffff880020095000 ffff8800b1a13f38 0000000a69c00000 0000000000000000 [181631.224566] Call Trace: [181631.224566] [<ffffffffa03f3916>] btrfs_remove_chunk+0xa4/0x6bb [btrfs] [181631.224566] [<ffffffffa03d080e>] ? join_transaction.isra.8+0xb9/0x3ba [btrfs] [181631.224566] [<ffffffffa03d1423>] ? wait_current_trans.isra.13+0x22/0xfc [btrfs] [181631.224566] [<ffffffffa03f3fbc>] btrfs_relocate_chunk.isra.29+0x8f/0xa7 [btrfs] [181631.224566] [<ffffffffa03f54df>] btrfs_balance+0xaa4/0xc52 [btrfs] [181631.224566] [<ffffffffa03fd388>] btrfs_ioctl_balance+0x23f/0x2b0 [btrfs] [181631.224566] [<ffffffff810872f9>] ? trace_hardirqs_on+0xd/0xf [181631.224566] [<ffffffffa04019a3>] btrfs_ioctl+0xfe2/0x2220 [btrfs] [181631.224566] [<ffffffff812603ed>] ? __this_cpu_preempt_check+0x13/0x15 [181631.224566] [<ffffffff81084669>] ? arch_local_irq_save+0x9/0xc [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff81138def>] ? handle_mm_fault+0x834/0xcd2 [181631.224566] [<ffffffff8103e48c>] ? __do_page_fault+0x211/0x424 [181631.224566] [<ffffffff811755e6>] do_vfs_ioctl+0x3c6/0x479 (...) The sequence of steps leading to this are: CPU 0 CPU 1 btrfs_balance() btrfs_relocate_chunk() btrfs_relocate_block_group(bg X) btrfs_lookup_block_group(bg X) cleaner_kthread locks fs_info->cleaner_mutex btrfs_delete_unused_bgs() finds bg X, which became unused in the previous transaction checks bg X ->ro == 0, so it proceeds sets bg X ->ro to 1 (btrfs_set_block_group_ro(bg X)) blocks on fs_info->cleaner_mutex btrfs_remove_chunk(bg X) unlocks fs_info->cleaner_mutex acquires fs_info->cleaner_mutex relocate_block_group() --> does nothing, no extents found in the extent tree from bg X unlocks fs_info->cleaner_mutex btrfs_relocate_block_group(bg X) returns btrfs_remove_chunk(bg X) extent map not found --> ASSERT(0) Fix this by using a new mutex to make sure these 2 operations, block group relocation and removal, are serialized. This issue is reproducible by running fstests generic/038 (which stresses chunk allocation and automatic removal of unused block groups) together with the following balance loop: while true; do btrfs balance start -dusage=0 <mountpoint> ; done Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-10 23:58:53 +00:00
* can't hold, nor need to, fs_info->cleaner_mutex when deleting
* unused block groups.
*/
btrfs_delete_unused_bgs(fs_info);
/*
* Reclaim block groups in the reclaim_bgs list after we deleted
* all unused block_groups. This possibly gives us some more free
* space.
*/
btrfs_reclaim_bgs(fs_info);
sleep:
btrfs: fix race between RO remount and the cleaner task When we are remounting a filesystem in RO mode we can race with the cleaner task and result in leaking a transaction if the filesystem is unmounted shortly after, before the transaction kthread had a chance to commit that transaction. That also results in a crash during unmount, due to a use-after-free, if hardware acceleration is not available for crc32c. The following sequence of steps explains how the race happens. 1) The filesystem is mounted in RW mode and the cleaner task is running. This means that currently BTRFS_FS_CLEANER_RUNNING is set at fs_info->flags; 2) The cleaner task is currently running delayed iputs for example; 3) A filesystem RO remount operation starts; 4) The RO remount task calls btrfs_commit_super(), which commits any currently open transaction, and it finishes; 5) At this point the cleaner task is still running and it creates a new transaction by doing one of the following things: * When running the delayed iput() for an inode with a 0 link count, in which case at btrfs_evict_inode() we start a transaction through the call to evict_refill_and_join(), use it and then release its handle through btrfs_end_transaction(); * When deleting a dead root through btrfs_clean_one_deleted_snapshot(), a transaction is started at btrfs_drop_snapshot() and then its handle is released through a call to btrfs_end_transaction_throttle(); * When the remount task was still running, and before the remount task called btrfs_delete_unused_bgs(), the cleaner task also called btrfs_delete_unused_bgs() and it picked and removed one block group from the list of unused block groups. Before the cleaner task started a transaction, through btrfs_start_trans_remove_block_group() at btrfs_delete_unused_bgs(), the remount task had already called btrfs_commit_super(); 6) So at this point the filesystem is in RO mode and we have an open transaction that was started by the cleaner task; 7) Shortly after a filesystem unmount operation starts. At close_ctree() we stop the transaction kthread before it had a chance to commit the transaction, since less than 30 seconds (the default commit interval) have elapsed since the last transaction was committed; 8) We end up calling iput() against the btree inode at close_ctree() while there is an open transaction, and since that transaction was used to update btrees by the cleaner, we have dirty pages in the btree inode due to COW operations on metadata extents, and therefore writeback is triggered for the btree inode. So btree_write_cache_pages() is invoked to flush those dirty pages during the final iput() on the btree inode. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 9) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 10) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 So fix this by making the remount path to wait for the cleaner task before calling btrfs_commit_super(). The remount path now waits for the bit BTRFS_FS_CLEANER_RUNNING to be cleared from fs_info->flags before calling btrfs_commit_super() and this ensures the cleaner can not start a transaction after that, because it sleeps when the filesystem is in RO mode and we have already flagged the filesystem as RO before waiting for BTRFS_FS_CLEANER_RUNNING to be cleared. This also introduces a new flag BTRFS_FS_STATE_RO to be used for fs_info->fs_state when the filesystem is in RO mode. This is because we were doing the RO check using the flags of the superblock and setting the RO mode simply by ORing into the superblock's flags - those operations are not atomic and could result in the cleaner not seeing the update from the remount task after it clears BTRFS_FS_CLEANER_RUNNING. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-14 10:10:47 +00:00
clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
Btrfs: fix missing delayed iputs on unmount There's a race between close_ctree() and cleaner_kthread(). close_ctree() sets btrfs_fs_closing(), and the cleaner stops when it sees it set, but this is racy; the cleaner might have already checked the bit and could be cleaning stuff. In particular, if it deletes unused block groups, it will create delayed iputs for the free space cache inodes. As of "btrfs: don't run delayed_iputs in commit", we're no longer running delayed iputs after a commit. Therefore, if the cleaner creates more delayed iputs after delayed iputs are run in btrfs_commit_super(), we will leak inodes on unmount and get a busy inode crash from the VFS. Fix it by parking the cleaner before we actually close anything. Then, any remaining delayed iputs will always be handled in btrfs_commit_super(). This also ensures that the commit in close_ctree() is really the last commit, so we can get rid of the commit in cleaner_kthread(). The fstest/generic/475 followed by 476 can trigger a crash that manifests as a slab corruption caused by accessing the freed kthread structure by a wake up function. Sample trace: [ 5657.077612] BUG: unable to handle kernel NULL pointer dereference at 00000000000000cc [ 5657.079432] PGD 1c57a067 P4D 1c57a067 PUD da10067 PMD 0 [ 5657.080661] Oops: 0000 [#1] PREEMPT SMP [ 5657.081592] CPU: 1 PID: 5157 Comm: fsstress Tainted: G W 4.19.0-rc8-default+ #323 [ 5657.083703] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014 [ 5657.086577] RIP: 0010:shrink_page_list+0x2f9/0xe90 [ 5657.091937] RSP: 0018:ffffb5c745c8f728 EFLAGS: 00010287 [ 5657.092953] RAX: 0000000000000074 RBX: ffffb5c745c8f830 RCX: 0000000000000000 [ 5657.094590] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff9a8747fdf3d0 [ 5657.095987] RBP: ffffb5c745c8f9e0 R08: 0000000000000000 R09: 0000000000000000 [ 5657.097159] R10: ffff9a8747fdf5e8 R11: 0000000000000000 R12: ffffb5c745c8f788 [ 5657.098513] R13: ffff9a877f6ff2c0 R14: ffff9a877f6ff2c8 R15: dead000000000200 [ 5657.099689] FS: 00007f948d853b80(0000) GS:ffff9a877d600000(0000) knlGS:0000000000000000 [ 5657.101032] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5657.101953] CR2: 00000000000000cc CR3: 00000000684bd000 CR4: 00000000000006e0 [ 5657.103159] Call Trace: [ 5657.103776] shrink_inactive_list+0x194/0x410 [ 5657.104671] shrink_node_memcg.constprop.84+0x39a/0x6a0 [ 5657.105750] shrink_node+0x62/0x1c0 [ 5657.106529] try_to_free_pages+0x1a4/0x500 [ 5657.107408] __alloc_pages_slowpath+0x2c9/0xb20 [ 5657.108418] __alloc_pages_nodemask+0x268/0x2b0 [ 5657.109348] kmalloc_large_node+0x37/0x90 [ 5657.110205] __kmalloc_node+0x236/0x310 [ 5657.111014] kvmalloc_node+0x3e/0x70 Fixes: 30928e9baac2 ("btrfs: don't run delayed_iputs in commit") Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add trace ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-31 17:06:08 +00:00
if (kthread_should_park())
kthread_parkme();
if (kthread_should_stop())
return 0;
if (!again) {
set_current_state(TASK_INTERRUPTIBLE);
Btrfs: fix missing delayed iputs on unmount There's a race between close_ctree() and cleaner_kthread(). close_ctree() sets btrfs_fs_closing(), and the cleaner stops when it sees it set, but this is racy; the cleaner might have already checked the bit and could be cleaning stuff. In particular, if it deletes unused block groups, it will create delayed iputs for the free space cache inodes. As of "btrfs: don't run delayed_iputs in commit", we're no longer running delayed iputs after a commit. Therefore, if the cleaner creates more delayed iputs after delayed iputs are run in btrfs_commit_super(), we will leak inodes on unmount and get a busy inode crash from the VFS. Fix it by parking the cleaner before we actually close anything. Then, any remaining delayed iputs will always be handled in btrfs_commit_super(). This also ensures that the commit in close_ctree() is really the last commit, so we can get rid of the commit in cleaner_kthread(). The fstest/generic/475 followed by 476 can trigger a crash that manifests as a slab corruption caused by accessing the freed kthread structure by a wake up function. Sample trace: [ 5657.077612] BUG: unable to handle kernel NULL pointer dereference at 00000000000000cc [ 5657.079432] PGD 1c57a067 P4D 1c57a067 PUD da10067 PMD 0 [ 5657.080661] Oops: 0000 [#1] PREEMPT SMP [ 5657.081592] CPU: 1 PID: 5157 Comm: fsstress Tainted: G W 4.19.0-rc8-default+ #323 [ 5657.083703] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014 [ 5657.086577] RIP: 0010:shrink_page_list+0x2f9/0xe90 [ 5657.091937] RSP: 0018:ffffb5c745c8f728 EFLAGS: 00010287 [ 5657.092953] RAX: 0000000000000074 RBX: ffffb5c745c8f830 RCX: 0000000000000000 [ 5657.094590] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff9a8747fdf3d0 [ 5657.095987] RBP: ffffb5c745c8f9e0 R08: 0000000000000000 R09: 0000000000000000 [ 5657.097159] R10: ffff9a8747fdf5e8 R11: 0000000000000000 R12: ffffb5c745c8f788 [ 5657.098513] R13: ffff9a877f6ff2c0 R14: ffff9a877f6ff2c8 R15: dead000000000200 [ 5657.099689] FS: 00007f948d853b80(0000) GS:ffff9a877d600000(0000) knlGS:0000000000000000 [ 5657.101032] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5657.101953] CR2: 00000000000000cc CR3: 00000000684bd000 CR4: 00000000000006e0 [ 5657.103159] Call Trace: [ 5657.103776] shrink_inactive_list+0x194/0x410 [ 5657.104671] shrink_node_memcg.constprop.84+0x39a/0x6a0 [ 5657.105750] shrink_node+0x62/0x1c0 [ 5657.106529] try_to_free_pages+0x1a4/0x500 [ 5657.107408] __alloc_pages_slowpath+0x2c9/0xb20 [ 5657.108418] __alloc_pages_nodemask+0x268/0x2b0 [ 5657.109348] kmalloc_large_node+0x37/0x90 [ 5657.110205] __kmalloc_node+0x236/0x310 [ 5657.111014] kvmalloc_node+0x3e/0x70 Fixes: 30928e9baac2 ("btrfs: don't run delayed_iputs in commit") Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add trace ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-31 17:06:08 +00:00
schedule();
__set_current_state(TASK_RUNNING);
}
Btrfs: fix crash on close_ctree() if cleaner starts new transaction Often when running fstests btrfs/079 I was running into the following trace during umount on one of my qemu/kvm test vms: [ 8245.682441] WARNING: CPU: 8 PID: 25064 at fs/btrfs/extent-tree.c:138 btrfs_put_block_group+0x51/0x69 [btrfs]() [ 8245.685039] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 acpi_cpufreq processor psmouse i2c_core thermal_sys parport evdev serio_raw button pcspkr microcode ext4 crc16 jbd2 mbcache sg sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata floppy virtio_pci virtio_ring scsi_mod virtio e1000 [last unloaded: btrfs] [ 8245.693860] CPU: 8 PID: 25064 Comm: umount Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [ 8245.695081] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [ 8245.697583] 0000000000000009 ffff88020d047ce8 ffffffff8145eec7 ffffffff81095dce [ 8245.699234] 0000000000000000 ffff88020d047d28 ffffffff8104b399 0000000000000028 [ 8245.700995] ffffffffa04db07b ffff8801c6036c00 ffff8801c6036d68 ffff880202eb40b0 [ 8245.702510] Call Trace: [ 8245.703006] [<ffffffff8145eec7>] dump_stack+0x4f/0x7b [ 8245.705393] [<ffffffff81095dce>] ? console_unlock+0x356/0x3a2 [ 8245.706569] [<ffffffff8104b399>] warn_slowpath_common+0xa1/0xbb [ 8245.707747] [<ffffffffa04db07b>] ? btrfs_put_block_group+0x51/0x69 [btrfs] [ 8245.709101] [<ffffffff8104b456>] warn_slowpath_null+0x1a/0x1c [ 8245.710274] [<ffffffffa04db07b>] btrfs_put_block_group+0x51/0x69 [btrfs] [ 8245.711823] [<ffffffffa04e3473>] btrfs_free_block_groups+0x145/0x322 [btrfs] [ 8245.713251] [<ffffffffa04ef31a>] close_ctree+0x1ef/0x325 [btrfs] [ 8245.714448] [<ffffffff8117d26e>] ? evict_inodes+0xdc/0xeb [ 8245.715539] [<ffffffffa04cb3ad>] btrfs_put_super+0x19/0x1b [btrfs] [ 8245.716835] [<ffffffff81167607>] generic_shutdown_super+0x73/0xef [ 8245.718015] [<ffffffff81167a3a>] kill_anon_super+0x13/0x1e [ 8245.719101] [<ffffffffa04cb1b6>] btrfs_kill_super+0x17/0x23 [btrfs] [ 8245.720316] [<ffffffff81167544>] deactivate_locked_super+0x3b/0x68 [ 8245.721517] [<ffffffff81167dd6>] deactivate_super+0x3f/0x43 [ 8245.722581] [<ffffffff8117fbb9>] cleanup_mnt+0x59/0x78 [ 8245.723538] [<ffffffff8117fc18>] __cleanup_mnt+0x12/0x14 [ 8245.724572] [<ffffffff81065371>] task_work_run+0x8f/0xbc [ 8245.725598] [<ffffffff810028fb>] do_notify_resume+0x45/0x53 [ 8245.726892] [<ffffffff814651ac>] int_signal+0x12/0x17 [ 8245.737887] ---[ end trace a01d038397e99b92 ]--- [ 8245.769363] general protection fault: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC [ 8245.770737] Modules linked in: btrfs dm_flakey dm_mod crc32c_generic xor raid6_pq nfsd auth_rpcgss oid_registry nfs_acl nfs lockd grace fscache sunrpc loop fuse parport_pc i2c_piix4 acpi_cpufreq processor psmouse i2c_core thermal_sys parport evdev serio_raw button pcspkr microcode ext4 crc16 jbd2 mbcache sg sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix libata floppy virtio_pci virtio_ring scsi_mod virtio e1000 [last unloaded: btrfs] [ 8245.772641] CPU: 2 PID: 25064 Comm: umount Tainted: G W 4.1.0-rc5-btrfs-next-10+ #1 [ 8245.772641] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.8.1-0-g4adadbd-20150316_085822-nilsson.home.kraxel.org 04/01/2014 [ 8245.772641] task: ffff880013005810 ti: ffff88020d044000 task.ti: ffff88020d044000 [ 8245.772641] RIP: 0010:[<ffffffffa051c8e6>] [<ffffffffa051c8e6>] btrfs_queue_work+0x2c/0x14d [btrfs] [ 8245.772641] RSP: 0018:ffff88020d0478b8 EFLAGS: 00010202 [ 8245.772641] RAX: 0000000000000004 RBX: 6b6b6b6b6b6b6b6b RCX: ffffffffa0581488 [ 8245.772641] RDX: 0000000000000000 RSI: ffff880194b7bf48 RDI: ffff880144b6a7a0 [ 8245.772641] RBP: ffff88020d0478d8 R08: 0000000000000000 R09: 000000000000ffff [ 8245.772641] R10: 0000000000000004 R11: 0000000000000005 R12: ffff880194b7bf48 [ 8245.772641] R13: ffff880194b7bf48 R14: 0000000000000410 R15: 0000000000000000 [ 8245.772641] FS: 00007f991e77d840(0000) GS:ffff88023e280000(0000) knlGS:0000000000000000 [ 8245.772641] CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b [ 8245.772641] CR2: 00007fbbd325ee68 CR3: 000000021de8e000 CR4: 00000000000006e0 [ 8245.772641] Stack: [ 8245.772641] ffff880194b7bf00 ffff880202eb4000 ffff880194b7bf48 0000000000000410 [ 8245.772641] ffff88020d047958 ffffffffa04ec6d5 ffff8801629b2ee8 0000000082987570 [ 8245.772641] 0000000000a5813f 0000000000000001 ffff880013006100 0000000000000002 [ 8245.772641] Call Trace: [ 8245.772641] [<ffffffffa04ec6d5>] btrfs_wq_submit_bio+0xe1/0x17b [btrfs] [ 8245.772641] [<ffffffff81086bff>] ? check_irq_usage+0x76/0x87 [ 8245.772641] [<ffffffffa04ec825>] btree_submit_bio_hook+0xb6/0xd9 [btrfs] [ 8245.772641] [<ffffffffa04ebb7c>] ? btree_csum_one_bio+0xad/0xad [btrfs] [ 8245.772641] [<ffffffffa04eb1a6>] ? btree_io_failed_hook+0x5e/0x5e [btrfs] [ 8245.772641] [<ffffffffa050a6e7>] submit_one_bio+0x8c/0xc7 [btrfs] [ 8245.772641] [<ffffffffa050d75b>] submit_extent_page.isra.18+0x9d/0x186 [btrfs] [ 8245.772641] [<ffffffffa050d95b>] write_one_eb+0x117/0x1ae [btrfs] [ 8245.772641] [<ffffffffa050a79b>] ? end_extent_buffer_writeback+0x21/0x21 [btrfs] [ 8245.772641] [<ffffffffa0510510>] btree_write_cache_pages+0x2ab/0x385 [btrfs] [ 8245.772641] [<ffffffffa04eb2b8>] btree_writepages+0x23/0x5c [btrfs] [ 8245.772641] [<ffffffff8111c661>] do_writepages+0x23/0x2c [ 8245.772641] [<ffffffff81189cd4>] __writeback_single_inode+0xda/0x5bd [ 8245.772641] [<ffffffff8118aa60>] ? writeback_single_inode+0x2b/0x173 [ 8245.772641] [<ffffffff8118aafd>] writeback_single_inode+0xc8/0x173 [ 8245.772641] [<ffffffff8118ac95>] write_inode_now+0x8a/0x95 [ 8245.772641] [<ffffffff81247bf0>] ? _atomic_dec_and_lock+0x30/0x4e [ 8245.772641] [<ffffffff8117cc5e>] iput+0x17d/0x26a [ 8245.772641] [<ffffffffa04ef355>] close_ctree+0x22a/0x325 [btrfs] [ 8245.772641] [<ffffffff8117d26e>] ? evict_inodes+0xdc/0xeb [ 8245.772641] [<ffffffffa04cb3ad>] btrfs_put_super+0x19/0x1b [btrfs] [ 8245.772641] [<ffffffff81167607>] generic_shutdown_super+0x73/0xef [ 8245.772641] [<ffffffff81167a3a>] kill_anon_super+0x13/0x1e [ 8245.772641] [<ffffffffa04cb1b6>] btrfs_kill_super+0x17/0x23 [btrfs] [ 8245.772641] [<ffffffff81167544>] deactivate_locked_super+0x3b/0x68 [ 8245.772641] [<ffffffff81167dd6>] deactivate_super+0x3f/0x43 [ 8245.772641] [<ffffffff8117fbb9>] cleanup_mnt+0x59/0x78 [ 8245.772641] [<ffffffff8117fc18>] __cleanup_mnt+0x12/0x14 [ 8245.772641] [<ffffffff81065371>] task_work_run+0x8f/0xbc [ 8245.772641] [<ffffffff810028fb>] do_notify_resume+0x45/0x53 [ 8245.772641] [<ffffffff814651ac>] int_signal+0x12/0x17 [ 8245.772641] Code: 1f 44 00 00 55 48 89 e5 41 56 41 55 41 54 53 49 89 f4 48 8b 46 70 a8 04 74 09 48 8b 5f 08 48 85 db 75 03 48 8b 1f 49 89 5c 24 68 <83> 7b 5c ff 74 04 f0 ff 43 50 49 83 7c 24 08 00 74 2c 4c 8d 6b [ 8245.772641] RIP [<ffffffffa051c8e6>] btrfs_queue_work+0x2c/0x14d [btrfs] [ 8245.772641] RSP <ffff88020d0478b8> [ 8245.845040] ---[ end trace a01d038397e99b93 ]--- For logical reasons such as the phase of the moon, this happened more often with "-o inode_cache" than without any mount options. After some debugging it turned out to be simple to understand what was happening: 1) close_ctree() is called; 2) It then stops the transaction kthread, which commits the current transaction; 3) It asks the cleaner kthread to stop, which is currently running btrfs_delete_unused_bgs(); 4) btrfs_delete_unused_bgs() finds an unused block group, starts a new transaction, deletes the block group, which implies COWing some tree nodes and leafs and dirtying their respective pages, and then finally it ends the transaction it started, without committing it; 5) The cleaner kthread stops; 6) close_ctree() releases (from memory) the block group objects, which produces the warning in the trace pasted above; 7) Then it invalidates all pages of the btree inode, by calling invalidate_inode_pages2(), which waits for any pages under writeback, and releases any non-dirty pages; 8) All work queues are destroyed (waiting first for their current tasks to finish execution); 9) A final iput() is called against the btree inode; 10) This iput triggers a writeback of the btree inode because it still has dirty pages; 11) This starts the whole chain of callbacks for the btree inode until it eventually reaches btrfs_wq_submit_bio() where it leads to a NULL pointer dereference because the work queues were already destroyed. Fix this by making the cleaner commit any transaction that it started after the transaction kthread was stopped. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-06-13 05:55:31 +00:00
}
}
static int transaction_kthread(void *arg)
{
struct btrfs_root *root = arg;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_trans_handle *trans;
struct btrfs_transaction *cur;
u64 transid;
time64_t delta;
unsigned long delay;
bool cannot_commit;
do {
cannot_commit = false;
delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
mutex_lock(&fs_info->transaction_kthread_mutex);
spin_lock(&fs_info->trans_lock);
cur = fs_info->running_transaction;
if (!cur) {
spin_unlock(&fs_info->trans_lock);
goto sleep;
}
delta = ktime_get_seconds() - cur->start_time;
if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
btrfs: do not block starts waiting on previous transaction commit Internally I got a report of very long stalls on normal operations like creating a new file when auto relocation was running. The reporter used the 'bpf offcputime' tracer to show that we would get stuck in start_transaction for 5 to 30 seconds, and were always being woken up by the transaction commit. Using my timing-everything script, which times how long a function takes and what percentage of that total time is taken up by its children, I saw several traces like this 1083 took 32812902424 ns 29929002926 ns 91.2110% wait_for_commit_duration 25568 ns 7.7920e-05% commit_fs_roots_duration 1007751 ns 0.00307% commit_cowonly_roots_duration 446855602 ns 1.36182% btrfs_run_delayed_refs_duration 271980 ns 0.00082% btrfs_run_delayed_items_duration 2008 ns 6.1195e-06% btrfs_apply_pending_changes_duration 9656 ns 2.9427e-05% switch_commit_roots_duration 1598 ns 4.8700e-06% btrfs_commit_device_sizes_duration 4314 ns 1.3147e-05% btrfs_free_log_root_tree_duration Here I was only tracing functions that happen where we are between START_COMMIT and UNBLOCKED in order to see what would be keeping us blocked for so long. The wait_for_commit() we do is where we wait for a previous transaction that hasn't completed it's commit. This can include all of the unpin work and other cleanups, which tends to be the longest part of our transaction commit. There is no reason we should be blocking new things from entering the transaction at this point, it just adds to random latency spikes for no reason. Fix this by adding a PREP stage. This allows us to properly deal with multiple committers coming in at the same time, we retain the behavior that the winner waits on the previous transaction and the losers all wait for this transaction commit to occur. Nothing else is blocked during the PREP stage, and then once the wait is complete we switch to COMMIT_START and all of the same behavior as before is maintained. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-24 20:59:22 +00:00
cur->state < TRANS_STATE_COMMIT_PREP &&
delta < fs_info->commit_interval) {
spin_unlock(&fs_info->trans_lock);
delay -= msecs_to_jiffies((delta - 1) * 1000);
delay = min(delay,
msecs_to_jiffies(fs_info->commit_interval * 1000));
goto sleep;
}
transid = cur->transid;
spin_unlock(&fs_info->trans_lock);
Btrfs: do extent allocation and reference count updates in the background The extent allocation tree maintains a reference count and full back reference information for every extent allocated in the filesystem. For subvolume and snapshot trees, every time a block goes through COW, the new copy of the block adds a reference on every block it points to. If a btree node points to 150 leaves, then the COW code needs to go and add backrefs on 150 different extents, which might be spread all over the extent allocation tree. These updates currently happen during btrfs_cow_block, and most COWs happen during btrfs_search_slot. btrfs_search_slot has locks held on both the parent and the node we are COWing, and so we really want to avoid IO during the COW if we can. This commit adds an rbtree of pending reference count updates and extent allocations. The tree is ordered by byte number of the extent and byte number of the parent for the back reference. The tree allows us to: 1) Modify back references in something close to disk order, reducing seeks 2) Significantly reduce the number of modifications made as block pointers are balanced around 3) Do all of the extent insertion and back reference modifications outside of the performance critical btrfs_search_slot code. #3 has the added benefit of greatly reducing the btrfs stack footprint. The extent allocation tree modifications are done without the deep (and somewhat recursive) call chains used in the past. These delayed back reference updates must be done before the transaction commits, and so the rbtree is tied to the transaction. Throttling is implemented to help keep the queue of backrefs at a reasonable size. Since there was a similar mechanism in place for the extent tree extents, that is removed and replaced by the delayed reference tree. Yan Zheng <yan.zheng@oracle.com> helped review and fixup this code. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-13 14:10:06 +00:00
/* If the file system is aborted, this will always fail. */
trans = btrfs_attach_transaction(root);
if (IS_ERR(trans)) {
if (PTR_ERR(trans) != -ENOENT)
cannot_commit = true;
goto sleep;
}
if (transid == trans->transid) {
btrfs_commit_transaction(trans);
} else {
btrfs_end_transaction(trans);
}
sleep:
wake_up_process(fs_info->cleaner_kthread);
mutex_unlock(&fs_info->transaction_kthread_mutex);
if (BTRFS_FS_ERROR(fs_info))
btrfs_cleanup_transaction(fs_info);
if (!kthread_should_stop() &&
(!btrfs_transaction_blocked(fs_info) ||
cannot_commit))
schedule_timeout_interruptible(delay);
} while (!kthread_should_stop());
return 0;
}
/*
* This will find the highest generation in the array of root backups. The
* index of the highest array is returned, or -EINVAL if we can't find
* anything.
*
* We check to make sure the array is valid by comparing the
* generation of the latest root in the array with the generation
* in the super block. If they don't match we pitch it.
*/
static int find_newest_super_backup(struct btrfs_fs_info *info)
{
const u64 newest_gen = btrfs_super_generation(info->super_copy);
u64 cur;
struct btrfs_root_backup *root_backup;
int i;
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
root_backup = info->super_copy->super_roots + i;
cur = btrfs_backup_tree_root_gen(root_backup);
if (cur == newest_gen)
return i;
}
return -EINVAL;
}
/*
* copy all the root pointers into the super backup array.
* this will bump the backup pointer by one when it is
* done
*/
static void backup_super_roots(struct btrfs_fs_info *info)
{
btrfs: Streamline btrfs_fs_info::backup_root_index semantics The backup_root_index member stores the index at which the backup root should be saved upon next transaction commit. However, there is a small deviation from this behavior in the form of a check in backup_super_roots which checks if current root generation equals to the generation of the previous root. This can trigger in the following scenario: slot0: gen-2 slot1: gen-1 slot2: gen slot3: unused Now suppose slot3 (which is also the root specified in the super block) is corrupted hence init_tree_roots chooses to use the backup root at slot2, meaning read_backup_root will read slot2 and assign the superblock generation to gen-1. Despite this backup_root_index will point at slot3 because its init happens in init_backup_root_slot, long before any parsing of the backup roots occur. Then on next transaction start, gen-1 will be incremented by 1 making the root's generation equal gen. Subsequently, on transaction commit the following check triggers: if (btrfs_backup_tree_root_gen(root_backup) == btrfs_header_generation(info->tree_root->node)) This causes the 'next_backup', which is the index at which the backup is going to be written to, to set to last_backup, which will be slot2. All of this is a very confusing way of expressing the following invariant: Always write a backup root at the index following the last used backup root. This commit streamlines this logic by setting backup_root_index to the next index after the one used for mount. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-15 15:42:24 +00:00
const int next_backup = info->backup_root_index;
struct btrfs_root_backup *root_backup;
root_backup = info->super_for_commit->super_roots + next_backup;
/*
* make sure all of our padding and empty slots get zero filled
* regardless of which ones we use today
*/
memset(root_backup, 0, sizeof(*root_backup));
info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
btrfs_set_backup_tree_root_gen(root_backup,
btrfs_header_generation(info->tree_root->node));
btrfs_set_backup_tree_root_level(root_backup,
btrfs_header_level(info->tree_root->node));
btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
btrfs_set_backup_chunk_root_gen(root_backup,
btrfs_header_generation(info->chunk_root->node));
btrfs_set_backup_chunk_root_level(root_backup,
btrfs_header_level(info->chunk_root->node));
if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
btrfs_set_backup_extent_root(root_backup,
extent_root->node->start);
btrfs_set_backup_extent_root_gen(root_backup,
btrfs_header_generation(extent_root->node));
btrfs_set_backup_extent_root_level(root_backup,
btrfs_header_level(extent_root->node));
btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
btrfs_set_backup_csum_root_gen(root_backup,
btrfs_header_generation(csum_root->node));
btrfs_set_backup_csum_root_level(root_backup,
btrfs_header_level(csum_root->node));
}
/*
* we might commit during log recovery, which happens before we set
* the fs_root. Make sure it is valid before we fill it in.
*/
if (info->fs_root && info->fs_root->node) {
btrfs_set_backup_fs_root(root_backup,
info->fs_root->node->start);
btrfs_set_backup_fs_root_gen(root_backup,
btrfs_header_generation(info->fs_root->node));
btrfs_set_backup_fs_root_level(root_backup,
btrfs_header_level(info->fs_root->node));
}
btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
btrfs_set_backup_dev_root_gen(root_backup,
btrfs_header_generation(info->dev_root->node));
btrfs_set_backup_dev_root_level(root_backup,
btrfs_header_level(info->dev_root->node));
btrfs_set_backup_total_bytes(root_backup,
btrfs_super_total_bytes(info->super_copy));
btrfs_set_backup_bytes_used(root_backup,
btrfs_super_bytes_used(info->super_copy));
btrfs_set_backup_num_devices(root_backup,
btrfs_super_num_devices(info->super_copy));
/*
* if we don't copy this out to the super_copy, it won't get remembered
* for the next commit
*/
memcpy(&info->super_copy->super_roots,
&info->super_for_commit->super_roots,
sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}
/*
* Reads a backup root based on the passed priority. Prio 0 is the newest, prio
* 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
*
* @fs_info: filesystem whose backup roots need to be read
* @priority: priority of backup root required
*
* Returns backup root index on success and -EINVAL otherwise.
*/
static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
{
int backup_index = find_newest_super_backup(fs_info);
struct btrfs_super_block *super = fs_info->super_copy;
struct btrfs_root_backup *root_backup;
if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
if (priority == 0)
return backup_index;
backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
backup_index %= BTRFS_NUM_BACKUP_ROOTS;
} else {
return -EINVAL;
}
root_backup = super->super_roots + backup_index;
btrfs_set_super_generation(super,
btrfs_backup_tree_root_gen(root_backup));
btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
btrfs_set_super_root_level(super,
btrfs_backup_tree_root_level(root_backup));
btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
/*
* Fixme: the total bytes and num_devices need to match or we should
* need a fsck
*/
btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
return backup_index;
}
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
btrfs_destroy_workqueue(fs_info->fixup_workers);
btrfs_destroy_workqueue(fs_info->delalloc_workers);
btrfs_destroy_workqueue(fs_info->workers);
if (fs_info->endio_workers)
destroy_workqueue(fs_info->endio_workers);
if (fs_info->rmw_workers)
destroy_workqueue(fs_info->rmw_workers);
if (fs_info->compressed_write_workers)
destroy_workqueue(fs_info->compressed_write_workers);
btrfs_destroy_workqueue(fs_info->endio_write_workers);
btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
btrfs_destroy_workqueue(fs_info->delayed_workers);
btrfs_destroy_workqueue(fs_info->caching_workers);
btrfs_destroy_workqueue(fs_info->flush_workers);
btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
if (fs_info->discard_ctl.discard_workers)
destroy_workqueue(fs_info->discard_ctl.discard_workers);
Btrfs: fix use-after-free due to wrong order of destroying work queues Before we destroy all work queues (and wait for their tasks to complete) we were destroying the work queues used for metadata I/O operations, which can result in a use-after-free problem because most tasks from all work queues do metadata I/O operations. For example, the tasks from the caching workers work queue (fs_info->caching_workers), which is destroyed only after the work queue used for metadata reads (fs_info->endio_meta_workers) is destroyed, do metadata reads, which result in attempts to queue tasks into the later work queue, triggering a use-after-free with a trace like the following: [23114.613543] general protection fault: 0000 [#1] PREEMPT SMP [23114.614442] Modules linked in: dm_thin_pool dm_persistent_data dm_bio_prison dm_bufio libcrc32c btrfs xor raid6_pq dm_flakey dm_mod crc32c_generic acpi_cpufreq tpm_tis tpm_tis_core tpm ppdev parport_pc parport i2c_piix4 processor sg evdev i2c_core psmouse pcspkr serio_raw button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio e1000 scsi_mod floppy [last unloaded: scsi_debug] [23114.616932] CPU: 9 PID: 4537 Comm: kworker/u32:8 Not tainted 4.9.0-rc7-btrfs-next-36+ #1 [23114.616932] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014 [23114.616932] Workqueue: btrfs-cache btrfs_cache_helper [btrfs] [23114.616932] task: ffff880221d45780 task.stack: ffffc9000bc50000 [23114.616932] RIP: 0010:[<ffffffffa037c1bf>] [<ffffffffa037c1bf>] btrfs_queue_work+0x2c/0x190 [btrfs] [23114.616932] RSP: 0018:ffff88023f443d60 EFLAGS: 00010246 [23114.616932] RAX: 0000000000000000 RBX: 6b6b6b6b6b6b6b6b RCX: 0000000000000102 [23114.616932] RDX: ffffffffa0419000 RSI: ffff88011df534f0 RDI: ffff880101f01c00 [23114.616932] RBP: ffff88023f443d80 R08: 00000000000f7000 R09: 000000000000ffff [23114.616932] R10: ffff88023f443d48 R11: 0000000000001000 R12: ffff88011df534f0 [23114.616932] R13: ffff880135963868 R14: 0000000000001000 R15: 0000000000001000 [23114.616932] FS: 0000000000000000(0000) GS:ffff88023f440000(0000) knlGS:0000000000000000 [23114.616932] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [23114.616932] CR2: 00007f0fb9f8e520 CR3: 0000000001a0b000 CR4: 00000000000006e0 [23114.616932] Stack: [23114.616932] ffff880101f01c00 ffff88011df534f0 ffff880135963868 0000000000001000 [23114.616932] ffff88023f443da0 ffffffffa03470af ffff880149b37200 ffff880135963868 [23114.616932] ffff88023f443db8 ffffffff8125293c ffff880149b37200 ffff88023f443de0 [23114.616932] Call Trace: [23114.616932] <IRQ> [23114.616932] [<ffffffffa03470af>] end_workqueue_bio+0xd5/0xda [btrfs] [23114.616932] [<ffffffff8125293c>] bio_endio+0x54/0x57 [23114.616932] [<ffffffffa0377929>] btrfs_end_bio+0xf7/0x106 [btrfs] [23114.616932] [<ffffffff8125293c>] bio_endio+0x54/0x57 [23114.616932] [<ffffffff8125955f>] blk_update_request+0x21a/0x30f [23114.616932] [<ffffffffa0022316>] scsi_end_request+0x31/0x182 [scsi_mod] [23114.616932] [<ffffffffa00235fc>] scsi_io_completion+0x1ce/0x4c8 [scsi_mod] [23114.616932] [<ffffffffa001ba9d>] scsi_finish_command+0x104/0x10d [scsi_mod] [23114.616932] [<ffffffffa002311f>] scsi_softirq_done+0x101/0x10a [scsi_mod] [23114.616932] [<ffffffff8125fbd9>] blk_done_softirq+0x82/0x8d [23114.616932] [<ffffffff814c8a4b>] __do_softirq+0x1ab/0x412 [23114.616932] [<ffffffff8105b01d>] irq_exit+0x49/0x99 [23114.616932] [<ffffffff81035135>] smp_call_function_single_interrupt+0x24/0x26 [23114.616932] [<ffffffff814c7ec9>] call_function_single_interrupt+0x89/0x90 [23114.616932] <EOI> [23114.616932] [<ffffffffa0023262>] ? scsi_request_fn+0x13a/0x2a1 [scsi_mod] [23114.616932] [<ffffffff814c5966>] ? _raw_spin_unlock_irq+0x2c/0x4a [23114.616932] [<ffffffff814c596c>] ? _raw_spin_unlock_irq+0x32/0x4a [23114.616932] [<ffffffff814c5966>] ? _raw_spin_unlock_irq+0x2c/0x4a [23114.616932] [<ffffffffa0023262>] scsi_request_fn+0x13a/0x2a1 [scsi_mod] [23114.616932] [<ffffffff8125590e>] __blk_run_queue_uncond+0x22/0x2b [23114.616932] [<ffffffff81255930>] __blk_run_queue+0x19/0x1b [23114.616932] [<ffffffff8125ab01>] blk_queue_bio+0x268/0x282 [23114.616932] [<ffffffff81258f44>] generic_make_request+0xbd/0x160 [23114.616932] [<ffffffff812590e7>] submit_bio+0x100/0x11d [23114.616932] [<ffffffff81298603>] ? __this_cpu_preempt_check+0x13/0x15 [23114.616932] [<ffffffff812a1805>] ? __percpu_counter_add+0x8e/0xa7 [23114.616932] [<ffffffffa03bfd47>] btrfsic_submit_bio+0x1a/0x1d [btrfs] [23114.616932] [<ffffffffa0377db2>] btrfs_map_bio+0x1f4/0x26d [btrfs] [23114.616932] [<ffffffffa0348a33>] btree_submit_bio_hook+0x74/0xbf [btrfs] [23114.616932] [<ffffffffa03489bf>] ? btrfs_wq_submit_bio+0x160/0x160 [btrfs] [23114.616932] [<ffffffffa03697a9>] submit_one_bio+0x6b/0x89 [btrfs] [23114.616932] [<ffffffffa036f5be>] read_extent_buffer_pages+0x170/0x1ec [btrfs] [23114.616932] [<ffffffffa03471fa>] ? free_root_pointers+0x64/0x64 [btrfs] [23114.616932] [<ffffffffa0348adf>] readahead_tree_block+0x3f/0x4c [btrfs] [23114.616932] [<ffffffffa032e115>] read_block_for_search.isra.20+0x1ce/0x23d [btrfs] [23114.616932] [<ffffffffa032fab8>] btrfs_search_slot+0x65f/0x774 [btrfs] [23114.616932] [<ffffffffa036eff1>] ? free_extent_buffer+0x73/0x7e [btrfs] [23114.616932] [<ffffffffa0331ba4>] btrfs_next_old_leaf+0xa1/0x33c [btrfs] [23114.616932] [<ffffffffa0331e4f>] btrfs_next_leaf+0x10/0x12 [btrfs] [23114.616932] [<ffffffffa0336aa6>] caching_thread+0x22d/0x416 [btrfs] [23114.616932] [<ffffffffa037bce9>] btrfs_scrubparity_helper+0x187/0x3b6 [btrfs] [23114.616932] [<ffffffffa037c036>] btrfs_cache_helper+0xe/0x10 [btrfs] [23114.616932] [<ffffffff8106cf96>] process_one_work+0x273/0x4e4 [23114.616932] [<ffffffff8106d6db>] worker_thread+0x1eb/0x2ca [23114.616932] [<ffffffff8106d4f0>] ? rescuer_thread+0x2b6/0x2b6 [23114.616932] [<ffffffff81072a81>] kthread+0xd5/0xdd [23114.616932] [<ffffffff810729ac>] ? __kthread_unpark+0x5a/0x5a [23114.616932] [<ffffffff814c6257>] ret_from_fork+0x27/0x40 [23114.616932] Code: 1f 44 00 00 55 48 89 e5 41 56 41 55 41 54 53 49 89 f4 48 8b 46 70 a8 04 74 09 48 8b 5f 08 48 85 db 75 03 48 8b 1f 49 89 5c 24 68 <83> 7b 64 ff 74 04 f0 ff 43 58 49 83 7c 24 08 00 74 2c 4c 8d 6b [23114.616932] RIP [<ffffffffa037c1bf>] btrfs_queue_work+0x2c/0x190 [btrfs] [23114.616932] RSP <ffff88023f443d60> [23114.689493] ---[ end trace 6e48b6bc707ca34b ]--- [23114.690166] Kernel panic - not syncing: Fatal exception in interrupt [23114.691283] Kernel Offset: disabled [23114.691918] ---[ end Kernel panic - not syncing: Fatal exception in interrupt The following diagram shows the sequence of operations that lead to the use-after-free problem from the above trace: CPU 1 CPU 2 CPU 3 caching_thread() close_ctree() btrfs_stop_all_workers() btrfs_destroy_workqueue( fs_info->endio_meta_workers) btrfs_search_slot() read_block_for_search() readahead_tree_block() read_extent_buffer_pages() submit_one_bio() btree_submit_bio_hook() btrfs_bio_wq_end_io() --> sets the bio's bi_end_io callback to end_workqueue_bio() --> bio is submitted bio completes and its bi_end_io callback is invoked --> end_workqueue_bio() --> attempts to queue a task on fs_info->endio_meta_workers btrfs_destroy_workqueue( fs_info->caching_workers) So fix this by destroying the queues used for metadata I/O tasks only after destroying all the other queues. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2017-02-04 17:12:00 +00:00
/*
* Now that all other work queues are destroyed, we can safely destroy
* the queues used for metadata I/O, since tasks from those other work
* queues can do metadata I/O operations.
*/
if (fs_info->endio_meta_workers)
destroy_workqueue(fs_info->endio_meta_workers);
}
static void free_root_extent_buffers(struct btrfs_root *root)
{
if (root) {
free_extent_buffer(root->node);
free_extent_buffer(root->commit_root);
root->node = NULL;
root->commit_root = NULL;
}
}
static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root, *tmp;
rbtree_postorder_for_each_entry_safe(root, tmp,
&fs_info->global_root_tree,
rb_node)
free_root_extent_buffers(root);
}
/* helper to cleanup tree roots */
static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
{
free_root_extent_buffers(info->tree_root);
free_global_root_pointers(info);
free_root_extent_buffers(info->dev_root);
free_root_extent_buffers(info->quota_root);
free_root_extent_buffers(info->uuid_root);
free_root_extent_buffers(info->fs_root);
free_root_extent_buffers(info->data_reloc_root);
free_root_extent_buffers(info->block_group_root);
free_root_extent_buffers(info->stripe_root);
if (free_chunk_root)
free_root_extent_buffers(info->chunk_root);
}
void btrfs_put_root(struct btrfs_root *root)
{
if (!root)
return;
if (refcount_dec_and_test(&root->refs)) {
WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
if (root->anon_dev)
free_anon_bdev(root->anon_dev);
free_root_extent_buffers(root);
#ifdef CONFIG_BTRFS_DEBUG
spin_lock(&root->fs_info->fs_roots_radix_lock);
list_del_init(&root->leak_list);
spin_unlock(&root->fs_info->fs_roots_radix_lock);
#endif
kfree(root);
}
}
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
{
int ret;
struct btrfs_root *gang[8];
int i;
while (!list_empty(&fs_info->dead_roots)) {
gang[0] = list_entry(fs_info->dead_roots.next,
struct btrfs_root, root_list);
list_del(&gang[0]->root_list);
if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
btrfs_drop_and_free_fs_root(fs_info, gang[0]);
btrfs_put_root(gang[0]);
}
while (1) {
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)gang, 0,
ARRAY_SIZE(gang));
if (!ret)
break;
for (i = 0; i < ret; i++)
btrfs_drop_and_free_fs_root(fs_info, gang[i]);
}
}
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
mutex_init(&fs_info->scrub_lock);
atomic_set(&fs_info->scrubs_running, 0);
atomic_set(&fs_info->scrub_pause_req, 0);
atomic_set(&fs_info->scrubs_paused, 0);
atomic_set(&fs_info->scrub_cancel_req, 0);
init_waitqueue_head(&fs_info->scrub_pause_wait);
refcount_set(&fs_info->scrub_workers_refcnt, 0);
}
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
spin_lock_init(&fs_info->balance_lock);
mutex_init(&fs_info->balance_mutex);
atomic_set(&fs_info->balance_pause_req, 0);
atomic_set(&fs_info->balance_cancel_req, 0);
fs_info->balance_ctl = NULL;
init_waitqueue_head(&fs_info->balance_wait_q);
atomic_set(&fs_info->reloc_cancel_req, 0);
}
static int btrfs_init_btree_inode(struct super_block *sb)
{
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
fs_info->tree_root);
struct inode *inode;
inode = new_inode(sb);
if (!inode)
return -ENOMEM;
inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
set_nlink(inode, 1);
/*
* we set the i_size on the btree inode to the max possible int.
* the real end of the address space is determined by all of
* the devices in the system
*/
inode->i_size = OFFSET_MAX;
inode->i_mapping->a_ops = &btree_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
IO_TREE_BTREE_INODE_IO);
extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
BTRFS_I(inode)->location.type = 0;
BTRFS_I(inode)->location.offset = 0;
set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
__insert_inode_hash(inode, hash);
fs_info->btree_inode = inode;
return 0;
}
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
init_rwsem(&fs_info->dev_replace.rwsem);
init_waitqueue_head(&fs_info->dev_replace.replace_wait);
}
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
spin_lock_init(&fs_info->qgroup_lock);
mutex_init(&fs_info->qgroup_ioctl_lock);
fs_info->qgroup_tree = RB_ROOT;
INIT_LIST_HEAD(&fs_info->dirty_qgroups);
fs_info->qgroup_seq = 1;
fs_info->qgroup_ulist = NULL;
fs_info->qgroup_rescan_running = false;
fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
mutex_init(&fs_info->qgroup_rescan_lock);
}
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
{
u32 max_active = fs_info->thread_pool_size;
unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
btrfs: use alloc_ordered_workqueue() to create ordered workqueues BACKGROUND ========== When multiple work items are queued to a workqueue, their execution order doesn't match the queueing order. They may get executed in any order and simultaneously. When fully serialized execution - one by one in the queueing order - is needed, an ordered workqueue should be used which can be created with alloc_ordered_workqueue(). However, alloc_ordered_workqueue() was a later addition. Before it, an ordered workqueue could be obtained by creating an UNBOUND workqueue with @max_active==1. This originally was an implementation side-effect which was broken by 4c16bd327c74 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered"). Because there were users that depended on the ordered execution, 5c0338c68706 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered") made workqueue allocation path to implicitly promote UNBOUND workqueues w/ @max_active==1 to ordered workqueues. While this has worked okay, overloading the UNBOUND allocation interface this way creates other issues. It's difficult to tell whether a given workqueue actually needs to be ordered and users that legitimately want a min concurrency level wq unexpectedly gets an ordered one instead. With planned UNBOUND workqueue updates to improve execution locality and more prevalence of chiplet designs which can benefit from such improvements, this isn't a state we wanna be in forever. This patch series audits all call sites that create an UNBOUND workqueue w/ @max_active==1 and converts them to alloc_ordered_workqueue() as necessary. BTRFS ===== * fs_info->scrub_workers initialized in scrub_workers_get() was setting @max_active to 1 when @is_dev_replace is set and it seems that the workqueue actually needs to be ordered if @is_dev_replace. Update the code so that alloc_ordered_workqueue() is used if @is_dev_replace. * fs_info->discard_ctl.discard_workers initialized in btrfs_init_workqueues() was directly using alloc_workqueue() w/ @max_active==1. Converted to alloc_ordered_workqueue(). * fs_info->fixup_workers and fs_info->qgroup_rescan_workers initialized in btrfs_queue_work() use the btrfs's workqueue wrapper, btrfs_workqueue, which are allocated with btrfs_alloc_workqueue(). btrfs_workqueue implements automatic @max_active adjustment which is disabled when the specified max limit is below a certain threshold, so calling btrfs_alloc_workqueue() with @limit_active==1 yields an ordered workqueue whose @max_active won't be changed as the auto-tuning is disabled. This is rather brittle in that nothing clearly indicates that the two workqueues should be ordered or btrfs_alloc_workqueue() must disable auto-tuning when @limit_active==1. This patch factors out the common btrfs_workqueue init code into btrfs_init_workqueue() and add explicit btrfs_alloc_ordered_workqueue(). The two workqueues are converted to use the new ordered allocation interface. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-25 23:33:08 +00:00
unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
fs_info->workers =
btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
fs_info->delalloc_workers =
btrfs_alloc_workqueue(fs_info, "delalloc",
flags, max_active, 2);
fs_info->flush_workers =
btrfs_alloc_workqueue(fs_info, "flush_delalloc",
flags, max_active, 0);
fs_info->caching_workers =
btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
fs_info->fixup_workers =
btrfs: use alloc_ordered_workqueue() to create ordered workqueues BACKGROUND ========== When multiple work items are queued to a workqueue, their execution order doesn't match the queueing order. They may get executed in any order and simultaneously. When fully serialized execution - one by one in the queueing order - is needed, an ordered workqueue should be used which can be created with alloc_ordered_workqueue(). However, alloc_ordered_workqueue() was a later addition. Before it, an ordered workqueue could be obtained by creating an UNBOUND workqueue with @max_active==1. This originally was an implementation side-effect which was broken by 4c16bd327c74 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered"). Because there were users that depended on the ordered execution, 5c0338c68706 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered") made workqueue allocation path to implicitly promote UNBOUND workqueues w/ @max_active==1 to ordered workqueues. While this has worked okay, overloading the UNBOUND allocation interface this way creates other issues. It's difficult to tell whether a given workqueue actually needs to be ordered and users that legitimately want a min concurrency level wq unexpectedly gets an ordered one instead. With planned UNBOUND workqueue updates to improve execution locality and more prevalence of chiplet designs which can benefit from such improvements, this isn't a state we wanna be in forever. This patch series audits all call sites that create an UNBOUND workqueue w/ @max_active==1 and converts them to alloc_ordered_workqueue() as necessary. BTRFS ===== * fs_info->scrub_workers initialized in scrub_workers_get() was setting @max_active to 1 when @is_dev_replace is set and it seems that the workqueue actually needs to be ordered if @is_dev_replace. Update the code so that alloc_ordered_workqueue() is used if @is_dev_replace. * fs_info->discard_ctl.discard_workers initialized in btrfs_init_workqueues() was directly using alloc_workqueue() w/ @max_active==1. Converted to alloc_ordered_workqueue(). * fs_info->fixup_workers and fs_info->qgroup_rescan_workers initialized in btrfs_queue_work() use the btrfs's workqueue wrapper, btrfs_workqueue, which are allocated with btrfs_alloc_workqueue(). btrfs_workqueue implements automatic @max_active adjustment which is disabled when the specified max limit is below a certain threshold, so calling btrfs_alloc_workqueue() with @limit_active==1 yields an ordered workqueue whose @max_active won't be changed as the auto-tuning is disabled. This is rather brittle in that nothing clearly indicates that the two workqueues should be ordered or btrfs_alloc_workqueue() must disable auto-tuning when @limit_active==1. This patch factors out the common btrfs_workqueue init code into btrfs_init_workqueue() and add explicit btrfs_alloc_ordered_workqueue(). The two workqueues are converted to use the new ordered allocation interface. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-25 23:33:08 +00:00
btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
fs_info->endio_workers =
alloc_workqueue("btrfs-endio", flags, max_active);
fs_info->endio_meta_workers =
alloc_workqueue("btrfs-endio-meta", flags, max_active);
fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
fs_info->endio_write_workers =
btrfs_alloc_workqueue(fs_info, "endio-write", flags,
max_active, 2);
fs_info->compressed_write_workers =
alloc_workqueue("btrfs-compressed-write", flags, max_active);
fs_info->endio_freespace_worker =
btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
max_active, 0);
fs_info->delayed_workers =
btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
max_active, 0);
fs_info->qgroup_rescan_workers =
btrfs: use alloc_ordered_workqueue() to create ordered workqueues BACKGROUND ========== When multiple work items are queued to a workqueue, their execution order doesn't match the queueing order. They may get executed in any order and simultaneously. When fully serialized execution - one by one in the queueing order - is needed, an ordered workqueue should be used which can be created with alloc_ordered_workqueue(). However, alloc_ordered_workqueue() was a later addition. Before it, an ordered workqueue could be obtained by creating an UNBOUND workqueue with @max_active==1. This originally was an implementation side-effect which was broken by 4c16bd327c74 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered"). Because there were users that depended on the ordered execution, 5c0338c68706 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered") made workqueue allocation path to implicitly promote UNBOUND workqueues w/ @max_active==1 to ordered workqueues. While this has worked okay, overloading the UNBOUND allocation interface this way creates other issues. It's difficult to tell whether a given workqueue actually needs to be ordered and users that legitimately want a min concurrency level wq unexpectedly gets an ordered one instead. With planned UNBOUND workqueue updates to improve execution locality and more prevalence of chiplet designs which can benefit from such improvements, this isn't a state we wanna be in forever. This patch series audits all call sites that create an UNBOUND workqueue w/ @max_active==1 and converts them to alloc_ordered_workqueue() as necessary. BTRFS ===== * fs_info->scrub_workers initialized in scrub_workers_get() was setting @max_active to 1 when @is_dev_replace is set and it seems that the workqueue actually needs to be ordered if @is_dev_replace. Update the code so that alloc_ordered_workqueue() is used if @is_dev_replace. * fs_info->discard_ctl.discard_workers initialized in btrfs_init_workqueues() was directly using alloc_workqueue() w/ @max_active==1. Converted to alloc_ordered_workqueue(). * fs_info->fixup_workers and fs_info->qgroup_rescan_workers initialized in btrfs_queue_work() use the btrfs's workqueue wrapper, btrfs_workqueue, which are allocated with btrfs_alloc_workqueue(). btrfs_workqueue implements automatic @max_active adjustment which is disabled when the specified max limit is below a certain threshold, so calling btrfs_alloc_workqueue() with @limit_active==1 yields an ordered workqueue whose @max_active won't be changed as the auto-tuning is disabled. This is rather brittle in that nothing clearly indicates that the two workqueues should be ordered or btrfs_alloc_workqueue() must disable auto-tuning when @limit_active==1. This patch factors out the common btrfs_workqueue init code into btrfs_init_workqueue() and add explicit btrfs_alloc_ordered_workqueue(). The two workqueues are converted to use the new ordered allocation interface. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-25 23:33:08 +00:00
btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
ordered_flags);
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
fs_info->discard_ctl.discard_workers =
btrfs: use alloc_ordered_workqueue() to create ordered workqueues BACKGROUND ========== When multiple work items are queued to a workqueue, their execution order doesn't match the queueing order. They may get executed in any order and simultaneously. When fully serialized execution - one by one in the queueing order - is needed, an ordered workqueue should be used which can be created with alloc_ordered_workqueue(). However, alloc_ordered_workqueue() was a later addition. Before it, an ordered workqueue could be obtained by creating an UNBOUND workqueue with @max_active==1. This originally was an implementation side-effect which was broken by 4c16bd327c74 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered"). Because there were users that depended on the ordered execution, 5c0338c68706 ("workqueue: restore WQ_UNBOUND/max_active==1 to be ordered") made workqueue allocation path to implicitly promote UNBOUND workqueues w/ @max_active==1 to ordered workqueues. While this has worked okay, overloading the UNBOUND allocation interface this way creates other issues. It's difficult to tell whether a given workqueue actually needs to be ordered and users that legitimately want a min concurrency level wq unexpectedly gets an ordered one instead. With planned UNBOUND workqueue updates to improve execution locality and more prevalence of chiplet designs which can benefit from such improvements, this isn't a state we wanna be in forever. This patch series audits all call sites that create an UNBOUND workqueue w/ @max_active==1 and converts them to alloc_ordered_workqueue() as necessary. BTRFS ===== * fs_info->scrub_workers initialized in scrub_workers_get() was setting @max_active to 1 when @is_dev_replace is set and it seems that the workqueue actually needs to be ordered if @is_dev_replace. Update the code so that alloc_ordered_workqueue() is used if @is_dev_replace. * fs_info->discard_ctl.discard_workers initialized in btrfs_init_workqueues() was directly using alloc_workqueue() w/ @max_active==1. Converted to alloc_ordered_workqueue(). * fs_info->fixup_workers and fs_info->qgroup_rescan_workers initialized in btrfs_queue_work() use the btrfs's workqueue wrapper, btrfs_workqueue, which are allocated with btrfs_alloc_workqueue(). btrfs_workqueue implements automatic @max_active adjustment which is disabled when the specified max limit is below a certain threshold, so calling btrfs_alloc_workqueue() with @limit_active==1 yields an ordered workqueue whose @max_active won't be changed as the auto-tuning is disabled. This is rather brittle in that nothing clearly indicates that the two workqueues should be ordered or btrfs_alloc_workqueue() must disable auto-tuning when @limit_active==1. This patch factors out the common btrfs_workqueue init code into btrfs_init_workqueue() and add explicit btrfs_alloc_ordered_workqueue(). The two workqueues are converted to use the new ordered allocation interface. Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-25 23:33:08 +00:00
alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
if (!(fs_info->workers &&
fs_info->delalloc_workers && fs_info->flush_workers &&
fs_info->endio_workers && fs_info->endio_meta_workers &&
fs_info->compressed_write_workers &&
fs_info->endio_write_workers &&
fs_info->endio_freespace_worker && fs_info->rmw_workers &&
btrfs: remove reada infrastructure Currently there is only one user for btrfs metadata readahead, and that's scrub. But even for the single user, it's not providing the correct functionality it needs, as scrub needs reada for commit root, which current readahead can't provide. (Although it's pretty easy to add such feature). Despite this, there are some extra problems related to metadata readahead: - Duplicated feature with btrfs_path::reada - Partly duplicated feature of btrfs_fs_info::buffer_radix Btrfs already caches its metadata in buffer_radix, while readahead tries to read the tree block no matter if it's already cached. - Poor layer separation Metadata readahead works kinda at device level. This is definitely not the correct layer it should be, since metadata is at btrfs logical address space, it should not bother device at all. This brings extra chance for bugs to sneak in, while brings unnecessary complexity. - Dead code In the very beginning of scrub.c we have #undef DEBUG, rendering all the debug related code useless and unable to test. Thus here I purpose to remove the metadata readahead mechanism completely. [BENCHMARK] There is a full benchmark for the scrub performance difference using the old btrfs_reada_add() and btrfs_path::reada. For the worst case (no dirty metadata, slow HDD), there could be a 5% performance drop for scrub. For other cases (even SATA SSD), there is no distinguishable performance difference. The number is reported scrub speed, in MiB/s. The resolution is limited by the reported duration, which only has a resolution of 1 second. Old New Diff SSD 455.3 466.332 +2.42% HDD 103.927 98.012 -5.69% Comprehensive test methodology is in the cover letter of the patch. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-12-14 13:01:45 +00:00
fs_info->caching_workers && fs_info->fixup_workers &&
fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
fs_info->discard_ctl.discard_workers)) {
return -ENOMEM;
}
return 0;
}
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
{
struct crypto_shash *csum_shash;
const char *csum_driver = btrfs_super_csum_driver(csum_type);
csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
if (IS_ERR(csum_shash)) {
btrfs_err(fs_info, "error allocating %s hash for checksum",
csum_driver);
return PTR_ERR(csum_shash);
}
fs_info->csum_shash = csum_shash;
/*
* Check if the checksum implementation is a fast accelerated one.
* As-is this is a bit of a hack and should be replaced once the csum
* implementations provide that information themselves.
*/
switch (csum_type) {
case BTRFS_CSUM_TYPE_CRC32:
if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
break;
case BTRFS_CSUM_TYPE_XXHASH:
set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
break;
default:
break;
}
btrfs_info(fs_info, "using %s (%s) checksum algorithm",
btrfs_super_csum_name(csum_type),
crypto_shash_driver_name(csum_shash));
return 0;
}
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
struct btrfs_fs_devices *fs_devices)
{
int ret;
struct btrfs_tree_parent_check check = { 0 };
struct btrfs_root *log_tree_root;
struct btrfs_super_block *disk_super = fs_info->super_copy;
u64 bytenr = btrfs_super_log_root(disk_super);
int level = btrfs_super_log_root_level(disk_super);
if (fs_devices->rw_devices == 0) {
btrfs_warn(fs_info, "log replay required on RO media");
return -EIO;
}
log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
GFP_KERNEL);
if (!log_tree_root)
return -ENOMEM;
check.level = level;
check.transid = fs_info->generation + 1;
check.owner_root = BTRFS_TREE_LOG_OBJECTID;
log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
if (IS_ERR(log_tree_root->node)) {
btrfs_warn(fs_info, "failed to read log tree");
ret = PTR_ERR(log_tree_root->node);
log_tree_root->node = NULL;
btrfs_put_root(log_tree_root);
return ret;
}
if (!extent_buffer_uptodate(log_tree_root->node)) {
btrfs_err(fs_info, "failed to read log tree");
btrfs_put_root(log_tree_root);
return -EIO;
}
/* returns with log_tree_root freed on success */
ret = btrfs_recover_log_trees(log_tree_root);
if (ret) {
btrfs_handle_fs_error(fs_info, ret,
"Failed to recover log tree");
btrfs_put_root(log_tree_root);
return ret;
}
if (sb_rdonly(fs_info->sb)) {
ret = btrfs_commit_super(fs_info);
if (ret)
return ret;
}
return 0;
}
static int load_global_roots_objectid(struct btrfs_root *tree_root,
struct btrfs_path *path, u64 objectid,
const char *name)
{
struct btrfs_fs_info *fs_info = tree_root->fs_info;
struct btrfs_root *root;
u64 max_global_id = 0;
int ret;
struct btrfs_key key = {
.objectid = objectid,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = 0,
};
bool found = false;
/* If we have IGNOREDATACSUMS skip loading these roots. */
if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
return 0;
}
while (1) {
ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
if (ret < 0)
break;
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(tree_root, path);
if (ret) {
if (ret > 0)
ret = 0;
break;
}
}
ret = 0;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.objectid != objectid)
break;
btrfs_release_path(path);
/*
* Just worry about this for extent tree, it'll be the same for
* everybody.
*/
if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
max_global_id = max(max_global_id, key.offset);
found = true;
root = read_tree_root_path(tree_root, path, &key);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
ret = PTR_ERR(root);
break;
}
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
ret = btrfs_global_root_insert(root);
if (ret) {
btrfs_put_root(root);
break;
}
key.offset++;
}
btrfs_release_path(path);
if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
fs_info->nr_global_roots = max_global_id + 1;
if (!found || ret) {
if (objectid == BTRFS_CSUM_TREE_OBJECTID)
set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
ret = ret ? ret : -ENOENT;
else
ret = 0;
btrfs_err(fs_info, "failed to load root %s", name);
}
return ret;
}
static int load_global_roots(struct btrfs_root *tree_root)
{
struct btrfs_path *path;
int ret = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = load_global_roots_objectid(tree_root, path,
BTRFS_EXTENT_TREE_OBJECTID, "extent");
if (ret)
goto out;
ret = load_global_roots_objectid(tree_root, path,
BTRFS_CSUM_TREE_OBJECTID, "csum");
if (ret)
goto out;
if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
goto out;
ret = load_global_roots_objectid(tree_root, path,
BTRFS_FREE_SPACE_TREE_OBJECTID,
"free space");
out:
btrfs_free_path(path);
return ret;
}
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *root;
struct btrfs_key location;
int ret;
ASSERT(fs_info->tree_root);
ret = load_global_roots(tree_root);
if (ret)
return ret;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = 0;
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
ret = PTR_ERR(root);
goto out;
}
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->block_group_root = root;
}
}
location.objectid = BTRFS_DEV_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
ret = PTR_ERR(root);
goto out;
}
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->dev_root = root;
}
btrfs: initialize device::fs_info always Neal reported a panic trying to use -o rescue=all BUG: kernel NULL pointer dereference, address: 0000000000000030 PGD 0 P4D 0 Oops: 0000 [#1] SMP NOPTI CPU: 0 PID: 696 Comm: mount Tainted: G W 5.12.0-rc2+ #296 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 RIP: 0010:btrfs_device_init_dev_stats+0x1d/0x200 RSP: 0018:ffffafaec1483bb8 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff9a5715bcb298 RCX: 0000000000000070 RDX: ffff9a5703248000 RSI: ffff9a57052ea150 RDI: ffff9a5715bca400 RBP: ffff9a57052ea150 R08: 0000000000000070 R09: ffff9a57052ea150 R10: 000130faf0741c10 R11: 0000000000000000 R12: ffff9a5703700000 R13: 0000000000000000 R14: ffff9a5715bcb278 R15: ffff9a57052ea150 FS: 00007f600d122c40(0000) GS:ffff9a577bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000030 CR3: 0000000112a46005 CR4: 0000000000370ef0 Call Trace: ? btrfs_init_dev_stats+0x1f/0xf0 ? kmem_cache_alloc+0xef/0x1f0 btrfs_init_dev_stats+0x5f/0xf0 open_ctree+0x10cb/0x1720 btrfs_mount_root.cold+0x12/0xea legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 vfs_kern_mount.part.0+0x71/0xb0 btrfs_mount+0x10d/0x380 legacy_get_tree+0x27/0x40 vfs_get_tree+0x25/0xb0 path_mount+0x433/0xa00 __x64_sys_mount+0xe3/0x120 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xae This happens because when we call btrfs_init_dev_stats we do device->fs_info->dev_root. However device->fs_info isn't initialized because we were only calling btrfs_init_devices_late() if we properly read the device root. However we don't actually need the device root to init the devices, this function simply assigns the devices their ->fs_info pointer properly, so this needs to be done unconditionally always so that we can properly dereference device->fs_info in rescue cases. Reported-by: Neal Gompa <ngompa13@gmail.com> CC: stable@vger.kernel.org # 5.11+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-03-11 16:23:14 +00:00
/* Initialize fs_info for all devices in any case */
ret = btrfs_init_devices_late(fs_info);
if (ret)
goto out;
/*
* This tree can share blocks with some other fs tree during relocation
* and we need a proper setup by btrfs_get_fs_root
*/
root = btrfs_get_fs_root(tree_root->fs_info,
BTRFS_DATA_RELOC_TREE_OBJECTID, true);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
ret = PTR_ERR(root);
goto out;
}
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->data_reloc_root = root;
}
location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (!IS_ERR(root)) {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->quota_root = root;
}
location.objectid = BTRFS_UUID_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
ret = PTR_ERR(root);
if (ret != -ENOENT)
goto out;
}
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->uuid_root = root;
}
if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
ret = PTR_ERR(root);
goto out;
}
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->stripe_root = root;
}
}
return 0;
out:
btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
location.objectid, ret);
return ret;
}
/*
* Real super block validation
* NOTE: super csum type and incompat features will not be checked here.
*
* @sb: super block to check
* @mirror_num: the super block number to check its bytenr:
* 0 the primary (1st) sb
* 1, 2 2nd and 3rd backup copy
* -1 skip bytenr check
*/
btrfs: check superblock to ensure the fs was not modified at thaw time [BACKGROUND] There is an incident report that, one user hibernated the system, with one btrfs on removable device still mounted. Then by some incident, the btrfs got mounted and modified by another system/OS, then back to the hibernated system. After resuming from the hibernation, new write happened into the victim btrfs. Now the fs is completely broken, since the underlying btrfs is no longer the same one before the hibernation, and the user lost their data due to various transid mismatch. [REPRODUCER] We can emulate the situation using the following small script: truncate -s 1G $dev mkfs.btrfs -f $dev mount $dev $mnt fsstress -w -d $mnt -n 500 sync xfs_freeze -f $mnt cp $dev $dev.backup # There is no way to mount the same cloned fs on the same system, # as the conflicting fsid will be rejected by btrfs. # Thus here we have to wipe the fs using a different btrfs. mkfs.btrfs -f $dev.backup dd if=$dev.backup of=$dev bs=1M xfs_freeze -u $mnt fsstress -w -d $mnt -n 20 umount $mnt btrfs check $dev The final fsck will fail due to some tree blocks has incorrect fsid. This is enough to emulate the problem hit by the unfortunate user. [ENHANCEMENT] Although such case should not be that common, it can still happen from time to time. From the view of btrfs, we can detect any unexpected super block change, and if there is any unexpected change, we just mark the fs read-only, and thaw the fs. By this we can limit the damage to minimal, and I hope no one would lose their data by this anymore. Suggested-by: Goffredo Baroncelli <kreijack@libero.it> Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-24 12:16:22 +00:00
int btrfs_validate_super(struct btrfs_fs_info *fs_info,
struct btrfs_super_block *sb, int mirror_num)
{
u64 nodesize = btrfs_super_nodesize(sb);
u64 sectorsize = btrfs_super_sectorsize(sb);
int ret = 0;
if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
btrfs_err(fs_info, "no valid FS found");
ret = -EINVAL;
}
if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
ret = -EINVAL;
}
if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
btrfs_err(fs_info, "tree_root level too big: %d >= %d",
btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
btrfs_err(fs_info, "log_root level too big: %d >= %d",
btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
/*
* Check sectorsize and nodesize first, other check will need it.
* Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
*/
if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
ret = -EINVAL;
}
/*
* We only support at most two sectorsizes: 4K and PAGE_SIZE.
*
* We can support 16K sectorsize with 64K page size without problem,
* but such sectorsize/pagesize combination doesn't make much sense.
* 4K will be our future standard, PAGE_SIZE is supported from the very
* beginning.
*/
if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
btrfs_err(fs_info,
"sectorsize %llu not yet supported for page size %lu",
sectorsize, PAGE_SIZE);
ret = -EINVAL;
}
if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
ret = -EINVAL;
}
if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
le32_to_cpu(sb->__unused_leafsize), nodesize);
ret = -EINVAL;
}
/* Root alignment check */
if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
btrfs_warn(fs_info, "tree_root block unaligned: %llu",
btrfs_super_root(sb));
ret = -EINVAL;
}
if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
btrfs_super_chunk_root(sb));
ret = -EINVAL;
}
if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
btrfs_warn(fs_info, "log_root block unaligned: %llu",
btrfs_super_log_root(sb));
ret = -EINVAL;
}
if (!fs_info->fs_devices->temp_fsid &&
memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
btrfs_err(fs_info,
"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
sb->fsid, fs_info->fs_devices->fsid);
ret = -EINVAL;
}
if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
BTRFS_FSID_SIZE) != 0) {
btrfs_err(fs_info,
"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
ret = -EINVAL;
}
if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
BTRFS_FSID_SIZE) != 0) {
btrfs_err(fs_info,
"dev_item UUID does not match metadata fsid: %pU != %pU",
fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
ret = -EINVAL;
}
/*
* Artificial requirement for block-group-tree to force newer features
* (free-space-tree, no-holes) so the test matrix is smaller.
*/
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
(!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
!btrfs_fs_incompat(fs_info, NO_HOLES))) {
btrfs_err(fs_info,
"block-group-tree feature requires fres-space-tree and no-holes");
ret = -EINVAL;
}
/*
* Hint to catch really bogus numbers, bitflips or so, more exact checks are
* done later
*/
if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
btrfs_err(fs_info, "bytes_used is too small %llu",
btrfs_super_bytes_used(sb));
ret = -EINVAL;
}
if (!is_power_of_2(btrfs_super_stripesize(sb))) {
btrfs_err(fs_info, "invalid stripesize %u",
btrfs_super_stripesize(sb));
ret = -EINVAL;
}
if (btrfs_super_num_devices(sb) > (1UL << 31))
btrfs_warn(fs_info, "suspicious number of devices: %llu",
btrfs_super_num_devices(sb));
if (btrfs_super_num_devices(sb) == 0) {
btrfs_err(fs_info, "number of devices is 0");
ret = -EINVAL;
}
if (mirror_num >= 0 &&
btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
btrfs_err(fs_info, "super offset mismatch %llu != %u",
btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
ret = -EINVAL;
}
/*
* Obvious sys_chunk_array corruptions, it must hold at least one key
* and one chunk
*/
if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
btrfs_err(fs_info, "system chunk array too big %u > %u",
btrfs_super_sys_array_size(sb),
BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ret = -EINVAL;
}
if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
+ sizeof(struct btrfs_chunk)) {
btrfs_err(fs_info, "system chunk array too small %u < %zu",
btrfs_super_sys_array_size(sb),
sizeof(struct btrfs_disk_key)
+ sizeof(struct btrfs_chunk));
ret = -EINVAL;
}
/*
* The generation is a global counter, we'll trust it more than the others
* but it's still possible that it's the one that's wrong.
*/
if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
btrfs_warn(fs_info,
"suspicious: generation < chunk_root_generation: %llu < %llu",
btrfs_super_generation(sb),
btrfs_super_chunk_root_generation(sb));
if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
&& btrfs_super_cache_generation(sb) != (u64)-1)
btrfs_warn(fs_info,
"suspicious: generation < cache_generation: %llu < %llu",
btrfs_super_generation(sb),
btrfs_super_cache_generation(sb));
return ret;
}
/*
* Validation of super block at mount time.
* Some checks already done early at mount time, like csum type and incompat
* flags will be skipped.
*/
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
{
btrfs: check superblock to ensure the fs was not modified at thaw time [BACKGROUND] There is an incident report that, one user hibernated the system, with one btrfs on removable device still mounted. Then by some incident, the btrfs got mounted and modified by another system/OS, then back to the hibernated system. After resuming from the hibernation, new write happened into the victim btrfs. Now the fs is completely broken, since the underlying btrfs is no longer the same one before the hibernation, and the user lost their data due to various transid mismatch. [REPRODUCER] We can emulate the situation using the following small script: truncate -s 1G $dev mkfs.btrfs -f $dev mount $dev $mnt fsstress -w -d $mnt -n 500 sync xfs_freeze -f $mnt cp $dev $dev.backup # There is no way to mount the same cloned fs on the same system, # as the conflicting fsid will be rejected by btrfs. # Thus here we have to wipe the fs using a different btrfs. mkfs.btrfs -f $dev.backup dd if=$dev.backup of=$dev bs=1M xfs_freeze -u $mnt fsstress -w -d $mnt -n 20 umount $mnt btrfs check $dev The final fsck will fail due to some tree blocks has incorrect fsid. This is enough to emulate the problem hit by the unfortunate user. [ENHANCEMENT] Although such case should not be that common, it can still happen from time to time. From the view of btrfs, we can detect any unexpected super block change, and if there is any unexpected change, we just mark the fs read-only, and thaw the fs. By this we can limit the damage to minimal, and I hope no one would lose their data by this anymore. Suggested-by: Goffredo Baroncelli <kreijack@libero.it> Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-24 12:16:22 +00:00
return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
}
btrfs: Do super block verification before writing it to disk There are already 2 reports about strangely corrupted super blocks, where csum still matches but extra garbage gets slipped into super block. The corruption would looks like: ------ superblock: bytenr=65536, device=/dev/sdc1 --------------------------------------------------------- csum_type 41700 (INVALID) csum 0x3b252d3a [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x5b22400000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x5b22400000000000 ) ... ------ Or ------ superblock: bytenr=65536, device=/dev/mapper/x --------------------------------------------------------- csum_type 35355 (INVALID) csum_size 32 csum 0xf0dbeddd [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x176d200000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x176d200000000000 ) ------ Obviously, csum_type and incompat_flags get some garbage, but its csum still matches, which means kernel calculates the csum based on corrupted super block memory. And after manually fixing these values, the filesystem is completely healthy without any problem exposed by btrfs check. Although the cause is still unknown, at least detect it and prevent further corruption. Both reports have same symptoms, there's an overwrite on offset 192 of the superblock, by 4 bytes. The superblock structure is not allocated or freed and stays in the memory for the whole filesystem lifetime, so it's not a use-after-free kind of error on someone else's leaked page. As a vague point for the problable cause is mentioning of other system freezing related to graphic card drivers. Reported-by: Ken Swenson <flat@imo.uto.moe> Reported-by: Ben Parsons <9parsonsb@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add brief analysis of the reports ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-11 05:35:27 +00:00
/*
* Validation of super block at write time.
* Some checks like bytenr check will be skipped as their values will be
* overwritten soon.
* Extra checks like csum type and incompat flags will be done here.
*/
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
struct btrfs_super_block *sb)
{
int ret;
btrfs: check superblock to ensure the fs was not modified at thaw time [BACKGROUND] There is an incident report that, one user hibernated the system, with one btrfs on removable device still mounted. Then by some incident, the btrfs got mounted and modified by another system/OS, then back to the hibernated system. After resuming from the hibernation, new write happened into the victim btrfs. Now the fs is completely broken, since the underlying btrfs is no longer the same one before the hibernation, and the user lost their data due to various transid mismatch. [REPRODUCER] We can emulate the situation using the following small script: truncate -s 1G $dev mkfs.btrfs -f $dev mount $dev $mnt fsstress -w -d $mnt -n 500 sync xfs_freeze -f $mnt cp $dev $dev.backup # There is no way to mount the same cloned fs on the same system, # as the conflicting fsid will be rejected by btrfs. # Thus here we have to wipe the fs using a different btrfs. mkfs.btrfs -f $dev.backup dd if=$dev.backup of=$dev bs=1M xfs_freeze -u $mnt fsstress -w -d $mnt -n 20 umount $mnt btrfs check $dev The final fsck will fail due to some tree blocks has incorrect fsid. This is enough to emulate the problem hit by the unfortunate user. [ENHANCEMENT] Although such case should not be that common, it can still happen from time to time. From the view of btrfs, we can detect any unexpected super block change, and if there is any unexpected change, we just mark the fs read-only, and thaw the fs. By this we can limit the damage to minimal, and I hope no one would lose their data by this anymore. Suggested-by: Goffredo Baroncelli <kreijack@libero.it> Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-24 12:16:22 +00:00
ret = btrfs_validate_super(fs_info, sb, -1);
btrfs: Do super block verification before writing it to disk There are already 2 reports about strangely corrupted super blocks, where csum still matches but extra garbage gets slipped into super block. The corruption would looks like: ------ superblock: bytenr=65536, device=/dev/sdc1 --------------------------------------------------------- csum_type 41700 (INVALID) csum 0x3b252d3a [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x5b22400000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x5b22400000000000 ) ... ------ Or ------ superblock: bytenr=65536, device=/dev/mapper/x --------------------------------------------------------- csum_type 35355 (INVALID) csum_size 32 csum 0xf0dbeddd [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x176d200000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x176d200000000000 ) ------ Obviously, csum_type and incompat_flags get some garbage, but its csum still matches, which means kernel calculates the csum based on corrupted super block memory. And after manually fixing these values, the filesystem is completely healthy without any problem exposed by btrfs check. Although the cause is still unknown, at least detect it and prevent further corruption. Both reports have same symptoms, there's an overwrite on offset 192 of the superblock, by 4 bytes. The superblock structure is not allocated or freed and stays in the memory for the whole filesystem lifetime, so it's not a use-after-free kind of error on someone else's leaked page. As a vague point for the problable cause is mentioning of other system freezing related to graphic card drivers. Reported-by: Ken Swenson <flat@imo.uto.moe> Reported-by: Ben Parsons <9parsonsb@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add brief analysis of the reports ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-11 05:35:27 +00:00
if (ret < 0)
goto out;
if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
btrfs: Do super block verification before writing it to disk There are already 2 reports about strangely corrupted super blocks, where csum still matches but extra garbage gets slipped into super block. The corruption would looks like: ------ superblock: bytenr=65536, device=/dev/sdc1 --------------------------------------------------------- csum_type 41700 (INVALID) csum 0x3b252d3a [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x5b22400000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x5b22400000000000 ) ... ------ Or ------ superblock: bytenr=65536, device=/dev/mapper/x --------------------------------------------------------- csum_type 35355 (INVALID) csum_size 32 csum 0xf0dbeddd [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x176d200000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x176d200000000000 ) ------ Obviously, csum_type and incompat_flags get some garbage, but its csum still matches, which means kernel calculates the csum based on corrupted super block memory. And after manually fixing these values, the filesystem is completely healthy without any problem exposed by btrfs check. Although the cause is still unknown, at least detect it and prevent further corruption. Both reports have same symptoms, there's an overwrite on offset 192 of the superblock, by 4 bytes. The superblock structure is not allocated or freed and stays in the memory for the whole filesystem lifetime, so it's not a use-after-free kind of error on someone else's leaked page. As a vague point for the problable cause is mentioning of other system freezing related to graphic card drivers. Reported-by: Ken Swenson <flat@imo.uto.moe> Reported-by: Ben Parsons <9parsonsb@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add brief analysis of the reports ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-11 05:35:27 +00:00
ret = -EUCLEAN;
btrfs_err(fs_info, "invalid csum type, has %u want %u",
btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
goto out;
}
if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
ret = -EUCLEAN;
btrfs_err(fs_info,
"invalid incompat flags, has 0x%llx valid mask 0x%llx",
btrfs_super_incompat_flags(sb),
(unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
goto out;
}
out:
if (ret < 0)
btrfs_err(fs_info,
"super block corruption detected before writing it to disk");
return ret;
}
static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
{
struct btrfs_tree_parent_check check = {
.level = level,
.transid = gen,
.owner_root = root->root_key.objectid
};
int ret = 0;
root->node = read_tree_block(root->fs_info, bytenr, &check);
if (IS_ERR(root->node)) {
ret = PTR_ERR(root->node);
root->node = NULL;
return ret;
}
if (!extent_buffer_uptodate(root->node)) {
free_extent_buffer(root->node);
root->node = NULL;
return -EIO;
}
btrfs_set_root_node(&root->root_item, root->node);
root->commit_root = btrfs_root_node(root);
btrfs_set_root_refs(&root->root_item, 1);
return ret;
}
static int load_important_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_super_block *sb = fs_info->super_copy;
u64 gen, bytenr;
int level, ret;
bytenr = btrfs_super_root(sb);
gen = btrfs_super_generation(sb);
level = btrfs_super_root_level(sb);
ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
if (ret) {
btrfs_warn(fs_info, "couldn't read tree root");
return ret;
}
return 0;
}
btrfs: Streamline btrfs_fs_info::backup_root_index semantics The backup_root_index member stores the index at which the backup root should be saved upon next transaction commit. However, there is a small deviation from this behavior in the form of a check in backup_super_roots which checks if current root generation equals to the generation of the previous root. This can trigger in the following scenario: slot0: gen-2 slot1: gen-1 slot2: gen slot3: unused Now suppose slot3 (which is also the root specified in the super block) is corrupted hence init_tree_roots chooses to use the backup root at slot2, meaning read_backup_root will read slot2 and assign the superblock generation to gen-1. Despite this backup_root_index will point at slot3 because its init happens in init_backup_root_slot, long before any parsing of the backup roots occur. Then on next transaction start, gen-1 will be incremented by 1 making the root's generation equal gen. Subsequently, on transaction commit the following check triggers: if (btrfs_backup_tree_root_gen(root_backup) == btrfs_header_generation(info->tree_root->node)) This causes the 'next_backup', which is the index at which the backup is going to be written to, to set to last_backup, which will be slot2. All of this is a very confusing way of expressing the following invariant: Always write a backup root at the index following the last used backup root. This commit streamlines this logic by setting backup_root_index to the next index after the one used for mount. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-15 15:42:24 +00:00
static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
{
btrfs: Streamline btrfs_fs_info::backup_root_index semantics The backup_root_index member stores the index at which the backup root should be saved upon next transaction commit. However, there is a small deviation from this behavior in the form of a check in backup_super_roots which checks if current root generation equals to the generation of the previous root. This can trigger in the following scenario: slot0: gen-2 slot1: gen-1 slot2: gen slot3: unused Now suppose slot3 (which is also the root specified in the super block) is corrupted hence init_tree_roots chooses to use the backup root at slot2, meaning read_backup_root will read slot2 and assign the superblock generation to gen-1. Despite this backup_root_index will point at slot3 because its init happens in init_backup_root_slot, long before any parsing of the backup roots occur. Then on next transaction start, gen-1 will be incremented by 1 making the root's generation equal gen. Subsequently, on transaction commit the following check triggers: if (btrfs_backup_tree_root_gen(root_backup) == btrfs_header_generation(info->tree_root->node)) This causes the 'next_backup', which is the index at which the backup is going to be written to, to set to last_backup, which will be slot2. All of this is a very confusing way of expressing the following invariant: Always write a backup root at the index following the last used backup root. This commit streamlines this logic by setting backup_root_index to the next index after the one used for mount. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-15 15:42:24 +00:00
int backup_index = find_newest_super_backup(fs_info);
struct btrfs_super_block *sb = fs_info->super_copy;
struct btrfs_root *tree_root = fs_info->tree_root;
bool handle_error = false;
int ret = 0;
int i;
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
if (handle_error) {
if (!IS_ERR(tree_root->node))
free_extent_buffer(tree_root->node);
tree_root->node = NULL;
if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
break;
free_root_pointers(fs_info, 0);
/*
* Don't use the log in recovery mode, it won't be
* valid
*/
btrfs_set_super_log_root(sb, 0);
btrfs: do not ASSERT() on duplicated global roots [BUG] Syzbot reports a reproducible ASSERT() when using rescue=usebackuproot mount option on a corrupted fs. The full report can be found here: https://syzkaller.appspot.com/bug?extid=c4614eae20a166c25bf0 BTRFS error (device loop0: state C): failed to load root csum assertion failed: !tmp, in fs/btrfs/disk-io.c:1103 ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.h:3664! invalid opcode: 0000 [#1] PREEMPT SMP KASAN CPU: 1 PID: 3608 Comm: syz-executor356 Not tainted 6.0.0-rc7-syzkaller-00029-g3800a713b607 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022 RIP: 0010:assertfail+0x1a/0x1c fs/btrfs/ctree.h:3663 RSP: 0018:ffffc90003aaf250 EFLAGS: 00010246 RAX: 0000000000000032 RBX: 0000000000000000 RCX: f21c13f886638400 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: ffff888021c640a0 R08: ffffffff816bd38d R09: ffffed10173667f1 R10: ffffed10173667f1 R11: 1ffff110173667f0 R12: dffffc0000000000 R13: ffff8880229c21f7 R14: ffff888021c64060 R15: ffff8880226c0000 FS: 0000555556a73300(0000) GS:ffff8880b9b00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055a2637d7a00 CR3: 00000000709c4000 CR4: 00000000003506e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> btrfs_global_root_insert+0x1a7/0x1b0 fs/btrfs/disk-io.c:1103 load_global_roots_objectid+0x482/0x8c0 fs/btrfs/disk-io.c:2467 load_global_roots fs/btrfs/disk-io.c:2501 [inline] btrfs_read_roots fs/btrfs/disk-io.c:2528 [inline] init_tree_roots+0xccb/0x203c fs/btrfs/disk-io.c:2939 open_ctree+0x1e53/0x33df fs/btrfs/disk-io.c:3574 btrfs_fill_super+0x1c6/0x2d0 fs/btrfs/super.c:1456 btrfs_mount_root+0x885/0x9a0 fs/btrfs/super.c:1824 legacy_get_tree+0xea/0x180 fs/fs_context.c:610 vfs_get_tree+0x88/0x270 fs/super.c:1530 fc_mount fs/namespace.c:1043 [inline] vfs_kern_mount+0xc9/0x160 fs/namespace.c:1073 btrfs_mount+0x3d3/0xbb0 fs/btrfs/super.c:1884 [CAUSE] Since the introduction of global roots, we handle csum/extent/free-space-tree roots as global roots, even if no extent-tree-v2 feature is enabled. So for regular csum/extent/fst roots, we load them into fs_info::global_root_tree rb tree. And we should not expect any conflicts in that rb tree, thus we have an ASSERT() inside btrfs_global_root_insert(). But rescue=usebackuproot can break the assumption, as we will try to load those trees again and again as long as we have bad roots and have backup roots slot remaining. So in that case we can have conflicting roots in the rb tree, and triggering the ASSERT() crash. [FIX] We can safely remove that ASSERT(), as the caller will properly put the offending root. To make further debugging easier, also add two explicit error messages: - Error message for conflicting global roots - Error message when using backup roots slot Reported-by: syzbot+a694851c6ab28cbcfb9c@syzkaller.appspotmail.com Fixes: abed4aaae4f7 ("btrfs: track the csum, extent, and free space trees in a rb tree") CC: stable@vger.kernel.org # 6.1+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-06-11 00:09:13 +00:00
btrfs_warn(fs_info, "try to load backup roots slot %d", i);
ret = read_backup_root(fs_info, i);
btrfs: Streamline btrfs_fs_info::backup_root_index semantics The backup_root_index member stores the index at which the backup root should be saved upon next transaction commit. However, there is a small deviation from this behavior in the form of a check in backup_super_roots which checks if current root generation equals to the generation of the previous root. This can trigger in the following scenario: slot0: gen-2 slot1: gen-1 slot2: gen slot3: unused Now suppose slot3 (which is also the root specified in the super block) is corrupted hence init_tree_roots chooses to use the backup root at slot2, meaning read_backup_root will read slot2 and assign the superblock generation to gen-1. Despite this backup_root_index will point at slot3 because its init happens in init_backup_root_slot, long before any parsing of the backup roots occur. Then on next transaction start, gen-1 will be incremented by 1 making the root's generation equal gen. Subsequently, on transaction commit the following check triggers: if (btrfs_backup_tree_root_gen(root_backup) == btrfs_header_generation(info->tree_root->node)) This causes the 'next_backup', which is the index at which the backup is going to be written to, to set to last_backup, which will be slot2. All of this is a very confusing way of expressing the following invariant: Always write a backup root at the index following the last used backup root. This commit streamlines this logic by setting backup_root_index to the next index after the one used for mount. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-15 15:42:24 +00:00
backup_index = ret;
if (ret < 0)
return ret;
}
ret = load_important_roots(fs_info);
if (ret) {
handle_error = true;
continue;
}
/*
* No need to hold btrfs_root::objectid_mutex since the fs
* hasn't been fully initialised and we are the only user
*/
ret = btrfs_init_root_free_objectid(tree_root);
if (ret < 0) {
handle_error = true;
continue;
}
ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
ret = btrfs_read_roots(fs_info);
if (ret < 0) {
handle_error = true;
continue;
}
/* All successful */
fs_info->generation = btrfs_header_generation(tree_root->node);
btrfs_set_last_trans_committed(fs_info, fs_info->generation);
btrfs: make send work with concurrent block group relocation We don't allow send and balance/relocation to run in parallel in order to prevent send failing or silently producing some bad stream. This is because while send is using an extent (specially metadata) or about to read a metadata extent and expecting it belongs to a specific parent node, relocation can run, the transaction used for the relocation is committed and the extent gets reallocated while send is still using the extent, so it ends up with a different content than expected. This can result in just failing to read a metadata extent due to failure of the validation checks (parent transid, level, etc), failure to find a backreference for a data extent, and other unexpected failures. Besides reallocation, there's also a similar problem of an extent getting discarded when it's unpinned after the transaction used for block group relocation is committed. The restriction between balance and send was added in commit 9e967495e0e0 ("Btrfs: prevent send failures and crashes due to concurrent relocation"), kernel 5.3, while the more general restriction between send and relocation was added in commit 1cea5cf0e664 ("btrfs: ensure relocation never runs while we have send operations running"), kernel 5.14. Both send and relocation can be very long running operations. Relocation because it has to do a lot of IO and expensive backreference lookups in case there are many snapshots, and send due to read IO when operating on very large trees. This makes it inconvenient for users and tools to deal with scheduling both operations. For zoned filesystem we also have automatic block group relocation, so send can fail with -EAGAIN when users least expect it or send can end up delaying the block group relocation for too long. In the future we might also get the automatic block group relocation for non zoned filesystems. This change makes it possible for send and relocation to run in parallel. This is achieved the following way: 1) For all tree searches, send acquires a read lock on the commit root semaphore; 2) After each tree search, and before releasing the commit root semaphore, the leaf is cloned and placed in the search path (struct btrfs_path); 3) After releasing the commit root semaphore, the changed_cb() callback is invoked, which operates on the leaf and writes commands to the pipe (or file in case send/receive is not used with a pipe). It's important here to not hold a lock on the commit root semaphore, because if we did we could deadlock when sending and receiving to the same filesystem using a pipe - the send task blocks on the pipe because it's full, the receive task, which is the only consumer of the pipe, triggers a transaction commit when attempting to create a subvolume or reserve space for a write operation for example, but the transaction commit blocks trying to write lock the commit root semaphore, resulting in a deadlock; 4) Before moving to the next key, or advancing to the next change in case of an incremental send, check if a transaction used for relocation was committed (or is about to finish its commit). If so, release the search path(s) and restart the search, to where we were before, so that we don't operate on stale extent buffers. The search restarts are always possible because both the send and parent roots are RO, and no one can add, remove of update keys (change their offset) in RO trees - the only exception is deduplication, but that is still not allowed to run in parallel with send; 5) Periodically check if there is contention on the commit root semaphore, which means there is a transaction commit trying to write lock it, and release the semaphore and reschedule if there is contention, so as to avoid causing any significant delays to transaction commits. This leaves some room for optimizations for send to have less path releases and re searching the trees when there's relocation running, but for now it's kept simple as it performs quite well (on very large trees with resulting send streams in the order of a few hundred gigabytes). Test case btrfs/187, from fstests, stresses relocation, send and deduplication attempting to run in parallel, but without verifying if send succeeds and if it produces correct streams. A new test case will be added that exercises relocation happening in parallel with send and then checks that send succeeds and the resulting streams are correct. A final note is that for now this still leaves the mutual exclusion between send operations and deduplication on files belonging to a root used by send operations. A solution for that will be slightly more complex but it will eventually be built on top of this change. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2021-11-22 12:03:38 +00:00
fs_info->last_reloc_trans = 0;
btrfs: Streamline btrfs_fs_info::backup_root_index semantics The backup_root_index member stores the index at which the backup root should be saved upon next transaction commit. However, there is a small deviation from this behavior in the form of a check in backup_super_roots which checks if current root generation equals to the generation of the previous root. This can trigger in the following scenario: slot0: gen-2 slot1: gen-1 slot2: gen slot3: unused Now suppose slot3 (which is also the root specified in the super block) is corrupted hence init_tree_roots chooses to use the backup root at slot2, meaning read_backup_root will read slot2 and assign the superblock generation to gen-1. Despite this backup_root_index will point at slot3 because its init happens in init_backup_root_slot, long before any parsing of the backup roots occur. Then on next transaction start, gen-1 will be incremented by 1 making the root's generation equal gen. Subsequently, on transaction commit the following check triggers: if (btrfs_backup_tree_root_gen(root_backup) == btrfs_header_generation(info->tree_root->node)) This causes the 'next_backup', which is the index at which the backup is going to be written to, to set to last_backup, which will be slot2. All of this is a very confusing way of expressing the following invariant: Always write a backup root at the index following the last used backup root. This commit streamlines this logic by setting backup_root_index to the next index after the one used for mount. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-10-15 15:42:24 +00:00
/* Always begin writing backup roots after the one being used */
if (backup_index < 0) {
fs_info->backup_root_index = 0;
} else {
fs_info->backup_root_index = backup_index + 1;
fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
}
break;
}
return ret;
}
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
{
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
INIT_LIST_HEAD(&fs_info->trans_list);
INIT_LIST_HEAD(&fs_info->dead_roots);
INIT_LIST_HEAD(&fs_info->delayed_iputs);
INIT_LIST_HEAD(&fs_info->delalloc_roots);
INIT_LIST_HEAD(&fs_info->caching_block_groups);
spin_lock_init(&fs_info->delalloc_root_lock);
Btrfs: kill trans_mutex We use trans_mutex for lots of things, here's a basic list 1) To serialize trans_handles joining the currently running transaction 2) To make sure that no new trans handles are started while we are committing 3) To protect the dead_roots list and the transaction lists Really the serializing trans_handles joining is not too hard, and can really get bogged down in acquiring a reference to the transaction. So replace the trans_mutex with a trans_lock spinlock and use it to do the following 1) Protect fs_info->running_transaction. All trans handles have to do is check this, and then take a reference of the transaction and keep on going. 2) Protect the fs_info->trans_list. This doesn't get used too much, basically it just holds the current transactions, which will usually just be the currently committing transaction and the currently running transaction at most. 3) Protect the dead roots list. This is only ever processed by splicing the list so this is relatively simple. 4) Protect the fs_info->reloc_ctl stuff. This is very lightweight and was using the trans_mutex before, so this is a pretty straightforward change. 5) Protect fs_info->no_trans_join. Because we don't hold the trans_lock over the entirety of the commit we need to have a way to block new people from creating a new transaction while we're doing our work. So we set no_trans_join and in join_transaction we test to see if that is set, and if it is we do a wait_on_commit. 6) Make the transaction use count atomic so we don't need to take locks to modify it when we're dropping references. 7) Add a commit_lock to the transaction to make sure multiple people trying to commit the same transaction don't race and commit at the same time. 8) Make open_ioctl_trans an atomic so we don't have to take any locks for ioctl trans. I have tested this with xfstests, but obviously it is a pretty hairy change so lots of testing is greatly appreciated. Thanks, Signed-off-by: Josef Bacik <josef@redhat.com>
2011-04-11 21:25:13 +00:00
spin_lock_init(&fs_info->trans_lock);
spin_lock_init(&fs_info->fs_roots_radix_lock);
spin_lock_init(&fs_info->delayed_iput_lock);
spin_lock_init(&fs_info->defrag_inodes_lock);
spin_lock_init(&fs_info->super_lock);
spin_lock_init(&fs_info->buffer_lock);
spin_lock_init(&fs_info->unused_bgs_lock);
spin_lock_init(&fs_info->treelog_bg_lock);
spin_lock_init(&fs_info->zone_active_bgs_lock);
2021-09-08 16:19:26 +00:00
spin_lock_init(&fs_info->relocation_bg_lock);
rwlock_init(&fs_info->tree_mod_log_lock);
rwlock_init(&fs_info->global_root_lock);
btrfs: Fix NO_SPACE bug caused by delayed-iput Steps to reproduce: while true; do dd if=/dev/zero of=/btrfs_dir/file count=[fs_size * 75%] rm /btrfs_dir/file sync done And we'll see dd failed because btrfs return NO_SPACE. Reason: Normally, btrfs_commit_transaction() call btrfs_run_delayed_iputs() in end to free fs space for next write, but sometimes it hadn't done work on time, because btrfs-cleaner thread get delayed-iputs from list before, but do iput() after next write. This is log: [ 2569.050776] comm=btrfs-cleaner func=btrfs_evict_inode() begin [ 2569.084280] comm=sync func=btrfs_commit_transaction() call btrfs_run_delayed_iputs() [ 2569.085418] comm=sync func=btrfs_commit_transaction() done btrfs_run_delayed_iputs() [ 2569.087554] comm=sync func=btrfs_commit_transaction() end [ 2569.191081] comm=dd begin [ 2569.790112] comm=dd func=__btrfs_buffered_write() ret=-28 [ 2569.847479] comm=btrfs-cleaner func=add_pinned_bytes() 0 + 32677888 = 32677888 [ 2569.849530] comm=btrfs-cleaner func=add_pinned_bytes() 32677888 + 23834624 = 56512512 ... [ 2569.903893] comm=btrfs-cleaner func=add_pinned_bytes() 943976448 + 21762048 = 965738496 [ 2569.908270] comm=btrfs-cleaner func=btrfs_evict_inode() end Fix: Make btrfs_commit_transaction() wait current running btrfs-cleaner's delayed-iputs() done in end. Test: Use script similar to above(more complex), before patch: 7 failed in 100 * 20 loop. after patch: 0 failed in 100 * 20 loop. Signed-off-by: Zhao Lei <zhaolei@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2015-02-26 02:49:20 +00:00
mutex_init(&fs_info->unused_bg_unpin_mutex);
mutex_init(&fs_info->reclaim_bgs_lock);
mutex_init(&fs_info->reloc_mutex);
mutex_init(&fs_info->delalloc_root_mutex);
mutex_init(&fs_info->zoned_meta_io_lock);
btrfs: zoned: use dedicated lock for data relocation Currently, we use btrfs_inode_{lock,unlock}() to grant an exclusive writeback of the relocation data inode in btrfs_zoned_data_reloc_{lock,unlock}(). However, that can cause a deadlock in the following path. Thread A takes btrfs_inode_lock() and waits for metadata reservation by e.g, waiting for writeback: prealloc_file_extent_cluster() - btrfs_inode_lock(&inode->vfs_inode, 0); - btrfs_prealloc_file_range() ... - btrfs_replace_file_extents() - btrfs_start_transaction ... - btrfs_reserve_metadata_bytes() Thread B (e.g, doing a writeback work) needs to wait for the inode lock to continue writeback process: do_writepages - btrfs_writepages - extent_writpages - btrfs_zoned_data_reloc_lock(BTRFS_I(inode)); - btrfs_inode_lock() The deadlock is caused by relying on the vfs_inode's lock. By using it, we introduced unnecessary exclusion of writeback and btrfs_prealloc_file_range(). Also, the lock at this point is useless as we don't have any dirty pages in the inode yet. Introduce fs_info->zoned_data_reloc_io_lock and use it for the exclusive writeback. Fixes: 35156d852762 ("btrfs: zoned: only allow one process to add pages to a relocation inode") CC: stable@vger.kernel.org # 5.16.x: 869f4cdc73f9: btrfs: zoned: encapsulate inode locking for zoned relocation CC: stable@vger.kernel.org # 5.16.x CC: stable@vger.kernel.org # 5.17 Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-18 07:15:03 +00:00
mutex_init(&fs_info->zoned_data_reloc_io_lock);
seqlock_init(&fs_info->profiles_lock);
btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
btrfs: do not block starts waiting on previous transaction commit Internally I got a report of very long stalls on normal operations like creating a new file when auto relocation was running. The reporter used the 'bpf offcputime' tracer to show that we would get stuck in start_transaction for 5 to 30 seconds, and were always being woken up by the transaction commit. Using my timing-everything script, which times how long a function takes and what percentage of that total time is taken up by its children, I saw several traces like this 1083 took 32812902424 ns 29929002926 ns 91.2110% wait_for_commit_duration 25568 ns 7.7920e-05% commit_fs_roots_duration 1007751 ns 0.00307% commit_cowonly_roots_duration 446855602 ns 1.36182% btrfs_run_delayed_refs_duration 271980 ns 0.00082% btrfs_run_delayed_items_duration 2008 ns 6.1195e-06% btrfs_apply_pending_changes_duration 9656 ns 2.9427e-05% switch_commit_roots_duration 1598 ns 4.8700e-06% btrfs_commit_device_sizes_duration 4314 ns 1.3147e-05% btrfs_free_log_root_tree_duration Here I was only tracing functions that happen where we are between START_COMMIT and UNBLOCKED in order to see what would be keeping us blocked for so long. The wait_for_commit() we do is where we wait for a previous transaction that hasn't completed it's commit. This can include all of the unpin work and other cleanups, which tends to be the longest part of our transaction commit. There is no reason we should be blocking new things from entering the transaction at this point, it just adds to random latency spikes for no reason. Fix this by adding a PREP stage. This allows us to properly deal with multiple committers coming in at the same time, we retain the behavior that the winner waits on the previous transaction and the losers all wait for this transaction commit to occur. Nothing else is blocked during the PREP stage, and then once the wait is complete we switch to COMMIT_START and all of the same behavior as before is maintained. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-24 20:59:22 +00:00
btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
BTRFS_LOCKDEP_TRANS_UNBLOCKED);
btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
BTRFS_LOCKDEP_TRANS_COMPLETED);
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
INIT_LIST_HEAD(&fs_info->space_info);
INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
INIT_LIST_HEAD(&fs_info->unused_bgs);
INIT_LIST_HEAD(&fs_info->reclaim_bgs);
INIT_LIST_HEAD(&fs_info->zone_active_bgs);
#ifdef CONFIG_BTRFS_DEBUG
INIT_LIST_HEAD(&fs_info->allocated_roots);
INIT_LIST_HEAD(&fs_info->allocated_ebs);
spin_lock_init(&fs_info->eb_leak_lock);
#endif
btrfs: use a dedicated data structure for chunk maps Currently we abuse the extent_map structure for two purposes: 1) To actually represent extents for inodes; 2) To represent chunk mappings. This is odd and has several disadvantages: 1) To create a chunk map, we need to do two memory allocations: one for an extent_map structure and another one for a map_lookup structure, so more potential for an allocation failure and more complicated code to manage and link two structures; 2) For a chunk map we actually only use 3 fields (24 bytes) of the respective extent map structure: the 'start' field to have the logical start address of the chunk, the 'len' field to have the chunk's size, and the 'orig_block_len' field to contain the chunk's stripe size. Besides wasting a memory, it's also odd and not intuitive at all to have the stripe size in a field named 'orig_block_len'. We are also using 'block_len' of the extent_map structure to contain the chunk size, so we have 2 fields for the same value, 'len' and 'block_len', which is pointless; 3) When an extent map is associated to a chunk mapping, we set the bit EXTENT_FLAG_FS_MAPPING on its flags and then make its member named 'map_lookup' point to the associated map_lookup structure. This means that for an extent map associated to an inode extent, we are not using this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform); 4) Extent maps associated to a chunk mapping are never merged or split so it's pointless to use the existing extent map infrastructure. So add a dedicated data structure named 'btrfs_chunk_map' to represent chunk mappings, this is basically the existing map_lookup structure with some extra fields: 1) 'start' to contain the chunk logical address; 2) 'chunk_len' to contain the chunk's length; 3) 'stripe_size' for the stripe size; 4) 'rb_node' for insertion into a rb tree; 5) 'refs' for reference counting. This way we do a single memory allocation for chunk mappings and we don't waste memory for them with unused/unnecessary fields from an extent_map. We also save 8 bytes from the extent_map structure by removing the 'map_lookup' pointer, so the size of struct extent_map is reduced from 144 bytes down to 136 bytes, and we can now have 30 extents map per 4K page instead of 28. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-21 13:38:38 +00:00
fs_info->mapping_tree = RB_ROOT_CACHED;
rwlock_init(&fs_info->mapping_tree_lock);
btrfs_init_block_rsv(&fs_info->global_block_rsv,
BTRFS_BLOCK_RSV_GLOBAL);
btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
BTRFS_BLOCK_RSV_DELOPS);
btrfs: introduce delayed_refs_rsv Traditionally we've had voodoo in btrfs to account for the space that delayed refs may take up by having a global_block_rsv. This works most of the time, except when it doesn't. We've had issues reported and seen in production where sometimes the global reserve is exhausted during transaction commit before we can run all of our delayed refs, resulting in an aborted transaction. Because of this voodoo we have equally dubious flushing semantics around throttling delayed refs which we often get wrong. So instead give them their own block_rsv. This way we can always know exactly how much outstanding space we need for delayed refs. This allows us to make sure we are constantly filling that reservation up with space, and allows us to put more precise pressure on the enospc system. Instead of doing math to see if its a good time to throttle, the normal enospc code will be invoked if we have a lot of delayed refs pending, and they will be run via the normal flushing mechanism. For now the delayed_refs_rsv will hold the reservations for the delayed refs, the block group updates, and deleting csums. We could have a separate rsv for the block group updates, but the csum deletion stuff is still handled via the delayed_refs so that will stay there. Historical background: The global reserve has grown to cover everything we don't reserve space explicitly for, and we've grown a lot of weird ad-hoc heuristics to know if we're running short on space and when it's time to force a commit. A failure rate of 20-40 file systems when we run hundreds of thousands of them isn't super high, but cleaning up this code will make things less ugly and more predictible. Thus the delayed refs rsv. We always know how many delayed refs we have outstanding, and although running them generates more we can use the global reserve for that spill over, which fits better into it's desired use than a full blown reservation. This first approach is to simply take how many times we're reserving space for and multiply that by 2 in order to save enough space for the delayed refs that could be generated. This is a niave approach and will probably evolve, but for now it works. Signed-off-by: Josef Bacik <jbacik@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> # high-level review [ added background notes from the cover letter ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-03 15:20:33 +00:00
btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
BTRFS_BLOCK_RSV_DELREFS);
atomic_set(&fs_info->async_delalloc_pages, 0);
atomic_set(&fs_info->defrag_running, 0);
atomic_set(&fs_info->nr_delayed_iputs, 0);
atomic64_set(&fs_info->tree_mod_seq, 0);
fs_info->global_root_tree = RB_ROOT;
fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
Btrfs: proper -ENOSPC handling At the start of a transaction we do a btrfs_reserve_metadata_space() and specify how many items we plan on modifying. Then once we've done our modifications and such, just call btrfs_unreserve_metadata_space() for the same number of items we reserved. For keeping track of metadata needed for data I've had to add an extent_io op for when we merge extents. This lets us track space properly when we are doing sequential writes, so we don't end up reserving way more metadata space than what we need. The only place where the metadata space accounting is not done is in the relocation code. This is because Yan is going to be reworking that code in the near future, so running btrfs-vol -b could still possibly result in a ENOSPC related panic. This patch also turns off the metadata_ratio stuff in order to allow users to more efficiently use their disk space. This patch makes it so we track how much metadata we need for an inode's delayed allocation extents by tracking how many extents are currently waiting for allocation. It introduces two new callbacks for the extent_io tree's, merge_extent_hook and split_extent_hook. These help us keep track of when we merge delalloc extents together and split them up. Reservations are handled prior to any actually dirty'ing occurs, and then we unreserve after we dirty. btrfs_unreserve_metadata_for_delalloc() will make the appropriate unreservations as needed based on the number of reservations we currently have and the number of extents we currently have. Doing the reservation outside of doing any of the actual dirty'ing lets us do things like filemap_flush() the inode to try and force delalloc to happen, or as a last resort actually start allocation on all delalloc inodes in the fs. This has survived dbench, fs_mark and an fsx torture test. Signed-off-by: Josef Bacik <jbacik@redhat.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-09-11 20:12:44 +00:00
fs_info->metadata_ratio = 0;
fs_info->defrag_inodes = RB_ROOT;
atomic64_set(&fs_info->free_chunk_space, 0);
fs_info->tree_mod_log = RB_ROOT;
fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
btrfs_init_ref_verify(fs_info);
Btrfs: Add zlib compression support This is a large change for adding compression on reading and writing, both for inline and regular extents. It does some fairly large surgery to the writeback paths. Compression is off by default and enabled by mount -o compress. Even when the -o compress mount option is not used, it is possible to read compressed extents off the disk. If compression for a given set of pages fails to make them smaller, the file is flagged to avoid future compression attempts later. * While finding delalloc extents, the pages are locked before being sent down to the delalloc handler. This allows the delalloc handler to do complex things such as cleaning the pages, marking them writeback and starting IO on their behalf. * Inline extents are inserted at delalloc time now. This allows us to compress the data before inserting the inline extent, and it allows us to insert an inline extent that spans multiple pages. * All of the in-memory extent representations (extent_map.c, ordered-data.c etc) are changed to record both an in-memory size and an on disk size, as well as a flag for compression. From a disk format point of view, the extent pointers in the file are changed to record the on disk size of a given extent and some encoding flags. Space in the disk format is allocated for compression encoding, as well as encryption and a generic 'other' field. Neither the encryption or the 'other' field are currently used. In order to limit the amount of data read for a single random read in the file, the size of a compressed extent is limited to 128k. This is a software only limit, the disk format supports u64 sized compressed extents. In order to limit the ram consumed while processing extents, the uncompressed size of a compressed extent is limited to 256k. This is a software only limit and will be subject to tuning later. Checksumming is still done on compressed extents, and it is done on the uncompressed version of the data. This way additional encodings can be layered on without having to figure out which encoding to checksum. Compression happens at delalloc time, which is basically singled threaded because it is usually done by a single pdflush thread. This makes it tricky to spread the compression load across all the cpus on the box. We'll have to look at parallel pdflush walks of dirty inodes at a later time. Decompression is hooked into readpages and it does spread across CPUs nicely. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-10-29 18:49:59 +00:00
fs_info->thread_pool_size = min_t(unsigned long,
num_online_cpus() + 2, 8);
INIT_LIST_HEAD(&fs_info->ordered_roots);
spin_lock_init(&fs_info->ordered_root_lock);
btrfs_init_scrub(fs_info);
btrfs_init_balance(fs_info);
btrfs_init_async_reclaim_work(fs_info);
btrfs: use a read/write lock for protecting the block groups tree Currently we use a spin lock to protect the red black tree that we use to track block groups. Most accesses to that tree are actually read only and for large filesystems, with thousands of block groups, it actually has a bad impact on performance, as concurrent read only searches on the tree are serialized. Read only searches on the tree are very frequent and done when: 1) Pinning and unpinning extents, as we need to lookup the respective block group from the tree; 2) Freeing the last reference of a tree block, regardless if we pin the underlying extent or add it back to free space cache/tree; 3) During NOCOW writes, both buffered IO and direct IO, we need to check if the block group that contains an extent is read only or not and to increment the number of NOCOW writers in the block group. For those operations we need to search for the block group in the tree. Similarly, after creating the ordered extent for the NOCOW write, we need to decrement the number of NOCOW writers from the same block group, which requires searching for it in the tree; 4) Decreasing the number of extent reservations in a block group; 5) When allocating extents and freeing reserved extents; 6) Adding and removing free space to the free space tree; 7) When releasing delalloc bytes during ordered extent completion; 8) When relocating a block group; 9) During fitrim, to iterate over the block groups; 10) etc; Write accesses to the tree, to add or remove block groups, are much less frequent as they happen only when allocating a new block group or when deleting a block group. We also use the same spin lock to protect the list of currently caching block groups. Additions to this list are made when we need to cache a block group, because we don't have a free space cache for it (or we have but it's invalid), and removals from this list are done when caching of the block group's free space finishes. These cases are also not very common, but when they happen, they happen only once when the filesystem is mounted. So switch the lock that protects the tree of block groups from a spinning lock to a read/write lock. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-13 15:20:41 +00:00
rwlock_init(&fs_info->block_group_cache_lock);
fs_info->block_group_cache_tree = RB_ROOT_CACHED;
Btrfs: free space accounting redo 1) replace the per fs_info extent_io_tree that tracked free space with two rb-trees per block group to track free space areas via offset and size. The reason to do this is because most allocations come with a hint byte where to start, so we can usually find a chunk of free space at that hint byte to satisfy the allocation and get good space packing. If we cannot find free space at or after the given offset we fall back on looking for a chunk of the given size as close to that given offset as possible. When we fall back on the size search we also try to find a slot as close to the size we want as possible, to avoid breaking small chunks off of huge areas if possible. 2) remove the extent_io_tree that tracked the block group cache from fs_info and replaced it with an rb-tree thats tracks block group cache via offset. also added a per space_info list that tracks the block group cache for the particular space so we can lookup related block groups easily. 3) cleaned up the allocation code to make it a little easier to read and a little less complicated. Basically there are 3 steps, first look from our provided hint. If we couldn't find from that given hint, start back at our original search start and look for space from there. If that fails try to allocate space if we can and start looking again. If not we're screwed and need to start over again. 4) small fixes. there were some issues in volumes.c where we wouldn't allocate the rest of the disk. fixed cow_file_range to actually pass the alloc_hint, which has helped a good bit in making the fs_mark test I run have semi-normal results as we run out of space. Generally with data allocations we don't track where we last allocated from, so everytime we did a data allocation we'd search through every block group that we have looking for free space. Now searching a block group with no free space isn't terribly time consuming, it was causing a slight degradation as we got more data block groups. The alloc_hint has fixed this slight degredation and made things semi-normal. There is still one nagging problem I'm working on where we will get ENOSPC when there is definitely plenty of space. This only happens with metadata allocations, and only when we are almost full. So you generally hit the 85% mark first, but sometimes you'll hit the BUG before you hit the 85% wall. I'm still tracking it down, but until then this seems to be pretty stable and make a significant performance gain. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-23 17:14:11 +00:00
extent_io_tree_init(fs_info, &fs_info->excluded_extents,
IO_TREE_FS_EXCLUDED_EXTENTS);
Btrfs: add extra flushing for renames and truncates Renames and truncates are both common ways to replace old data with new data. The filesystem can make an effort to make sure the new data is on disk before actually replacing the old data. This is especially important for rename, which many application use as though it were atomic for both the data and the metadata involved. The current btrfs code will happily replace a file that is fully on disk with one that was just created and still has pending IO. If we crash after transaction commit but before the IO is done, we'll end up replacing a good file with a zero length file. The solution used here is to create a list of inodes that need special ordering and force them to disk before the commit is done. This is similar to the ext3 style data=ordering, except it is only done on selected files. Btrfs is able to get away with this because it does not wait on commits very often, even for fsync (which use a sub-commit). For renames, we order the file when it wasn't already on disk and when it is replacing an existing file. Larger files are sent to filemap_flush right away (before the transaction handle is opened). For truncates, we order if the file goes from non-zero size down to zero size. This is a little different, because at the time of the truncate the file has no dirty bytes to order. But, we flag the inode so that it is added to the ordered list on close (via release method). We also immediately add it to the ordered list of the current transaction so that we can try to flush down any writes the application sneaks in before commit. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-03-31 17:27:11 +00:00
mutex_init(&fs_info->ordered_operations_mutex);
mutex_init(&fs_info->tree_log_mutex);
mutex_init(&fs_info->chunk_mutex);
mutex_init(&fs_info->transaction_kthread_mutex);
mutex_init(&fs_info->cleaner_mutex);
mutex_init(&fs_info->ro_block_group_mutex);
init_rwsem(&fs_info->commit_root_sem);
init_rwsem(&fs_info->cleanup_work_sem);
init_rwsem(&fs_info->subvol_sem);
sema_init(&fs_info->uuid_tree_rescan_sem, 1);
btrfs_init_dev_replace_locks(fs_info);
btrfs_init_qgroup(fs_info);
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
btrfs_discard_init(fs_info);
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
init_waitqueue_head(&fs_info->transaction_throttle);
init_waitqueue_head(&fs_info->transaction_wait);
init_waitqueue_head(&fs_info->transaction_blocked_wait);
init_waitqueue_head(&fs_info->async_submit_wait);
init_waitqueue_head(&fs_info->delayed_iputs_wait);
/* Usable values until the real ones are cached from the superblock */
fs_info->nodesize = 4096;
fs_info->sectorsize = 4096;
fs_info->sectorsize_bits = ilog2(4096);
fs_info->stripesize = 4096;
/* Default compress algorithm when user does -o compress */
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
btrfs: replace BTRFS_MAX_EXTENT_SIZE with fs_info->max_extent_size On zoned filesystem, data write out is limited by max_zone_append_size, and a large ordered extent is split according the size of a bio. OTOH, the number of extents to be written is calculated using BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the metadata bytes to update and/or create the metadata items. The metadata reservation is done at e.g, btrfs_buffered_write() and then released according to the estimation changes. Thus, if the number of extent increases massively, the reserved metadata can run out. The increase of the number of extents easily occurs on zoned filesystem if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the following warning on a small RAM environment with disabling metadata over-commit (in the following patch). [75721.498492] ------------[ cut here ]------------ [75721.505624] BTRFS: block rsv 1 returned -28 [75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs] [75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109 [75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021 [75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] [75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs] [75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286 [75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000 [75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e [75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7 [75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28 [75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a [75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000 [75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0 [75721.730499] Call Trace: [75721.735166] <TASK> [75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs] [75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs] [75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs] [75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs] [75721.769520] ? push_leaf_left+0x420/0x620 [btrfs] [75721.776431] ? memcpy+0x4e/0x60 [75721.781931] split_leaf+0x433/0x12d0 [btrfs] [75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs] [75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs] [75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs] [75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs] [75721.818300] ? lock_downgrade+0x7c0/0x7c0 [75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs] [75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs] [75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs] [75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs] [75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs] [75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs] [75721.869313] ? rcu_read_lock_sched_held+0x16/0x80 [75721.876085] ? lock_release+0x552/0xf80 [75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs] [75721.888886] ? __kasan_check_write+0x14/0x20 [75721.895152] ? do_raw_read_unlock+0x44/0x80 [75721.901323] ? _raw_write_lock_irq+0x60/0x80 [75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs] [75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs] [75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs] [75721.929166] ? _raw_write_unlock+0x23/0x40 [75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs] [75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs] [75721.949906] ? try_to_wake_up+0x30/0x14a0 [75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs] [75721.962661] ? rcu_read_lock_sched_held+0x16/0x80 [75721.969111] ? lock_acquire+0x41b/0x4c0 [75721.974982] finish_ordered_fn+0x15/0x20 [btrfs] [75721.981639] btrfs_work_helper+0x1af/0xa80 [btrfs] [75721.988184] ? _raw_spin_unlock_irq+0x28/0x50 [75721.994643] process_one_work+0x815/0x1460 [75722.000444] ? pwq_dec_nr_in_flight+0x250/0x250 [75722.006643] ? do_raw_spin_trylock+0xbb/0x190 [75722.013086] worker_thread+0x59a/0xeb0 [75722.018511] kthread+0x2ac/0x360 [75722.023428] ? process_one_work+0x1460/0x1460 [75722.029431] ? kthread_complete_and_exit+0x30/0x30 [75722.036044] ret_from_fork+0x22/0x30 [75722.041255] </TASK> [75722.045047] irq event stamp: 0 [75722.049703] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [75722.057610] hardirqs last disabled at (0): [<ffffffff8118a94a>] copy_process+0x1c1a/0x66b0 [75722.067533] softirqs last enabled at (0): [<ffffffff8118a989>] copy_process+0x1c59/0x66b0 [75722.077423] softirqs last disabled at (0): [<0000000000000000>] 0x0 [75722.085335] ---[ end trace 0000000000000000 ]--- To fix the estimation, we need to introduce fs_info->max_extent_size to replace BTRFS_MAX_EXTENT_SIZE, which allow setting the different size for regular vs zoned filesystem. Set fs_info->max_extent_size to BTRFS_MAX_EXTENT_SIZE by default. On zoned filesystem, it is set to fs_info->max_zone_append_size. CC: stable@vger.kernel.org # 5.12+ Fixes: d8e3fb106f39 ("btrfs: zoned: use ZONE_APPEND write for zoned mode") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-07-08 23:18:40 +00:00
fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
spin_lock_init(&fs_info->swapfile_pins_lock);
fs_info->swapfile_pins = RB_ROOT;
fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
}
static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
{
int ret;
fs_info->sb = sb;
/* Temporary fixed values for block size until we read the superblock. */
sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
Btrfs: prevent send failures and crashes due to concurrent relocation Send always operates on read-only trees and always expected that while it is in progress, nothing changes in those trees. Due to that expectation and the fact that send is a read-only operation, it operates on commit roots and does not hold transaction handles. However relocation can COW nodes and leafs from read-only trees, which can cause unexpected failures and crashes (hitting BUG_ONs). while send using a node/leaf, it gets COWed, the transaction used to COW it is committed, a new transaction starts, the extent previously used for that node/leaf gets allocated, possibly for another tree, and the respective extent buffer' content changes while send is still using it. When this happens send normally fails with EIO being returned to user space and messages like the following are found in dmesg/syslog: [ 3408.699121] BTRFS error (device sdc): parent transid verify failed on 58703872 wanted 250 found 253 [ 3441.523123] BTRFS error (device sdc): did not find backref in send_root. inode=63211, offset=0, disk_byte=5222825984 found extent=5222825984 Other times, less often, we hit a BUG_ON() because an extent buffer that send is using used to be a node, and while send is still using it, it got COWed and got reused as a leaf while send is still using, producing the following trace: [ 3478.466280] ------------[ cut here ]------------ [ 3478.466282] kernel BUG at fs/btrfs/ctree.c:1806! [ 3478.466965] invalid opcode: 0000 [#1] SMP DEBUG_PAGEALLOC PTI [ 3478.467635] CPU: 0 PID: 2165 Comm: btrfs Not tainted 5.0.0-btrfs-next-46 #1 [ 3478.468311] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [ 3478.469681] RIP: 0010:read_node_slot+0x122/0x130 [btrfs] (...) [ 3478.471758] RSP: 0018:ffffa437826bfaa0 EFLAGS: 00010246 [ 3478.472457] RAX: ffff961416ed7000 RBX: 000000000000003d RCX: 0000000000000002 [ 3478.473151] RDX: 000000000000003d RSI: ffff96141e387408 RDI: ffff961599b30000 [ 3478.473837] RBP: ffffa437826bfb8e R08: 0000000000000001 R09: ffffa437826bfb8e [ 3478.474515] R10: ffffa437826bfa70 R11: 0000000000000000 R12: ffff9614385c8708 [ 3478.475186] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 3478.475840] FS: 00007f8e0e9cc8c0(0000) GS:ffff9615b6a00000(0000) knlGS:0000000000000000 [ 3478.476489] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 3478.477127] CR2: 00007f98b67a056e CR3: 0000000005df6005 CR4: 00000000003606f0 [ 3478.477762] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 3478.478385] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 3478.479003] Call Trace: [ 3478.479600] ? do_raw_spin_unlock+0x49/0xc0 [ 3478.480202] tree_advance+0x173/0x1d0 [btrfs] [ 3478.480810] btrfs_compare_trees+0x30c/0x690 [btrfs] [ 3478.481388] ? process_extent+0x1280/0x1280 [btrfs] [ 3478.481954] btrfs_ioctl_send+0x1037/0x1270 [btrfs] [ 3478.482510] _btrfs_ioctl_send+0x80/0x110 [btrfs] [ 3478.483062] btrfs_ioctl+0x13fe/0x3120 [btrfs] [ 3478.483581] ? rq_clock_task+0x2e/0x60 [ 3478.484086] ? wake_up_new_task+0x1f3/0x370 [ 3478.484582] ? do_vfs_ioctl+0xa2/0x6f0 [ 3478.485075] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [ 3478.485552] do_vfs_ioctl+0xa2/0x6f0 [ 3478.486016] ? __fget+0x113/0x200 [ 3478.486467] ksys_ioctl+0x70/0x80 [ 3478.486911] __x64_sys_ioctl+0x16/0x20 [ 3478.487337] do_syscall_64+0x60/0x1b0 [ 3478.487751] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 3478.488159] RIP: 0033:0x7f8e0d7d4dd7 (...) [ 3478.489349] RSP: 002b:00007ffcf6fb4908 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [ 3478.489742] RAX: ffffffffffffffda RBX: 0000000000000105 RCX: 00007f8e0d7d4dd7 [ 3478.490142] RDX: 00007ffcf6fb4990 RSI: 0000000040489426 RDI: 0000000000000005 [ 3478.490548] RBP: 0000000000000005 R08: 00007f8e0d6f3700 R09: 00007f8e0d6f3700 [ 3478.490953] R10: 00007f8e0d6f39d0 R11: 0000000000000202 R12: 0000000000000005 [ 3478.491343] R13: 00005624e0780020 R14: 0000000000000000 R15: 0000000000000001 (...) [ 3478.493352] ---[ end trace d5f537302be4f8c8 ]--- Another possibility, much less likely to happen, is that send will not fail but the contents of the stream it produces may not be correct. To avoid this, do not allow send and relocation (balance) to run in parallel. In the long term the goal is to allow for both to be able to run concurrently without any problems, but that will take a significant effort in development and testing. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-04-22 15:44:09 +00:00
ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
if (ret)
return ret;
ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
if (ret)
return ret;
fs_info->dirty_metadata_batch = PAGE_SIZE *
(1 + ilog2(nr_cpu_ids));
ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
if (ret)
return ret;
ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
GFP_KERNEL);
if (ret)
return ret;
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
GFP_KERNEL);
if (!fs_info->delayed_root)
return -ENOMEM;
btrfs_init_delayed_root(fs_info->delayed_root);
btrfs: fix race between RO remount and the cleaner task When we are remounting a filesystem in RO mode we can race with the cleaner task and result in leaking a transaction if the filesystem is unmounted shortly after, before the transaction kthread had a chance to commit that transaction. That also results in a crash during unmount, due to a use-after-free, if hardware acceleration is not available for crc32c. The following sequence of steps explains how the race happens. 1) The filesystem is mounted in RW mode and the cleaner task is running. This means that currently BTRFS_FS_CLEANER_RUNNING is set at fs_info->flags; 2) The cleaner task is currently running delayed iputs for example; 3) A filesystem RO remount operation starts; 4) The RO remount task calls btrfs_commit_super(), which commits any currently open transaction, and it finishes; 5) At this point the cleaner task is still running and it creates a new transaction by doing one of the following things: * When running the delayed iput() for an inode with a 0 link count, in which case at btrfs_evict_inode() we start a transaction through the call to evict_refill_and_join(), use it and then release its handle through btrfs_end_transaction(); * When deleting a dead root through btrfs_clean_one_deleted_snapshot(), a transaction is started at btrfs_drop_snapshot() and then its handle is released through a call to btrfs_end_transaction_throttle(); * When the remount task was still running, and before the remount task called btrfs_delete_unused_bgs(), the cleaner task also called btrfs_delete_unused_bgs() and it picked and removed one block group from the list of unused block groups. Before the cleaner task started a transaction, through btrfs_start_trans_remove_block_group() at btrfs_delete_unused_bgs(), the remount task had already called btrfs_commit_super(); 6) So at this point the filesystem is in RO mode and we have an open transaction that was started by the cleaner task; 7) Shortly after a filesystem unmount operation starts. At close_ctree() we stop the transaction kthread before it had a chance to commit the transaction, since less than 30 seconds (the default commit interval) have elapsed since the last transaction was committed; 8) We end up calling iput() against the btree inode at close_ctree() while there is an open transaction, and since that transaction was used to update btrees by the cleaner, we have dirty pages in the btree inode due to COW operations on metadata extents, and therefore writeback is triggered for the btree inode. So btree_write_cache_pages() is invoked to flush those dirty pages during the final iput() on the btree inode. This results in creating a bio and submitting it, which makes us end up at btrfs_submit_metadata_bio(); 9) At btrfs_submit_metadata_bio() we end up at the if-then-else branch that calls btrfs_wq_submit_bio(), because check_async_write() returned a value of 1. This value of 1 is because we did not have hardware acceleration available for crc32c, so BTRFS_FS_CSUM_IMPL_FAST was not set in fs_info->flags; 10) Then at btrfs_wq_submit_bio() we call btrfs_queue_work() against the workqueue at fs_info->workers, which was already freed before by the call to btrfs_stop_all_workers() at close_ctree(). This results in an invalid memory access due to a use-after-free, leading to a crash. When this happens, before the crash there are several warnings triggered, since we have reserved metadata space in a block group, the delayed refs reservation, etc: ------------[ cut here ]------------ WARNING: CPU: 4 PID: 1729896 at fs/btrfs/block-group.c:125 btrfs_put_block_group+0x63/0xa0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 4 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_put_block_group+0x63/0xa0 [btrfs] Code: f0 01 00 00 48 39 c2 75 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 0000000000000001 RBX: ffff947ed73e4000 RCX: ffff947ebc8b29c8 RDX: 0000000000000001 RSI: ffffffffc0b150a0 RDI: ffff947ebc8b2800 RBP: ffff947ebc8b2800 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e4160 R14: ffff947ebc8b2988 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f37e2893320 CR3: 0000000138f68001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x17f/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 48 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c6 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-rsv.c:459 btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 2 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_release_global_block_rsv+0x70/0xc0 [btrfs] Code: 48 83 bb b0 03 00 00 00 (...) RSP: 0018:ffffb270826bbdd8 EFLAGS: 00010206 RAX: 000000000033c000 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffffffffc0b0d8c1 RDI: 00000000ffffffff RBP: ffff947ebc8b7000 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ed73e4110 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481aca00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000561a79f76e20 CR3: 0000000138f68006 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_free_block_groups+0x24c/0x2f0 [btrfs] close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c7 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 1729896 at fs/btrfs/block-group.c:3377 btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Modules linked in: btrfs dm_snapshot dm_thin_pool (...) CPU: 5 PID: 1729896 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_free_block_groups+0x25d/0x2f0 [btrfs] Code: ad de 49 be 22 01 00 (...) RSP: 0018:ffffb270826bbde8 EFLAGS: 00010206 RAX: ffff947ebeae1d08 RBX: ffff947ed73e4000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff947e9d823ae8 RDI: 0000000000000246 RBP: ffff947ebeae1d08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: ffff947ebeae1c00 R13: ffff947ed73e5278 R14: dead000000000122 R15: dead000000000100 FS: 00007f15edfea840(0000) GS:ffff9481ad200000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1475d98ea8 CR3: 0000000138f68005 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: close_ctree+0x2ba/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f15ee221ee7 Code: ff 0b 00 f7 d8 64 89 (...) RSP: 002b:00007ffe9470f0f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f15ee347264 RCX: 00007f15ee221ee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 000056169701d000 RBP: 0000561697018a30 R08: 0000000000000000 R09: 00007f15ee2e2be0 R10: 000056169701efe0 R11: 0000000000000246 R12: 0000000000000000 R13: 000056169701d000 R14: 0000561697018b40 R15: 0000561697018c60 irq event stamp: 0 hardirqs last enabled at (0): [<0000000000000000>] 0x0 hardirqs last disabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last enabled at (0): [<ffffffff8bcae560>] copy_process+0x8a0/0x1d70 softirqs last disabled at (0): [<0000000000000000>] 0x0 ---[ end trace dd74718fef1ed5c8 ]--- BTRFS info (device sdc): space_info 4 has 268238848 free, is not full BTRFS info (device sdc): space_info total=268435456, used=114688, pinned=0, reserved=16384, may_use=0, readonly=65536 BTRFS info (device sdc): global_block_rsv: size 0 reserved 0 BTRFS info (device sdc): trans_block_rsv: size 0 reserved 0 BTRFS info (device sdc): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sdc): delayed_refs_rsv: size 524288 reserved 0 And the crash, which only happens when we do not have crc32c hardware acceleration, produces the following trace immediately after those warnings: stack segment: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 1749129 Comm: umount Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x36/0x190 [btrfs] Code: 54 55 53 48 89 f3 (...) RSP: 0018:ffffb27082443ae8 EFLAGS: 00010282 RAX: 0000000000000004 RBX: ffff94810ee9ad90 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff94810ee9ad90 RDI: ffff947ed8ee75a0 RBP: a56b6b6b6b6b6b6b R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000007 R11: 0000000000000001 R12: ffff947fa9b435a8 R13: ffff94810ee9ad90 R14: 0000000000000000 R15: ffff947e93dc0000 FS: 00007f3cfe974840(0000) GS:ffff9481ac600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1b42995a70 CR3: 0000000127638003 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_wq_submit_bio+0xb3/0xd0 [btrfs] btrfs_submit_metadata_bio+0x44/0xc0 [btrfs] submit_one_bio+0x61/0x70 [btrfs] btree_write_cache_pages+0x414/0x450 [btrfs] ? kobject_put+0x9a/0x1d0 ? trace_hardirqs_on+0x1b/0xf0 ? _raw_spin_unlock_irqrestore+0x3c/0x60 ? free_debug_processing+0x1e1/0x2b0 do_writepages+0x43/0xe0 ? lock_acquired+0x199/0x490 __writeback_single_inode+0x59/0x650 writeback_single_inode+0xaf/0x120 write_inode_now+0x94/0xd0 iput+0x187/0x2b0 close_ctree+0x2c6/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f3cfebabee7 Code: ff 0b 00 f7 d8 64 89 01 (...) RSP: 002b:00007ffc9c9a05f8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 RAX: 0000000000000000 RBX: 00007f3cfecd1264 RCX: 00007f3cfebabee7 RDX: ffffffffffffff78 RSI: 0000000000000000 RDI: 0000562b6b478000 RBP: 0000562b6b473a30 R08: 0000000000000000 R09: 00007f3cfec6cbe0 R10: 0000562b6b479fe0 R11: 0000000000000246 R12: 0000000000000000 R13: 0000562b6b478000 R14: 0000562b6b473b40 R15: 0000562b6b473c60 Modules linked in: btrfs dm_snapshot dm_thin_pool (...) ---[ end trace dd74718fef1ed5cc ]--- Finally when we remove the btrfs module (rmmod btrfs), there are several warnings about objects that were allocated from our slabs but were never freed, consequence of the transaction that was never committed and got leaked: ============================================================================= BUG btrfs_delayed_ref_head (Tainted: G B W ): Objects remaining in btrfs_delayed_ref_head on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000094c2ae56 objects=24 used=2 fp=0x000000002bfa2521 flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x0000000050cbdd61 @offset=12104 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1894 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=4292 cpu=2 pid=1729526 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] sync_filesystem+0x74/0x90 generic_shutdown_super+0x22/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x0000000086e9b0ff @offset=12776 INFO: Allocated in btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] age=1900 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0xbb/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] age=3141 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x1117/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_write_dirty_block_groups+0x17d/0x3d0 [btrfs] commit_cowonly_roots+0x248/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_ref_head: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x11/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 0b (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_tree_ref (Tainted: G B W ): Objects remaining in btrfs_delayed_tree_ref on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x0000000011f78dc0 objects=37 used=2 fp=0x0000000032d55d91 flags=0x17fffc000010200 CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? lock_release+0x20e/0x4c0 kmem_cache_destroy+0x55/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000001a340018 @offset=4408 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1917 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_free_tree_block+0x128/0x360 [btrfs] __btrfs_cow_block+0x489/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=4167 cpu=4 pid=1729795 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] btrfs_commit_transaction+0x60/0xc40 [btrfs] create_subvol+0x56a/0x990 [btrfs] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] btrfs_ioctl_snap_create+0x58/0x80 [btrfs] btrfs_ioctl+0x1a92/0x36f0 [btrfs] __x64_sys_ioctl+0x83/0xb0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 INFO: Object 0x000000002b46292a @offset=13648 INFO: Allocated in btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] age=1923 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_add_delayed_tree_ref+0x9e/0x480 [btrfs] btrfs_alloc_tree_block+0x2bf/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 INFO: Freed in __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] age=3164 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0x63d/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_tree_ref: Slab cache still has objects CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 btrfs_delayed_ref_exit+0x1d/0x35 [btrfs] exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 ============================================================================= BUG btrfs_delayed_extent_op (Tainted: G B W ): Objects remaining in btrfs_delayed_extent_op on __kmem_cache_shutdown() ----------------------------------------------------------------------------- INFO: Slab 0x00000000f145ce2f objects=22 used=1 fp=0x00000000af0f92cf flags=0x17fffc000010200 CPU: 5 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 slab_err+0xb7/0xdc ? lock_acquired+0x199/0x490 __kmem_cache_shutdown+0x1ac/0x3c0 ? __mutex_unlock_slowpath+0x45/0x2a0 kmem_cache_destroy+0x55/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 f5 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 INFO: Object 0x000000004cf95ea8 @offset=6264 INFO: Allocated in btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] age=1931 cpu=6 pid=1729873 __slab_alloc.isra.0+0x109/0x1c0 kmem_cache_alloc+0x7bb/0x830 btrfs_alloc_tree_block+0x1e0/0x360 [btrfs] alloc_tree_block_no_bg_flush+0x4f/0x60 [btrfs] __btrfs_cow_block+0x12d/0x5f0 [btrfs] btrfs_cow_block+0xf7/0x220 [btrfs] btrfs_search_slot+0x62a/0xc40 [btrfs] btrfs_del_orphan_item+0x65/0xd0 [btrfs] btrfs_find_orphan_roots+0x1bf/0x200 [btrfs] open_ctree+0x125a/0x18a0 [btrfs] btrfs_mount_root.cold+0x13/0xed [btrfs] legacy_get_tree+0x30/0x60 vfs_get_tree+0x28/0xe0 fc_mount+0xe/0x40 vfs_kern_mount.part.0+0x71/0x90 btrfs_mount+0x13b/0x3e0 [btrfs] INFO: Freed in __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] age=3173 cpu=6 pid=1729803 kmem_cache_free+0x34c/0x3c0 __btrfs_run_delayed_refs+0xabd/0x1290 [btrfs] btrfs_run_delayed_refs+0x81/0x210 [btrfs] commit_cowonly_roots+0xfb/0x300 [btrfs] btrfs_commit_transaction+0x367/0xc40 [btrfs] close_ctree+0x113/0x2fa [btrfs] generic_shutdown_super+0x6c/0x100 kill_anon_super+0x14/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x31/0x70 cleanup_mnt+0x100/0x160 task_work_run+0x68/0xb0 exit_to_user_mode_prepare+0x1bb/0x1c0 syscall_exit_to_user_mode+0x4b/0x260 entry_SYSCALL_64_after_hwframe+0x44/0xa9 kmem_cache_destroy btrfs_delayed_extent_op: Slab cache still has objects CPU: 3 PID: 1729921 Comm: rmmod Tainted: G B W 5.10.0-rc4-btrfs-next-73 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: dump_stack+0x8d/0xb5 kmem_cache_destroy+0x119/0x120 exit_btrfs_fs+0xa/0x59 [btrfs] __x64_sys_delete_module+0x194/0x260 ? fpregs_assert_state_consistent+0x1e/0x40 ? exit_to_user_mode_prepare+0x55/0x1c0 ? trace_hardirqs_on+0x1b/0xf0 do_syscall_64+0x33/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f693e305897 Code: 73 01 c3 48 8b 0d f9 (...) RSP: 002b:00007ffcf73eb508 EFLAGS: 00000206 ORIG_RAX: 00000000000000b0 RAX: ffffffffffffffda RBX: 0000559df504f760 RCX: 00007f693e305897 RDX: 000000000000000a RSI: 0000000000000800 RDI: 0000559df504f7c8 RBP: 00007ffcf73eb568 R08: 0000000000000000 R09: 0000000000000000 R10: 00007f693e378ac0 R11: 0000000000000206 R12: 00007ffcf73eb740 R13: 00007ffcf73ec5a6 R14: 0000559df504f2a0 R15: 0000559df504f760 BTRFS: state leak: start 30408704 end 30425087 state 1 in tree 1 refs 1 So fix this by making the remount path to wait for the cleaner task before calling btrfs_commit_super(). The remount path now waits for the bit BTRFS_FS_CLEANER_RUNNING to be cleared from fs_info->flags before calling btrfs_commit_super() and this ensures the cleaner can not start a transaction after that, because it sleeps when the filesystem is in RO mode and we have already flagged the filesystem as RO before waiting for BTRFS_FS_CLEANER_RUNNING to be cleared. This also introduces a new flag BTRFS_FS_STATE_RO to be used for fs_info->fs_state when the filesystem is in RO mode. This is because we were doing the RO check using the flags of the superblock and setting the RO mode simply by ORing into the superblock's flags - those operations are not atomic and could result in the cleaner not seeing the update from the remount task after it clears BTRFS_FS_CLEANER_RUNNING. Tested-by: Fabian Vogt <fvogt@suse.com> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-12-14 10:10:47 +00:00
if (sb_rdonly(sb))
set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
return btrfs_alloc_stripe_hash_table(fs_info);
}
static int btrfs_uuid_rescan_kthread(void *data)
{
struct btrfs_fs_info *fs_info = data;
int ret;
/*
* 1st step is to iterate through the existing UUID tree and
* to delete all entries that contain outdated data.
* 2nd step is to add all missing entries to the UUID tree.
*/
ret = btrfs_uuid_tree_iterate(fs_info);
if (ret < 0) {
if (ret != -EINTR)
btrfs_warn(fs_info, "iterating uuid_tree failed %d",
ret);
up(&fs_info->uuid_tree_rescan_sem);
return ret;
}
return btrfs_uuid_scan_kthread(data);
}
static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
struct task_struct *task;
down(&fs_info->uuid_tree_rescan_sem);
task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
if (IS_ERR(task)) {
/* fs_info->update_uuid_tree_gen remains 0 in all error case */
btrfs_warn(fs_info, "failed to start uuid_rescan task");
up(&fs_info->uuid_tree_rescan_sem);
return PTR_ERR(task);
}
return 0;
}
static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
{
u64 root_objectid = 0;
struct btrfs_root *gang[8];
int i = 0;
int err = 0;
unsigned int ret = 0;
while (1) {
spin_lock(&fs_info->fs_roots_radix_lock);
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)gang, root_objectid,
ARRAY_SIZE(gang));
if (!ret) {
spin_unlock(&fs_info->fs_roots_radix_lock);
break;
}
root_objectid = gang[ret - 1]->root_key.objectid + 1;
for (i = 0; i < ret; i++) {
/* Avoid to grab roots in dead_roots. */
if (btrfs_root_refs(&gang[i]->root_item) == 0) {
gang[i] = NULL;
continue;
}
/* Grab all the search result for later use. */
gang[i] = btrfs_grab_root(gang[i]);
}
spin_unlock(&fs_info->fs_roots_radix_lock);
for (i = 0; i < ret; i++) {
if (!gang[i])
continue;
root_objectid = gang[i]->root_key.objectid;
err = btrfs_orphan_cleanup(gang[i]);
if (err)
goto out;
btrfs_put_root(gang[i]);
}
root_objectid++;
}
out:
/* Release the uncleaned roots due to error. */
for (; i < ret; i++) {
if (gang[i])
btrfs_put_root(gang[i]);
}
return err;
}
/*
* Mounting logic specific to read-write file systems. Shared by open_ctree
* and btrfs_remount when remounting from read-only to read-write.
*/
int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
{
int ret;
const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
bool rebuild_free_space_tree = false;
if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
btrfs_warn(fs_info,
"'clear_cache' option is ignored with extent tree v2");
else
rebuild_free_space_tree = true;
} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
btrfs_warn(fs_info, "free space tree is invalid");
rebuild_free_space_tree = true;
}
if (rebuild_free_space_tree) {
btrfs_info(fs_info, "rebuilding free space tree");
ret = btrfs_rebuild_free_space_tree(fs_info);
if (ret) {
btrfs_warn(fs_info,
"failed to rebuild free space tree: %d", ret);
goto out;
}
}
if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
btrfs_info(fs_info, "disabling free space tree");
ret = btrfs_delete_free_space_tree(fs_info);
if (ret) {
btrfs_warn(fs_info,
"failed to disable free space tree: %d", ret);
goto out;
}
}
/*
* btrfs_find_orphan_roots() is responsible for finding all the dead
* roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
* them into the fs_info->fs_roots_radix tree. This must be done before
* calling btrfs_orphan_cleanup() on the tree root. If we don't do it
* first, then btrfs_orphan_cleanup() will delete a dead root's orphan
* item before the root's tree is deleted - this means that if we unmount
* or crash before the deletion completes, on the next mount we will not
* delete what remains of the tree because the orphan item does not
* exists anymore, which is what tells us we have a pending deletion.
*/
ret = btrfs_find_orphan_roots(fs_info);
if (ret)
goto out;
ret = btrfs_cleanup_fs_roots(fs_info);
if (ret)
goto out;
down_read(&fs_info->cleanup_work_sem);
if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
(ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
up_read(&fs_info->cleanup_work_sem);
goto out;
}
up_read(&fs_info->cleanup_work_sem);
mutex_lock(&fs_info->cleaner_mutex);
ret = btrfs_recover_relocation(fs_info);
mutex_unlock(&fs_info->cleaner_mutex);
if (ret < 0) {
btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
goto out;
}
if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
btrfs_info(fs_info, "creating free space tree");
ret = btrfs_create_free_space_tree(fs_info);
if (ret) {
btrfs_warn(fs_info,
"failed to create free space tree: %d", ret);
goto out;
}
}
if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
if (ret)
goto out;
}
ret = btrfs_resume_balance_async(fs_info);
if (ret)
goto out;
ret = btrfs_resume_dev_replace_async(fs_info);
if (ret) {
btrfs_warn(fs_info, "failed to resume dev_replace");
goto out;
}
btrfs_qgroup_rescan_resume(fs_info);
if (!fs_info->uuid_root) {
btrfs_info(fs_info, "creating UUID tree");
ret = btrfs_create_uuid_tree(fs_info);
if (ret) {
btrfs_warn(fs_info,
"failed to create the UUID tree %d", ret);
goto out;
}
}
out:
return ret;
}
btrfs: relax block-group-tree feature dependency checks [BUG] When one user did a wrong attempt to clear block group tree, which can not be done through mount option, by using "-o clear_cache,space_cache=v2", it will cause the following error on a fs with block-group-tree feature: BTRFS info (device dm-1): force clearing of disk cache BTRFS info (device dm-1): using free space tree BTRFS info (device dm-1): clearing free space tree BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE (0x1) BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE_VALID (0x2) BTRFS error (device dm-1): block-group-tree feature requires fres-space-tree and no-holes BTRFS error (device dm-1): super block corruption detected before writing it to disk BTRFS: error (device dm-1) in write_all_supers:4318: errno=-117 Filesystem corrupted (unexpected superblock corruption detected) BTRFS warning (device dm-1: state E): Skipping commit of aborted transaction. [CAUSE] Although the dependency for block-group-tree feature is just an artificial one (to reduce test matrix), we put the dependency check into btrfs_validate_super(). This is too strict, and during space cache clearing, we will have a window where free space tree is cleared, and we need to commit the super block. In that window, we had block group tree without v2 cache, and triggered the artificial dependency check. This is not necessary at all, especially for such a soft dependency. [FIX] Introduce a new helper, btrfs_check_features(), to do all the runtime limitation checks, including: - Unsupported incompat flags check - Unsupported compat RO flags check - Setting missing incompat flags - Artificial feature dependency checks Currently only block group tree will rely on this. - Subpage runtime check for v1 cache With this helper, we can move quite some checks from open_ctree()/btrfs_remount() into it, and just call it after btrfs_parse_options(). Now "-o clear_cache,space_cache=v2" will not trigger the above error anymore. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ edit messages ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-12 05:44:37 +00:00
/*
* Do various sanity and dependency checks of different features.
*
btrfs: fix compat_ro checks against remount [BUG] Even with commit 81d5d61454c3 ("btrfs: enhance unsupported compat RO flags handling"), btrfs can still mount a fs with unsupported compat_ro flags read-only, then remount it RW: # btrfs ins dump-super /dev/loop0 | grep compat_ro_flags -A 3 compat_ro_flags 0x403 ( FREE_SPACE_TREE | FREE_SPACE_TREE_VALID | unknown flag: 0x400 ) # mount /dev/loop0 /mnt/btrfs mount: /mnt/btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error. dmesg(1) may have more information after failed mount system call. ^^^ RW mount failed as expected ^^^ # dmesg -t | tail -n5 loop0: detected capacity change from 0 to 1048576 BTRFS: device fsid cb5b82f5-0fdd-4d81-9b4b-78533c324afa devid 1 transid 7 /dev/loop0 scanned by mount (1146) BTRFS info (device loop0): using crc32c (crc32c-intel) checksum algorithm BTRFS info (device loop0): using free space tree BTRFS error (device loop0): cannot mount read-write because of unknown compat_ro features (0x403) BTRFS error (device loop0): open_ctree failed # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs ^^^ RW remount succeeded unexpectedly ^^^ [CAUSE] Currently we use btrfs_check_features() to check compat_ro flags against our current mount flags. That function get reused between open_ctree() and btrfs_remount(). But for btrfs_remount(), the super block we passed in still has the old mount flags, thus btrfs_check_features() still believes we're mounting read-only. [FIX] Replace the existing @sb argument with @is_rw_mount. As originally we only use @sb to determine if the mount is RW. Now it's callers' responsibility to determine if the mount is RW, and since there are only two callers, the check is pretty simple: - caller in open_ctree() Just pass !sb_rdonly(). - caller in btrfs_remount() Pass !(*flags & SB_RDONLY), as our check should be against the new flags. Now we can correctly reject the RW remount: # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs mount: /mnt/btrfs: mount point not mounted or bad option. dmesg(1) may have more information after failed mount system call. # dmesg -t | tail -n 1 BTRFS error (device loop0: state M): cannot mount read-write because of unknown compat_ro features (0x403) Reported-by: Chung-Chiang Cheng <shepjeng@gmail.com> Fixes: 81d5d61454c3 ("btrfs: enhance unsupported compat RO flags handling") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-21 23:59:17 +00:00
* @is_rw_mount: If the mount is read-write.
*
btrfs: relax block-group-tree feature dependency checks [BUG] When one user did a wrong attempt to clear block group tree, which can not be done through mount option, by using "-o clear_cache,space_cache=v2", it will cause the following error on a fs with block-group-tree feature: BTRFS info (device dm-1): force clearing of disk cache BTRFS info (device dm-1): using free space tree BTRFS info (device dm-1): clearing free space tree BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE (0x1) BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE_VALID (0x2) BTRFS error (device dm-1): block-group-tree feature requires fres-space-tree and no-holes BTRFS error (device dm-1): super block corruption detected before writing it to disk BTRFS: error (device dm-1) in write_all_supers:4318: errno=-117 Filesystem corrupted (unexpected superblock corruption detected) BTRFS warning (device dm-1: state E): Skipping commit of aborted transaction. [CAUSE] Although the dependency for block-group-tree feature is just an artificial one (to reduce test matrix), we put the dependency check into btrfs_validate_super(). This is too strict, and during space cache clearing, we will have a window where free space tree is cleared, and we need to commit the super block. In that window, we had block group tree without v2 cache, and triggered the artificial dependency check. This is not necessary at all, especially for such a soft dependency. [FIX] Introduce a new helper, btrfs_check_features(), to do all the runtime limitation checks, including: - Unsupported incompat flags check - Unsupported compat RO flags check - Setting missing incompat flags - Artificial feature dependency checks Currently only block group tree will rely on this. - Subpage runtime check for v1 cache With this helper, we can move quite some checks from open_ctree()/btrfs_remount() into it, and just call it after btrfs_parse_options(). Now "-o clear_cache,space_cache=v2" will not trigger the above error anymore. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ edit messages ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-12 05:44:37 +00:00
* This is the place for less strict checks (like for subpage or artificial
* feature dependencies).
*
* For strict checks or possible corruption detection, see
* btrfs_validate_super().
*
* This should be called after btrfs_parse_options(), as some mount options
* (space cache related) can modify on-disk format like free space tree and
* screw up certain feature dependencies.
*/
btrfs: fix compat_ro checks against remount [BUG] Even with commit 81d5d61454c3 ("btrfs: enhance unsupported compat RO flags handling"), btrfs can still mount a fs with unsupported compat_ro flags read-only, then remount it RW: # btrfs ins dump-super /dev/loop0 | grep compat_ro_flags -A 3 compat_ro_flags 0x403 ( FREE_SPACE_TREE | FREE_SPACE_TREE_VALID | unknown flag: 0x400 ) # mount /dev/loop0 /mnt/btrfs mount: /mnt/btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error. dmesg(1) may have more information after failed mount system call. ^^^ RW mount failed as expected ^^^ # dmesg -t | tail -n5 loop0: detected capacity change from 0 to 1048576 BTRFS: device fsid cb5b82f5-0fdd-4d81-9b4b-78533c324afa devid 1 transid 7 /dev/loop0 scanned by mount (1146) BTRFS info (device loop0): using crc32c (crc32c-intel) checksum algorithm BTRFS info (device loop0): using free space tree BTRFS error (device loop0): cannot mount read-write because of unknown compat_ro features (0x403) BTRFS error (device loop0): open_ctree failed # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs ^^^ RW remount succeeded unexpectedly ^^^ [CAUSE] Currently we use btrfs_check_features() to check compat_ro flags against our current mount flags. That function get reused between open_ctree() and btrfs_remount(). But for btrfs_remount(), the super block we passed in still has the old mount flags, thus btrfs_check_features() still believes we're mounting read-only. [FIX] Replace the existing @sb argument with @is_rw_mount. As originally we only use @sb to determine if the mount is RW. Now it's callers' responsibility to determine if the mount is RW, and since there are only two callers, the check is pretty simple: - caller in open_ctree() Just pass !sb_rdonly(). - caller in btrfs_remount() Pass !(*flags & SB_RDONLY), as our check should be against the new flags. Now we can correctly reject the RW remount: # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs mount: /mnt/btrfs: mount point not mounted or bad option. dmesg(1) may have more information after failed mount system call. # dmesg -t | tail -n 1 BTRFS error (device loop0: state M): cannot mount read-write because of unknown compat_ro features (0x403) Reported-by: Chung-Chiang Cheng <shepjeng@gmail.com> Fixes: 81d5d61454c3 ("btrfs: enhance unsupported compat RO flags handling") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-21 23:59:17 +00:00
int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
btrfs: relax block-group-tree feature dependency checks [BUG] When one user did a wrong attempt to clear block group tree, which can not be done through mount option, by using "-o clear_cache,space_cache=v2", it will cause the following error on a fs with block-group-tree feature: BTRFS info (device dm-1): force clearing of disk cache BTRFS info (device dm-1): using free space tree BTRFS info (device dm-1): clearing free space tree BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE (0x1) BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE_VALID (0x2) BTRFS error (device dm-1): block-group-tree feature requires fres-space-tree and no-holes BTRFS error (device dm-1): super block corruption detected before writing it to disk BTRFS: error (device dm-1) in write_all_supers:4318: errno=-117 Filesystem corrupted (unexpected superblock corruption detected) BTRFS warning (device dm-1: state E): Skipping commit of aborted transaction. [CAUSE] Although the dependency for block-group-tree feature is just an artificial one (to reduce test matrix), we put the dependency check into btrfs_validate_super(). This is too strict, and during space cache clearing, we will have a window where free space tree is cleared, and we need to commit the super block. In that window, we had block group tree without v2 cache, and triggered the artificial dependency check. This is not necessary at all, especially for such a soft dependency. [FIX] Introduce a new helper, btrfs_check_features(), to do all the runtime limitation checks, including: - Unsupported incompat flags check - Unsupported compat RO flags check - Setting missing incompat flags - Artificial feature dependency checks Currently only block group tree will rely on this. - Subpage runtime check for v1 cache With this helper, we can move quite some checks from open_ctree()/btrfs_remount() into it, and just call it after btrfs_parse_options(). Now "-o clear_cache,space_cache=v2" will not trigger the above error anymore. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ edit messages ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-12 05:44:37 +00:00
{
struct btrfs_super_block *disk_super = fs_info->super_copy;
u64 incompat = btrfs_super_incompat_flags(disk_super);
const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
btrfs_err(fs_info,
"cannot mount because of unknown incompat features (0x%llx)",
incompat);
return -EINVAL;
}
/* Runtime limitation for mixed block groups. */
if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
(fs_info->sectorsize != fs_info->nodesize)) {
btrfs_err(fs_info,
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
fs_info->nodesize, fs_info->sectorsize);
return -EINVAL;
}
/* Mixed backref is an always-enabled feature. */
incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
/* Set compression related flags just in case. */
if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
/*
* An ancient flag, which should really be marked deprecated.
* Such runtime limitation doesn't really need a incompat flag.
*/
if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
btrfs: fix compat_ro checks against remount [BUG] Even with commit 81d5d61454c3 ("btrfs: enhance unsupported compat RO flags handling"), btrfs can still mount a fs with unsupported compat_ro flags read-only, then remount it RW: # btrfs ins dump-super /dev/loop0 | grep compat_ro_flags -A 3 compat_ro_flags 0x403 ( FREE_SPACE_TREE | FREE_SPACE_TREE_VALID | unknown flag: 0x400 ) # mount /dev/loop0 /mnt/btrfs mount: /mnt/btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error. dmesg(1) may have more information after failed mount system call. ^^^ RW mount failed as expected ^^^ # dmesg -t | tail -n5 loop0: detected capacity change from 0 to 1048576 BTRFS: device fsid cb5b82f5-0fdd-4d81-9b4b-78533c324afa devid 1 transid 7 /dev/loop0 scanned by mount (1146) BTRFS info (device loop0): using crc32c (crc32c-intel) checksum algorithm BTRFS info (device loop0): using free space tree BTRFS error (device loop0): cannot mount read-write because of unknown compat_ro features (0x403) BTRFS error (device loop0): open_ctree failed # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs ^^^ RW remount succeeded unexpectedly ^^^ [CAUSE] Currently we use btrfs_check_features() to check compat_ro flags against our current mount flags. That function get reused between open_ctree() and btrfs_remount(). But for btrfs_remount(), the super block we passed in still has the old mount flags, thus btrfs_check_features() still believes we're mounting read-only. [FIX] Replace the existing @sb argument with @is_rw_mount. As originally we only use @sb to determine if the mount is RW. Now it's callers' responsibility to determine if the mount is RW, and since there are only two callers, the check is pretty simple: - caller in open_ctree() Just pass !sb_rdonly(). - caller in btrfs_remount() Pass !(*flags & SB_RDONLY), as our check should be against the new flags. Now we can correctly reject the RW remount: # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs mount: /mnt/btrfs: mount point not mounted or bad option. dmesg(1) may have more information after failed mount system call. # dmesg -t | tail -n 1 BTRFS error (device loop0: state M): cannot mount read-write because of unknown compat_ro features (0x403) Reported-by: Chung-Chiang Cheng <shepjeng@gmail.com> Fixes: 81d5d61454c3 ("btrfs: enhance unsupported compat RO flags handling") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-21 23:59:17 +00:00
if (compat_ro_unsupp && is_rw_mount) {
btrfs: relax block-group-tree feature dependency checks [BUG] When one user did a wrong attempt to clear block group tree, which can not be done through mount option, by using "-o clear_cache,space_cache=v2", it will cause the following error on a fs with block-group-tree feature: BTRFS info (device dm-1): force clearing of disk cache BTRFS info (device dm-1): using free space tree BTRFS info (device dm-1): clearing free space tree BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE (0x1) BTRFS info (device dm-1): clearing compat-ro feature flag for FREE_SPACE_TREE_VALID (0x2) BTRFS error (device dm-1): block-group-tree feature requires fres-space-tree and no-holes BTRFS error (device dm-1): super block corruption detected before writing it to disk BTRFS: error (device dm-1) in write_all_supers:4318: errno=-117 Filesystem corrupted (unexpected superblock corruption detected) BTRFS warning (device dm-1: state E): Skipping commit of aborted transaction. [CAUSE] Although the dependency for block-group-tree feature is just an artificial one (to reduce test matrix), we put the dependency check into btrfs_validate_super(). This is too strict, and during space cache clearing, we will have a window where free space tree is cleared, and we need to commit the super block. In that window, we had block group tree without v2 cache, and triggered the artificial dependency check. This is not necessary at all, especially for such a soft dependency. [FIX] Introduce a new helper, btrfs_check_features(), to do all the runtime limitation checks, including: - Unsupported incompat flags check - Unsupported compat RO flags check - Setting missing incompat flags - Artificial feature dependency checks Currently only block group tree will rely on this. - Subpage runtime check for v1 cache With this helper, we can move quite some checks from open_ctree()/btrfs_remount() into it, and just call it after btrfs_parse_options(). Now "-o clear_cache,space_cache=v2" will not trigger the above error anymore. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ edit messages ] Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-12 05:44:37 +00:00
btrfs_err(fs_info,
"cannot mount read-write because of unknown compat_ro features (0x%llx)",
compat_ro);
return -EINVAL;
}
/*
* We have unsupported RO compat features, although RO mounted, we
* should not cause any metadata writes, including log replay.
* Or we could screw up whatever the new feature requires.
*/
if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
!btrfs_test_opt(fs_info, NOLOGREPLAY)) {
btrfs_err(fs_info,
"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
compat_ro);
return -EINVAL;
}
/*
* Artificial limitations for block group tree, to force
* block-group-tree to rely on no-holes and free-space-tree.
*/
if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
(!btrfs_fs_incompat(fs_info, NO_HOLES) ||
!btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
btrfs_err(fs_info,
"block-group-tree feature requires no-holes and free-space-tree features");
return -EINVAL;
}
/*
* Subpage runtime limitation on v1 cache.
*
* V1 space cache still has some hard codeed PAGE_SIZE usage, while
* we're already defaulting to v2 cache, no need to bother v1 as it's
* going to be deprecated anyway.
*/
if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
btrfs_warn(fs_info,
"v1 space cache is not supported for page size %lu with sectorsize %u",
PAGE_SIZE, fs_info->sectorsize);
return -EINVAL;
}
/* This can be called by remount, we need to protect the super block. */
spin_lock(&fs_info->super_lock);
btrfs_set_super_incompat_flags(disk_super, incompat);
spin_unlock(&fs_info->super_lock);
return 0;
}
int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
char *options)
{
u32 sectorsize;
u32 nodesize;
u32 stripesize;
u64 generation;
u16 csum_type;
struct btrfs_super_block *disk_super;
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
struct btrfs_root *tree_root;
struct btrfs_root *chunk_root;
int ret;
int level;
ret = init_mount_fs_info(fs_info, sb);
if (ret)
goto fail;
/* These need to be init'ed before we start creating inodes and such. */
tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
GFP_KERNEL);
fs_info->tree_root = tree_root;
chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
GFP_KERNEL);
fs_info->chunk_root = chunk_root;
if (!tree_root || !chunk_root) {
ret = -ENOMEM;
goto fail;
}
ret = btrfs_init_btree_inode(sb);
if (ret)
goto fail;
invalidate_bdev(fs_devices->latest_dev->bdev);
/*
* Read super block and check the signature bytes only
*/
disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
if (IS_ERR(disk_super)) {
ret = PTR_ERR(disk_super);
btrfs: implement delayed inode items operation Changelog V5 -> V6: - Fix oom when the memory load is high, by storing the delayed nodes into the root's radix tree, and letting btrfs inodes go. Changelog V4 -> V5: - Fix the race on adding the delayed node to the inode, which is spotted by Chris Mason. - Merge Chris Mason's incremental patch into this patch. - Fix deadlock between readdir() and memory fault, which is reported by Itaru Kitayama. Changelog V3 -> V4: - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache inode in time. Changelog V2 -> V3: - Fix the race between the delayed worker and the task which does delayed items balance, which is reported by Tsutomu Itoh. - Modify the patch address David Sterba's comment. - Fix the bug of the cpu recursion spinlock, reported by Chris Mason Changelog V1 -> V2: - break up the global rb-tree, use a list to manage the delayed nodes, which is created for every directory and file, and used to manage the delayed directory name index items and the delayed inode item. - introduce a worker to deal with the delayed nodes. Compare with Ext3/4, the performance of file creation and deletion on btrfs is very poor. the reason is that btrfs must do a lot of b+ tree insertions, such as inode item, directory name item, directory name index and so on. If we can do some delayed b+ tree insertion or deletion, we can improve the performance, so we made this patch which implemented delayed directory name index insertion/deletion and delayed inode update. Implementation: - introduce a delayed root object into the filesystem, that use two lists to manage the delayed nodes which are created for every file/directory. One is used to manage all the delayed nodes that have delayed items. And the other is used to manage the delayed nodes which is waiting to be dealt with by the work thread. - Every delayed node has two rb-tree, one is used to manage the directory name index which is going to be inserted into b+ tree, and the other is used to manage the directory name index which is going to be deleted from b+ tree. - introduce a worker to deal with the delayed operation. This worker is used to deal with the works of the delayed directory name index items insertion and deletion and the delayed inode update. When the delayed items is beyond the lower limit, we create works for some delayed nodes and insert them into the work queue of the worker, and then go back. When the delayed items is beyond the upper bound, we create works for all the delayed nodes that haven't been dealt with, and insert them into the work queue of the worker, and then wait for that the untreated items is below some threshold value. - When we want to insert a directory name index into b+ tree, we just add the information into the delayed inserting rb-tree. And then we check the number of the delayed items and do delayed items balance. (The balance policy is above.) - When we want to delete a directory name index from the b+ tree, we search it in the inserting rb-tree at first. If we look it up, just drop it. If not, add the key of it into the delayed deleting rb-tree. Similar to the delayed inserting rb-tree, we also check the number of the delayed items and do delayed items balance. (The same to inserting manipulation) - When we want to update the metadata of some inode, we cached the data of the inode into the delayed node. the worker will flush it into the b+ tree after dealing with the delayed insertion and deletion. - We will move the delayed node to the tail of the list after we access the delayed node, By this way, we can cache more delayed items and merge more inode updates. - If we want to commit transaction, we will deal with all the delayed node. - the delayed node will be freed when we free the btrfs inode. - Before we log the inode items, we commit all the directory name index items and the delayed inode update. I did a quick test by the benchmark tool[1] and found we can improve the performance of file creation by ~15%, and file deletion by ~20%. Before applying this patch: Create files: Total files: 50000 Total time: 1.096108 Average time: 0.000022 Delete files: Total files: 50000 Total time: 1.510403 Average time: 0.000030 After applying this patch: Create files: Total files: 50000 Total time: 0.932899 Average time: 0.000019 Delete files: Total files: 50000 Total time: 1.215732 Average time: 0.000024 [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3 Many thanks for Kitayama-san's help! Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: David Sterba <dave@jikos.cz> Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 10:12:22 +00:00
goto fail_alloc;
}
btrfs: add dmesg output for first mount and last unmount of a filesystem There is a feature request to add dmesg output when unmounting a btrfs. There are several alternative methods to do the same thing, but with their own problems: - Use eBPF to watch btrfs_put_super()/open_ctree() Not end user friendly, they have to dip their head into the source code. - Watch for directory /sys/fs/<uuid>/ This is way more simple, but still requires some simple device -> uuid lookups. And a script needs to use inotify to watch /sys/fs/. Compared to all these, directly outputting the information into dmesg would be the most simple one, with both device and UUID included. And since we're here, also add the output when mounting a filesystem for the first time for parity. A more fine grained monitoring of subvolume mounts should be done by another layer, like audit. Now mounting a btrfs with all default mkfs options would look like this: [81.906566] BTRFS info (device dm-8): first mount of filesystem 633b5c16-afe3-4b79-b195-138fe145e4f2 [81.907494] BTRFS info (device dm-8): using crc32c (crc32c-intel) checksum algorithm [81.908258] BTRFS info (device dm-8): using free space tree [81.912644] BTRFS info (device dm-8): auto enabling async discard [81.913277] BTRFS info (device dm-8): checking UUID tree [91.668256] BTRFS info (device dm-8): last unmount of filesystem 633b5c16-afe3-4b79-b195-138fe145e4f2 CC: stable@vger.kernel.org # 5.4+ Link: https://github.com/kdave/btrfs-progs/issues/689 Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-01 21:24:50 +00:00
btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
/*
* Verify the type first, if that or the checksum value are
* corrupted, we'll find out
*/
csum_type = btrfs_super_csum_type(disk_super);
if (!btrfs_supported_super_csum(csum_type)) {
btrfs_err(fs_info, "unsupported checksum algorithm: %u",
csum_type);
ret = -EINVAL;
btrfs_release_disk_super(disk_super);
goto fail_alloc;
}
fs_info->csum_size = btrfs_super_csum_size(disk_super);
ret = btrfs_init_csum_hash(fs_info, csum_type);
if (ret) {
btrfs_release_disk_super(disk_super);
goto fail_alloc;
}
/*
* We want to check superblock checksum, the type is stored inside.
* Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
*/
if (btrfs_check_super_csum(fs_info, disk_super)) {
btrfs_err(fs_info, "superblock checksum mismatch");
ret = -EINVAL;
btrfs_release_disk_super(disk_super);
goto fail_alloc;
}
/*
* super_copy is zeroed at allocation time and we never touch the
* following bytes up to INFO_SIZE, the checksum is calculated from
* the whole block of INFO_SIZE
*/
memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
btrfs_release_disk_super(disk_super);
disk_super = fs_info->super_copy;
memcpy(fs_info->super_for_commit, fs_info->super_copy,
sizeof(*fs_info->super_for_commit));
ret = btrfs_validate_mount_super(fs_info);
if (ret) {
btrfs_err(fs_info, "superblock contains fatal errors");
ret = -EINVAL;
goto fail_alloc;
}
if (!btrfs_super_root(disk_super)) {
btrfs_err(fs_info, "invalid superblock tree root bytenr");
ret = -EINVAL;
goto fail_alloc;
}
/* check FS state, whether FS is broken. */
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
/* Set up fs_info before parsing mount options */
nodesize = btrfs_super_nodesize(disk_super);
sectorsize = btrfs_super_sectorsize(disk_super);
stripesize = sectorsize;
fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
fs_info->nodesize = nodesize;
fs_info->sectorsize = sectorsize;
fs_info->sectorsize_bits = ilog2(sectorsize);
fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
fs_info->stripesize = stripesize;
btrfs: move space cache settings into open_ctree Currently we pre-load the space cache settings in btrfs_parse_options, however when we switch to the new mount API the mount option parsing will happen before we have the super block loaded. Add a helper to set the appropriate options based on the fs settings, this will allow us to have consistent free space cache settings. This also folds in the space cache related decisions we make for subpage sectorsize support, so all of this is done in one place. Since this was being called by parse options it looks like we're changing the behavior of remount, but in fact we aren't. The pre-loading of the free space cache settings is done because we want to handle the case of users not using any space_cache options, we'll derive the appropriate mount option based on the on disk state. On remount this wouldn't reset anything as we'll have cleared the v1 cache generation if we mounted -o nospace_cache. Similarly it's impossible to turn off the free space tree without specifically saying -o nospace_cache,clear_cache, which will delete the free space tree and clear the compat_ro option. Again in this case calling this code in remount wouldn't result in any change. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Acked-by: Christian Brauner <brauner@kernel.org> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-22 17:17:40 +00:00
/*
* Handle the space caching options appropriately now that we have the
* super block loaded and validated.
*/
btrfs_set_free_space_cache_settings(fs_info);
if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
ret = -EINVAL;
goto fail_alloc;
}
btrfs: fix compat_ro checks against remount [BUG] Even with commit 81d5d61454c3 ("btrfs: enhance unsupported compat RO flags handling"), btrfs can still mount a fs with unsupported compat_ro flags read-only, then remount it RW: # btrfs ins dump-super /dev/loop0 | grep compat_ro_flags -A 3 compat_ro_flags 0x403 ( FREE_SPACE_TREE | FREE_SPACE_TREE_VALID | unknown flag: 0x400 ) # mount /dev/loop0 /mnt/btrfs mount: /mnt/btrfs: wrong fs type, bad option, bad superblock on /dev/loop0, missing codepage or helper program, or other error. dmesg(1) may have more information after failed mount system call. ^^^ RW mount failed as expected ^^^ # dmesg -t | tail -n5 loop0: detected capacity change from 0 to 1048576 BTRFS: device fsid cb5b82f5-0fdd-4d81-9b4b-78533c324afa devid 1 transid 7 /dev/loop0 scanned by mount (1146) BTRFS info (device loop0): using crc32c (crc32c-intel) checksum algorithm BTRFS info (device loop0): using free space tree BTRFS error (device loop0): cannot mount read-write because of unknown compat_ro features (0x403) BTRFS error (device loop0): open_ctree failed # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs ^^^ RW remount succeeded unexpectedly ^^^ [CAUSE] Currently we use btrfs_check_features() to check compat_ro flags against our current mount flags. That function get reused between open_ctree() and btrfs_remount(). But for btrfs_remount(), the super block we passed in still has the old mount flags, thus btrfs_check_features() still believes we're mounting read-only. [FIX] Replace the existing @sb argument with @is_rw_mount. As originally we only use @sb to determine if the mount is RW. Now it's callers' responsibility to determine if the mount is RW, and since there are only two callers, the check is pretty simple: - caller in open_ctree() Just pass !sb_rdonly(). - caller in btrfs_remount() Pass !(*flags & SB_RDONLY), as our check should be against the new flags. Now we can correctly reject the RW remount: # mount /dev/loop0 -o ro /mnt/btrfs # mount -o remount,rw /mnt/btrfs mount: /mnt/btrfs: mount point not mounted or bad option. dmesg(1) may have more information after failed mount system call. # dmesg -t | tail -n 1 BTRFS error (device loop0: state M): cannot mount read-write because of unknown compat_ro features (0x403) Reported-by: Chung-Chiang Cheng <shepjeng@gmail.com> Fixes: 81d5d61454c3 ("btrfs: enhance unsupported compat RO flags handling") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-12-21 23:59:17 +00:00
ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
if (ret < 0)
btrfs: reject log replay if there is unsupported RO compat flag [BUG] If we have a btrfs image with dirty log, along with an unsupported RO compatible flag: log_root 30474240 ... compat_flags 0x0 compat_ro_flags 0x40000003 ( FREE_SPACE_TREE | FREE_SPACE_TREE_VALID | unknown flag: 0x40000000 ) Then even if we can only mount it RO, we will still cause metadata update for log replay: BTRFS info (device dm-1): flagging fs with big metadata feature BTRFS info (device dm-1): using free space tree BTRFS info (device dm-1): has skinny extents BTRFS info (device dm-1): start tree-log replay This is definitely against RO compact flag requirement. [CAUSE] RO compact flag only forces us to do RO mount, but we will still do log replay for plain RO mount. Thus this will result us to do log replay and update metadata. This can be very problematic for new RO compat flag, for example older kernel can not understand v2 cache, and if we allow metadata update on RO mount and invalidate/corrupt v2 cache. [FIX] Just reject the mount unless rescue=nologreplay is provided: BTRFS error (device dm-1): cannot replay dirty log with unsupport optional features (0x40000000), try rescue=nologreplay instead We don't want to set rescue=nologreply directly, as this would make the end user to read the old data, and cause confusion. Since the such case is really rare, we're mostly fine to just reject the mount with an error message, which also includes the proper workaround. CC: stable@vger.kernel.org #4.9+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-06-07 11:48:24 +00:00
goto fail_alloc;
/*
* At this point our mount options are validated, if we set ->max_inline
* to something non-standard make sure we truncate it to sectorsize.
*/
fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
if (sectorsize < PAGE_SIZE) {
struct btrfs_subpage_info *subpage_info;
btrfs_warn(fs_info,
"read-write for sector size %u with page size %lu is experimental",
sectorsize, PAGE_SIZE);
subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
if (!subpage_info) {
ret = -ENOMEM;
goto fail_alloc;
}
btrfs_init_subpage_info(subpage_info, sectorsize);
fs_info->subpage_info = subpage_info;
}
ret = btrfs_init_workqueues(fs_info);
if (ret)
goto fail_sb_buffer;
sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
/* Update the values for the current filesystem. */
sb->s_blocksize = sectorsize;
sb->s_blocksize_bits = blksize_bits(sectorsize);
memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
mutex_lock(&fs_info->chunk_mutex);
ret = btrfs_read_sys_array(fs_info);
mutex_unlock(&fs_info->chunk_mutex);
if (ret) {
btrfs_err(fs_info, "failed to read the system array: %d", ret);
Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE) This commit introduces a new kind of back reference for btrfs metadata. Once a filesystem has been mounted with this commit, IT WILL NO LONGER BE MOUNTABLE BY OLDER KERNELS. When a tree block in subvolume tree is cow'd, the reference counts of all extents it points to are increased by one. At transaction commit time, the old root of the subvolume is recorded in a "dead root" data structure, and the btree it points to is later walked, dropping reference counts and freeing any blocks where the reference count goes to 0. The increments done during cow and decrements done after commit cancel out, and the walk is a very expensive way to go about freeing the blocks that are no longer referenced by the new btree root. This commit reduces the transaction overhead by avoiding the need for dead root records. When a non-shared tree block is cow'd, we free the old block at once, and the new block inherits old block's references. When a tree block with reference count > 1 is cow'd, we increase the reference counts of all extents the new block points to by one, and decrease the old block's reference count by one. This dead tree avoidance code removes the need to modify the reference counts of lower level extents when a non-shared tree block is cow'd. But we still need to update back ref for all pointers in the block. This is because the location of the block is recorded in the back ref item. We can solve this by introducing a new type of back ref. The new back ref provides information about pointer's key, level and in which tree the pointer lives. This information allow us to find the pointer by searching the tree. The shortcoming of the new back ref is that it only works for pointers in tree blocks referenced by their owner trees. This is mostly a problem for snapshots, where resolving one of these fuzzy back references would be O(number_of_snapshots) and quite slow. The solution used here is to use the fuzzy back references in the common case where a given tree block is only referenced by one root, and use the full back references when multiple roots have a reference on a given block. This commit adds per subvolume red-black tree to keep trace of cached inodes. The red-black tree helps the balancing code to find cached inodes whose inode numbers within a given range. This commit improves the balancing code by introducing several data structures to keep the state of balancing. The most important one is the back ref cache. It caches how the upper level tree blocks are referenced. This greatly reduce the overhead of checking back ref. The improved balancing code scales significantly better with a large number of snapshots. This is a very large commit and was written in a number of pieces. But, they depend heavily on the disk format change and were squashed together to make sure git bisect didn't end up in a bad state wrt space balancing or the format change. Signed-off-by: Yan Zheng <zheng.yan@oracle.com> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-06-10 14:45:14 +00:00
goto fail_sb_buffer;
}
generation = btrfs_super_chunk_root_generation(disk_super);
level = btrfs_super_chunk_root_level(disk_super);
ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
generation, level);
if (ret) {
btrfs_err(fs_info, "failed to read chunk root");
goto fail_tree_roots;
}
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
offsetof(struct btrfs_header, chunk_tree_uuid),
BTRFS_UUID_SIZE);
ret = btrfs_read_chunk_tree(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
goto fail_tree_roots;
}
/*
* At this point we know all the devices that make this filesystem,
* including the seed devices but we don't know yet if the replace
* target is required. So free devices that are not part of this
* filesystem but skip the replace target device which is checked
* below in btrfs_init_dev_replace().
*/
btrfs_free_extra_devids(fs_devices);
if (!fs_devices->latest_dev->bdev) {
btrfs_err(fs_info, "failed to read devices");
ret = -EIO;
goto fail_tree_roots;
}
ret = init_tree_roots(fs_info);
if (ret)
goto fail_tree_roots;
/*
* Get zone type information of zoned block devices. This will also
* handle emulation of a zoned filesystem if a regular device has the
* zoned incompat feature flag set.
*/
ret = btrfs_get_dev_zone_info_all_devices(fs_info);
if (ret) {
btrfs_err(fs_info,
"zoned: failed to read device zone info: %d", ret);
goto fail_block_groups;
}
/*
* If we have a uuid root and we're not being told to rescan we need to
* check the generation here so we can set the
* BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
* transaction during a balance or the log replay without updating the
* uuid generation, and then if we crash we would rescan the uuid tree,
* even though it was perfectly fine.
*/
if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
ret = btrfs_verify_dev_extents(fs_info);
if (ret) {
btrfs_err(fs_info,
"failed to verify dev extents against chunks: %d",
ret);
goto fail_block_groups;
}
ret = btrfs_recover_balance(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to recover balance: %d", ret);
goto fail_block_groups;
}
ret = btrfs_init_dev_stats(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
goto fail_block_groups;
}
ret = btrfs_init_dev_replace(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
goto fail_block_groups;
}
ret = btrfs_check_zoned_mode(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to initialize zoned mode: %d",
ret);
goto fail_block_groups;
}
ret = btrfs_sysfs_add_fsid(fs_devices);
if (ret) {
btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
ret);
goto fail_block_groups;
}
ret = btrfs_sysfs_add_mounted(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
goto fail_fsdev_sysfs;
}
ret = btrfs_init_space_info(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to initialize space info: %d", ret);
goto fail_sysfs;
}
ret = btrfs_read_block_groups(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to read block groups: %d", ret);
goto fail_sysfs;
}
btrfs_free_zone_cache(fs_info);
btrfs_check_active_zone_reservation(fs_info);
if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
!btrfs_check_rw_degradable(fs_info, NULL)) {
btrfs_warn(fs_info,
"writable mount is not allowed due to too many missing devices");
ret = -EINVAL;
goto fail_sysfs;
}
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
"btrfs-cleaner");
if (IS_ERR(fs_info->cleaner_kthread)) {
ret = PTR_ERR(fs_info->cleaner_kthread);
goto fail_sysfs;
}
fs_info->transaction_kthread = kthread_run(transaction_kthread,
tree_root,
"btrfs-transaction");
if (IS_ERR(fs_info->transaction_kthread)) {
ret = PTR_ERR(fs_info->transaction_kthread);
goto fail_cleaner;
}
ret = btrfs_read_qgroup_config(fs_info);
if (ret)
goto fail_trans_kthread;
if (btrfs_build_ref_tree(fs_info))
btrfs_err(fs_info, "couldn't build ref tree");
/* do not make disk changes in broken FS or nologreplay is given */
if (btrfs_super_log_root(disk_super) != 0 &&
!btrfs_test_opt(fs_info, NOLOGREPLAY)) {
btrfs_info(fs_info, "start tree-log replay");
ret = btrfs_replay_log(fs_info, fs_devices);
if (ret)
goto fail_qgroup;
}
2008-09-26 14:09:34 +00:00
fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
if (IS_ERR(fs_info->fs_root)) {
ret = PTR_ERR(fs_info->fs_root);
btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
fs_info->fs_root = NULL;
goto fail_qgroup;
}
if (sb_rdonly(sb))
return 0;
ret = btrfs_start_pre_rw_mount(fs_info);
if (ret) {
close_ctree(fs_info);
return ret;
}
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
btrfs_discard_resume(fs_info);
Btrfs: fix qgroup rescan resume on mount When called during mount, we cannot start the rescan worker thread until open_ctree is done. This commit restuctures the qgroup rescan internals to enable a clean deferral of the rescan resume operation. First of all, the struct qgroup_rescan is removed, saving us a malloc and some initialization synchronizations problems. Its only element (the worker struct) now lives within fs_info just as the rest of the rescan code. Then setting up a rescan worker is split into several reusable stages. Currently we have three different rescan startup scenarios: (A) rescan ioctl (B) rescan resume by mount (C) rescan by quota enable Each case needs its own combination of the four following steps: (1) set the progress [A, C: zero; B: state of umount] (2) commit the transaction [A] (3) set the counters [A, C: zero; B: state of umount] (4) start worker [A, B, C] qgroup_rescan_init does step (1). There's no extra function added to commit a transaction, we've got that already. qgroup_rescan_zero_tracking does step (3). Step (4) is nothing more than a call to the generic btrfs_queue_worker. We also get rid of a double check for the rescan progress during btrfs_qgroup_account_ref, which is no longer required due to having step 2 from the list above. As a side effect, this commit prepares to move the rescan start code from btrfs_run_qgroups (which is run during commit) to a less time critical section. Signed-off-by: Jan Schmidt <list.btrfs@jan-o-sch.net> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-28 15:47:24 +00:00
if (fs_info->uuid_root &&
(btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
btrfs_info(fs_info, "checking UUID tree");
ret = btrfs_check_uuid_tree(fs_info);
if (ret) {
btrfs_warn(fs_info,
"failed to check the UUID tree: %d", ret);
close_ctree(fs_info);
return ret;
}
}
set_bit(BTRFS_FS_OPEN, &fs_info->flags);
btrfs: do not start relocation until in progress drops are done We hit a bug with a recovering relocation on mount for one of our file systems in production. I reproduced this locally by injecting errors into snapshot delete with balance running at the same time. This presented as an error while looking up an extent item WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680 CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8 RIP: 0010:lookup_inline_extent_backref+0x647/0x680 RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000 RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001 R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000 R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000 FS: 0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0 Call Trace: <TASK> insert_inline_extent_backref+0x46/0xd0 __btrfs_inc_extent_ref.isra.0+0x5f/0x200 ? btrfs_merge_delayed_refs+0x164/0x190 __btrfs_run_delayed_refs+0x561/0xfa0 ? btrfs_search_slot+0x7b4/0xb30 ? btrfs_update_root+0x1a9/0x2c0 btrfs_run_delayed_refs+0x73/0x1f0 ? btrfs_update_root+0x1a9/0x2c0 btrfs_commit_transaction+0x50/0xa50 ? btrfs_update_reloc_root+0x122/0x220 prepare_to_merge+0x29f/0x320 relocate_block_group+0x2b8/0x550 btrfs_relocate_block_group+0x1a6/0x350 btrfs_relocate_chunk+0x27/0xe0 btrfs_balance+0x777/0xe60 balance_kthread+0x35/0x50 ? btrfs_balance+0xe60/0xe60 kthread+0x16b/0x190 ? set_kthread_struct+0x40/0x40 ret_from_fork+0x22/0x30 </TASK> Normally snapshot deletion and relocation are excluded from running at the same time by the fs_info->cleaner_mutex. However if we had a pending balance waiting to get the ->cleaner_mutex, and a snapshot deletion was running, and then the box crashed, we would come up in a state where we have a half deleted snapshot. Again, in the normal case the snapshot deletion needs to complete before relocation can start, but in this case relocation could very well start before the snapshot deletion completes, as we simply add the root to the dead roots list and wait for the next time the cleaner runs to clean up the snapshot. Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that had a pending drop_progress key. If they do then we know we were in the middle of the drop operation and set a flag on the fs_info. Then balance can wait until this flag is cleared to start up again. If there are DEAD_ROOT's that don't have a drop_progress set then we're safe to start balance right away as we'll be properly protected by the cleaner_mutex. CC: stable@vger.kernel.org # 5.10+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-02-18 19:56:10 +00:00
/* Kick the cleaner thread so it'll start deleting snapshots. */
if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
wake_up_process(fs_info->cleaner_kthread);
return 0;
fail_qgroup:
btrfs_free_qgroup_config(fs_info);
fail_trans_kthread:
kthread_stop(fs_info->transaction_kthread);
btrfs_cleanup_transaction(fs_info);
btrfs_free_fs_roots(fs_info);
fail_cleaner:
kthread_stop(fs_info->cleaner_kthread);
/*
* make sure we're done with the btree inode before we stop our
* kthreads
*/
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
fail_sysfs:
btrfs_sysfs_remove_mounted(fs_info);
fail_fsdev_sysfs:
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
fail_block_groups:
btrfs_put_block_group_cache(fs_info);
fail_tree_roots:
if (fs_info->data_reloc_root)
btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
free_root_pointers(fs_info, true);
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
fail_sb_buffer:
btrfs_stop_all_workers(fs_info);
Btrfs: fix assertion failure when freeing block groups at close_ctree() At close_ctree() we free the block groups and then only after we wait for any running worker kthreads to finish and shutdown the workqueues. This behaviour is racy and it triggers an assertion failure when freeing block groups because while we are doing it we can have for example a block group caching kthread running, and in that case the block group's reference count can still be greater than 1 by the time we assert its reference count is 1, leading to an assertion failure: [19041.198004] assertion failed: atomic_read(&block_group->count) == 1, file: fs/btrfs/extent-tree.c, line: 9799 [19041.200584] ------------[ cut here ]------------ [19041.201692] kernel BUG at fs/btrfs/ctree.h:3418! [19041.202830] invalid opcode: 0000 [#1] PREEMPT SMP [19041.203929] Modules linked in: btrfs xor raid6_pq dm_flakey dm_mod crc32c_generic ppdev sg psmouse acpi_cpufreq pcspkr parport_pc evdev tpm_tis parport tpm_tis_core i2c_piix4 i2c_core tpm serio_raw processor button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio e1000 scsi_mod floppy [last unloaded: btrfs] [19041.208082] CPU: 6 PID: 29051 Comm: umount Not tainted 4.9.0-rc7-btrfs-next-36+ #1 [19041.208082] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014 [19041.208082] task: ffff88015f028980 task.stack: ffffc9000ad34000 [19041.208082] RIP: 0010:[<ffffffffa03e319e>] [<ffffffffa03e319e>] assfail.constprop.41+0x1c/0x1e [btrfs] [19041.208082] RSP: 0018:ffffc9000ad37d60 EFLAGS: 00010286 [19041.208082] RAX: 0000000000000061 RBX: ffff88015ecb4000 RCX: 0000000000000001 [19041.208082] RDX: ffff88023f392fb8 RSI: ffffffff817ef7ba RDI: 00000000ffffffff [19041.208082] RBP: ffffc9000ad37d60 R08: 0000000000000001 R09: 0000000000000000 [19041.208082] R10: ffffc9000ad37cb0 R11: ffffffff82f2b66d R12: ffff88023431d170 [19041.208082] R13: ffff88015ecb40c0 R14: ffff88023431d000 R15: ffff88015ecb4100 [19041.208082] FS: 00007f44f3d42840(0000) GS:ffff88023f380000(0000) knlGS:0000000000000000 [19041.208082] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [19041.208082] CR2: 00007f65d623b000 CR3: 00000002166f2000 CR4: 00000000000006e0 [19041.208082] Stack: [19041.208082] ffffc9000ad37d98 ffffffffa035989f ffff88015ecb4000 ffff88015ecb5630 [19041.208082] ffff88014f6be000 0000000000000000 00007ffcf0ba6a10 ffffc9000ad37df8 [19041.208082] ffffffffa0368cd4 ffff88014e9658e0 ffffc9000ad37e08 ffffffff811a634d [19041.208082] Call Trace: [19041.208082] [<ffffffffa035989f>] btrfs_free_block_groups+0x17f/0x392 [btrfs] [19041.208082] [<ffffffffa0368cd4>] close_ctree+0x1c5/0x2e1 [btrfs] [19041.208082] [<ffffffff811a634d>] ? evict_inodes+0x132/0x141 [19041.208082] [<ffffffffa034356d>] btrfs_put_super+0x15/0x17 [btrfs] [19041.208082] [<ffffffff8118fc32>] generic_shutdown_super+0x6a/0xeb [19041.208082] [<ffffffff8119004f>] kill_anon_super+0x12/0x1c [19041.208082] [<ffffffffa0343370>] btrfs_kill_super+0x16/0x21 [btrfs] [19041.208082] [<ffffffff8118fad1>] deactivate_locked_super+0x3b/0x68 [19041.208082] [<ffffffff8118fb34>] deactivate_super+0x36/0x39 [19041.208082] [<ffffffff811a9946>] cleanup_mnt+0x58/0x76 [19041.208082] [<ffffffff811a99a2>] __cleanup_mnt+0x12/0x14 [19041.208082] [<ffffffff81071573>] task_work_run+0x6f/0x95 [19041.208082] [<ffffffff81001897>] prepare_exit_to_usermode+0xa3/0xc1 [19041.208082] [<ffffffff81001a23>] syscall_return_slowpath+0x16e/0x1d2 [19041.208082] [<ffffffff814c607d>] entry_SYSCALL_64_fastpath+0xab/0xad [19041.208082] Code: c7 ae a0 3e a0 48 89 e5 e8 4e 74 d4 e0 0f 0b 55 89 f1 48 c7 c2 0b a4 3e a0 48 89 fe 48 c7 c7 a4 a6 3e a0 48 89 e5 e8 30 74 d4 e0 <0f> 0b 55 31 d2 48 89 e5 e8 d5 b9 f7 ff 5d c3 48 63 f6 55 31 c9 [19041.208082] RIP [<ffffffffa03e319e>] assfail.constprop.41+0x1c/0x1e [btrfs] [19041.208082] RSP <ffffc9000ad37d60> [19041.279264] ---[ end trace 23330586f16f064d ]--- This started happening as of kernel 4.8, since commit f3bca8028bd9 ("Btrfs: add ASSERT for block group's memory leak") introduced these assertions. So fix this by freeing the block groups only after waiting for all worker kthreads to complete and shutdown the workqueues. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
2017-02-01 22:39:50 +00:00
btrfs_free_block_groups(fs_info);
btrfs: implement delayed inode items operation Changelog V5 -> V6: - Fix oom when the memory load is high, by storing the delayed nodes into the root's radix tree, and letting btrfs inodes go. Changelog V4 -> V5: - Fix the race on adding the delayed node to the inode, which is spotted by Chris Mason. - Merge Chris Mason's incremental patch into this patch. - Fix deadlock between readdir() and memory fault, which is reported by Itaru Kitayama. Changelog V3 -> V4: - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache inode in time. Changelog V2 -> V3: - Fix the race between the delayed worker and the task which does delayed items balance, which is reported by Tsutomu Itoh. - Modify the patch address David Sterba's comment. - Fix the bug of the cpu recursion spinlock, reported by Chris Mason Changelog V1 -> V2: - break up the global rb-tree, use a list to manage the delayed nodes, which is created for every directory and file, and used to manage the delayed directory name index items and the delayed inode item. - introduce a worker to deal with the delayed nodes. Compare with Ext3/4, the performance of file creation and deletion on btrfs is very poor. the reason is that btrfs must do a lot of b+ tree insertions, such as inode item, directory name item, directory name index and so on. If we can do some delayed b+ tree insertion or deletion, we can improve the performance, so we made this patch which implemented delayed directory name index insertion/deletion and delayed inode update. Implementation: - introduce a delayed root object into the filesystem, that use two lists to manage the delayed nodes which are created for every file/directory. One is used to manage all the delayed nodes that have delayed items. And the other is used to manage the delayed nodes which is waiting to be dealt with by the work thread. - Every delayed node has two rb-tree, one is used to manage the directory name index which is going to be inserted into b+ tree, and the other is used to manage the directory name index which is going to be deleted from b+ tree. - introduce a worker to deal with the delayed operation. This worker is used to deal with the works of the delayed directory name index items insertion and deletion and the delayed inode update. When the delayed items is beyond the lower limit, we create works for some delayed nodes and insert them into the work queue of the worker, and then go back. When the delayed items is beyond the upper bound, we create works for all the delayed nodes that haven't been dealt with, and insert them into the work queue of the worker, and then wait for that the untreated items is below some threshold value. - When we want to insert a directory name index into b+ tree, we just add the information into the delayed inserting rb-tree. And then we check the number of the delayed items and do delayed items balance. (The balance policy is above.) - When we want to delete a directory name index from the b+ tree, we search it in the inserting rb-tree at first. If we look it up, just drop it. If not, add the key of it into the delayed deleting rb-tree. Similar to the delayed inserting rb-tree, we also check the number of the delayed items and do delayed items balance. (The same to inserting manipulation) - When we want to update the metadata of some inode, we cached the data of the inode into the delayed node. the worker will flush it into the b+ tree after dealing with the delayed insertion and deletion. - We will move the delayed node to the tail of the list after we access the delayed node, By this way, we can cache more delayed items and merge more inode updates. - If we want to commit transaction, we will deal with all the delayed node. - the delayed node will be freed when we free the btrfs inode. - Before we log the inode items, we commit all the directory name index items and the delayed inode update. I did a quick test by the benchmark tool[1] and found we can improve the performance of file creation by ~15%, and file deletion by ~20%. Before applying this patch: Create files: Total files: 50000 Total time: 1.096108 Average time: 0.000022 Delete files: Total files: 50000 Total time: 1.510403 Average time: 0.000030 After applying this patch: Create files: Total files: 50000 Total time: 0.932899 Average time: 0.000019 Delete files: Total files: 50000 Total time: 1.215732 Average time: 0.000024 [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3 Many thanks for Kitayama-san's help! Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: David Sterba <dave@jikos.cz> Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 10:12:22 +00:00
fail_alloc:
btrfs: use a dedicated data structure for chunk maps Currently we abuse the extent_map structure for two purposes: 1) To actually represent extents for inodes; 2) To represent chunk mappings. This is odd and has several disadvantages: 1) To create a chunk map, we need to do two memory allocations: one for an extent_map structure and another one for a map_lookup structure, so more potential for an allocation failure and more complicated code to manage and link two structures; 2) For a chunk map we actually only use 3 fields (24 bytes) of the respective extent map structure: the 'start' field to have the logical start address of the chunk, the 'len' field to have the chunk's size, and the 'orig_block_len' field to contain the chunk's stripe size. Besides wasting a memory, it's also odd and not intuitive at all to have the stripe size in a field named 'orig_block_len'. We are also using 'block_len' of the extent_map structure to contain the chunk size, so we have 2 fields for the same value, 'len' and 'block_len', which is pointless; 3) When an extent map is associated to a chunk mapping, we set the bit EXTENT_FLAG_FS_MAPPING on its flags and then make its member named 'map_lookup' point to the associated map_lookup structure. This means that for an extent map associated to an inode extent, we are not using this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform); 4) Extent maps associated to a chunk mapping are never merged or split so it's pointless to use the existing extent map infrastructure. So add a dedicated data structure named 'btrfs_chunk_map' to represent chunk mappings, this is basically the existing map_lookup structure with some extra fields: 1) 'start' to contain the chunk logical address; 2) 'chunk_len' to contain the chunk's length; 3) 'stripe_size' for the stripe size; 4) 'rb_node' for insertion into a rb tree; 5) 'refs' for reference counting. This way we do a single memory allocation for chunk mappings and we don't waste memory for them with unused/unnecessary fields from an extent_map. We also save 8 bytes from the extent_map structure by removing the 'map_lookup' pointer, so the size of struct extent_map is reduced from 144 bytes down to 136 bytes, and we can now have 30 extents map per 4K page instead of 28. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-21 13:38:38 +00:00
btrfs_mapping_tree_free(fs_info);
iput(fs_info->btree_inode);
fail:
btrfs_close_devices(fs_info->fs_devices);
ASSERT(ret < 0);
return ret;
}
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
static void btrfs_end_super_write(struct bio *bio)
{
struct btrfs_device *device = bio->bi_private;
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
struct page *page;
bio_for_each_segment_all(bvec, bio, iter_all) {
page = bvec->bv_page;
if (bio->bi_status) {
btrfs_warn_rl_in_rcu(device->fs_info,
"lost page write due to IO error on %s (%d)",
btrfs_dev_name(device),
blk_status_to_errno(bio->bi_status));
ClearPageUptodate(page);
SetPageError(page);
btrfs_dev_stat_inc_and_print(device,
BTRFS_DEV_STAT_WRITE_ERRS);
} else {
SetPageUptodate(page);
}
put_page(page);
unlock_page(page);
}
bio_put(bio);
}
struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
btrfs: check superblock to ensure the fs was not modified at thaw time [BACKGROUND] There is an incident report that, one user hibernated the system, with one btrfs on removable device still mounted. Then by some incident, the btrfs got mounted and modified by another system/OS, then back to the hibernated system. After resuming from the hibernation, new write happened into the victim btrfs. Now the fs is completely broken, since the underlying btrfs is no longer the same one before the hibernation, and the user lost their data due to various transid mismatch. [REPRODUCER] We can emulate the situation using the following small script: truncate -s 1G $dev mkfs.btrfs -f $dev mount $dev $mnt fsstress -w -d $mnt -n 500 sync xfs_freeze -f $mnt cp $dev $dev.backup # There is no way to mount the same cloned fs on the same system, # as the conflicting fsid will be rejected by btrfs. # Thus here we have to wipe the fs using a different btrfs. mkfs.btrfs -f $dev.backup dd if=$dev.backup of=$dev bs=1M xfs_freeze -u $mnt fsstress -w -d $mnt -n 20 umount $mnt btrfs check $dev The final fsck will fail due to some tree blocks has incorrect fsid. This is enough to emulate the problem hit by the unfortunate user. [ENHANCEMENT] Although such case should not be that common, it can still happen from time to time. From the view of btrfs, we can detect any unexpected super block change, and if there is any unexpected change, we just mark the fs read-only, and thaw the fs. By this we can limit the damage to minimal, and I hope no one would lose their data by this anymore. Suggested-by: Goffredo Baroncelli <kreijack@libero.it> Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-24 12:16:22 +00:00
int copy_num, bool drop_cache)
{
struct btrfs_super_block *super;
struct page *page;
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
u64 bytenr, bytenr_orig;
struct address_space *mapping = bdev->bd_inode->i_mapping;
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
int ret;
bytenr_orig = btrfs_sb_offset(copy_num);
ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
if (ret == -ENOENT)
return ERR_PTR(-EINVAL);
else if (ret)
return ERR_PTR(ret);
if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
return ERR_PTR(-EINVAL);
btrfs: check superblock to ensure the fs was not modified at thaw time [BACKGROUND] There is an incident report that, one user hibernated the system, with one btrfs on removable device still mounted. Then by some incident, the btrfs got mounted and modified by another system/OS, then back to the hibernated system. After resuming from the hibernation, new write happened into the victim btrfs. Now the fs is completely broken, since the underlying btrfs is no longer the same one before the hibernation, and the user lost their data due to various transid mismatch. [REPRODUCER] We can emulate the situation using the following small script: truncate -s 1G $dev mkfs.btrfs -f $dev mount $dev $mnt fsstress -w -d $mnt -n 500 sync xfs_freeze -f $mnt cp $dev $dev.backup # There is no way to mount the same cloned fs on the same system, # as the conflicting fsid will be rejected by btrfs. # Thus here we have to wipe the fs using a different btrfs. mkfs.btrfs -f $dev.backup dd if=$dev.backup of=$dev bs=1M xfs_freeze -u $mnt fsstress -w -d $mnt -n 20 umount $mnt btrfs check $dev The final fsck will fail due to some tree blocks has incorrect fsid. This is enough to emulate the problem hit by the unfortunate user. [ENHANCEMENT] Although such case should not be that common, it can still happen from time to time. From the view of btrfs, we can detect any unexpected super block change, and if there is any unexpected change, we just mark the fs read-only, and thaw the fs. By this we can limit the damage to minimal, and I hope no one would lose their data by this anymore. Suggested-by: Goffredo Baroncelli <kreijack@libero.it> Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-24 12:16:22 +00:00
if (drop_cache) {
/* This should only be called with the primary sb. */
ASSERT(copy_num == 0);
/*
* Drop the page of the primary superblock, so later read will
* always read from the device.
*/
invalidate_inode_pages2_range(mapping,
bytenr >> PAGE_SHIFT,
(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
}
page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
if (IS_ERR(page))
return ERR_CAST(page);
super = page_address(page);
if (btrfs_super_magic(super) != BTRFS_MAGIC) {
btrfs_release_disk_super(super);
return ERR_PTR(-ENODATA);
}
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
if (btrfs_super_bytenr(super) != bytenr_orig) {
btrfs_release_disk_super(super);
return ERR_PTR(-EINVAL);
}
return super;
}
struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
{
struct btrfs_super_block *super, *latest = NULL;
int i;
u64 transid = 0;
/* we would like to check all the supers, but that would make
* a btrfs mount succeed after a mkfs from a different FS.
* So, we need to add a special mount option to scan for
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
*/
for (i = 0; i < 1; i++) {
btrfs: check superblock to ensure the fs was not modified at thaw time [BACKGROUND] There is an incident report that, one user hibernated the system, with one btrfs on removable device still mounted. Then by some incident, the btrfs got mounted and modified by another system/OS, then back to the hibernated system. After resuming from the hibernation, new write happened into the victim btrfs. Now the fs is completely broken, since the underlying btrfs is no longer the same one before the hibernation, and the user lost their data due to various transid mismatch. [REPRODUCER] We can emulate the situation using the following small script: truncate -s 1G $dev mkfs.btrfs -f $dev mount $dev $mnt fsstress -w -d $mnt -n 500 sync xfs_freeze -f $mnt cp $dev $dev.backup # There is no way to mount the same cloned fs on the same system, # as the conflicting fsid will be rejected by btrfs. # Thus here we have to wipe the fs using a different btrfs. mkfs.btrfs -f $dev.backup dd if=$dev.backup of=$dev bs=1M xfs_freeze -u $mnt fsstress -w -d $mnt -n 20 umount $mnt btrfs check $dev The final fsck will fail due to some tree blocks has incorrect fsid. This is enough to emulate the problem hit by the unfortunate user. [ENHANCEMENT] Although such case should not be that common, it can still happen from time to time. From the view of btrfs, we can detect any unexpected super block change, and if there is any unexpected change, we just mark the fs read-only, and thaw the fs. By this we can limit the damage to minimal, and I hope no one would lose their data by this anymore. Suggested-by: Goffredo Baroncelli <kreijack@libero.it> Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/ Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-08-24 12:16:22 +00:00
super = btrfs_read_dev_one_super(bdev, i, false);
if (IS_ERR(super))
continue;
if (!latest || btrfs_super_generation(super) > transid) {
if (latest)
btrfs_release_disk_super(super);
latest = super;
transid = btrfs_super_generation(super);
}
}
return super;
}
/*
* Write superblock @sb to the @device. Do not wait for completion, all the
* pages we use for writing are locked.
*
* Write @max_mirrors copies of the superblock, where 0 means default that fit
* the expected device size at commit time. Note that max_mirrors must be
* same for write and wait phases.
*
* Return number of errors when page is not found or submission fails.
*/
static int write_dev_supers(struct btrfs_device *device,
struct btrfs_super_block *sb, int max_mirrors)
{
struct btrfs_fs_info *fs_info = device->fs_info;
struct address_space *mapping = device->bdev->bd_inode->i_mapping;
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
int i;
int errors = 0;
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
int ret;
u64 bytenr, bytenr_orig;
if (max_mirrors == 0)
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
shash->tfm = fs_info->csum_shash;
for (i = 0; i < max_mirrors; i++) {
struct page *page;
struct bio *bio;
struct btrfs_super_block *disk_super;
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
bytenr_orig = btrfs_sb_offset(i);
ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
if (ret == -ENOENT) {
continue;
} else if (ret < 0) {
btrfs_err(device->fs_info,
"couldn't get super block location for mirror %d",
i);
errors++;
continue;
}
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
device->commit_total_bytes)
break;
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
btrfs_set_super_bytenr(sb, bytenr_orig);
crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
sb->csum);
page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
GFP_NOFS);
if (!page) {
btrfs_err(device->fs_info,
"couldn't get super block page for bytenr %llu",
bytenr);
errors++;
continue;
}
/* Bump the refcount for wait_dev_supers() */
get_page(page);
disk_super = page_address(page);
memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
/*
* Directly use bios here instead of relying on the page cache
* to do I/O, so we don't lose the ability to do integrity
* checking.
*/
bio = bio_alloc(device->bdev, 1,
REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
GFP_NOFS);
bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
bio->bi_private = device;
bio->bi_end_io = btrfs_end_super_write;
__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
offset_in_page(bytenr));
/*
* We FUA only the first super block. The others we allow to
* go down lazy and there's a short window where the on-disk
* copies might still contain the older version.
*/
if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
bio->bi_opf |= REQ_FUA;
submit_bio(bio);
if (btrfs_advance_sb_log(device, i))
errors++;
}
return errors < i ? 0 : -1;
}
/*
* Wait for write completion of superblocks done by write_dev_supers,
* @max_mirrors same for write and wait phases.
*
* Return number of errors when page is not found or not marked up to
* date.
*/
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
{
int i;
int errors = 0;
bool primary_failed = false;
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
int ret;
u64 bytenr;
if (max_mirrors == 0)
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
for (i = 0; i < max_mirrors; i++) {
struct page *page;
btrfs: implement log-structured superblock for ZONED mode Superblock (and its copies) is the only data structure in btrfs which has a fixed location on a device. Since we cannot overwrite in a sequential write required zone, we cannot place superblock in the zone. One easy solution is limiting superblock and copies to be placed only in conventional zones. However, this method has two downsides: one is reduced number of superblock copies. The location of the second copy of superblock is 256GB, which is in a sequential write required zone on typical devices in the market today. So, the number of superblock and copies is limited to be two. Second downside is that we cannot support devices which have no conventional zones at all. To solve these two problems, we employ superblock log writing. It uses two adjacent zones as a circular buffer to write updated superblocks. Once the first zone is filled up, start writing into the second one. Then, when both zones are filled up and before starting to write to the first zone again, it reset the first zone. We can determine the position of the latest superblock by reading write pointer information from a device. One corner case is when both zones are full. For this situation, we read out the last superblock of each zone, and compare them to determine which zone is older. The following zones are reserved as the circular buffer on ZONED btrfs. - The primary superblock: zones 0 and 1 - The first copy: zones 16 and 17 - The second copy: zones 1024 or zone at 256GB which is minimum, and next to it If these reserved zones are conventional, superblock is written fixed at the start of the zone without logging. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-11-10 11:26:14 +00:00
ret = btrfs_sb_log_location(device, i, READ, &bytenr);
if (ret == -ENOENT) {
break;
} else if (ret < 0) {
errors++;
if (i == 0)
primary_failed = true;
continue;
}
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
device->commit_total_bytes)
break;
page = find_get_page(device->bdev->bd_inode->i_mapping,
bytenr >> PAGE_SHIFT);
if (!page) {
errors++;
if (i == 0)
primary_failed = true;
continue;
}
/* Page is submitted locked and unlocked once the IO completes */
wait_on_page_locked(page);
if (PageError(page)) {
errors++;
if (i == 0)
primary_failed = true;
}
/* Drop our reference */
put_page(page);
/* Drop the reference from the writing run */
put_page(page);
}
/* log error, force error return */
if (primary_failed) {
btrfs_err(device->fs_info, "error writing primary super block to device %llu",
device->devid);
return -1;
}
return errors < i ? 0 : -1;
}
/*
* endio for the write_dev_flush, this will wake anyone waiting
* for the barrier when it is done
*/
static void btrfs_end_empty_barrier(struct bio *bio)
{
bio_uninit(bio);
complete(bio->bi_private);
}
/*
* Submit a flush request to the device if it supports it. Error handling is
* done in the waiting counterpart.
*/
static void write_dev_flush(struct btrfs_device *device)
{
struct bio *bio = &device->flush_bio;
device->last_flush_error = BLK_STS_OK;
bio_init(bio, device->bdev, NULL, 0,
REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
bio->bi_end_io = btrfs_end_empty_barrier;
init_completion(&device->flush_wait);
bio->bi_private = &device->flush_wait;
submit_bio(bio);
set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
}
/*
* If the flush bio has been submitted by write_dev_flush, wait for it.
* Return true for any error, and false otherwise.
*/
static bool wait_dev_flush(struct btrfs_device *device)
{
struct bio *bio = &device->flush_bio;
if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
return false;
wait_for_completion_io(&device->flush_wait);
if (bio->bi_status) {
device->last_flush_error = bio->bi_status;
btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
return true;
}
return false;
}
/*
* send an empty flush down to each device in parallel,
* then wait for them
*/
static int barrier_all_devices(struct btrfs_fs_info *info)
{
struct list_head *head;
struct btrfs_device *dev;
int errors_wait = 0;
lockdep_assert_held(&info->fs_devices->device_list_mutex);
/* send down all the barriers */
head = &info->fs_devices->devices;
list_for_each_entry(dev, head, dev_list) {
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
continue;
if (!dev->bdev)
continue;
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
continue;
write_dev_flush(dev);
}
/* wait for all the barriers */
list_for_each_entry(dev, head, dev_list) {
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
continue;
if (!dev->bdev) {
errors_wait++;
continue;
}
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
continue;
if (wait_dev_flush(dev))
errors_wait++;
}
/*
* Checks last_flush_error of disks in order to determine the device
* state.
*/
if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
return -EIO;
return 0;
}
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
int raid_type;
int min_tolerated = INT_MAX;
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
(flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
min_tolerated = min_t(int, min_tolerated,
btrfs_raid_array[BTRFS_RAID_SINGLE].
tolerated_failures);
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
if (raid_type == BTRFS_RAID_SINGLE)
continue;
if (!(flags & btrfs_raid_array[raid_type].bg_flag))
continue;
min_tolerated = min_t(int, min_tolerated,
btrfs_raid_array[raid_type].
tolerated_failures);
}
if (min_tolerated == INT_MAX) {
pr_warn("BTRFS: unknown raid flag: %llu", flags);
min_tolerated = 0;
}
return min_tolerated;
}
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
{
struct list_head *head;
struct btrfs_device *dev;
struct btrfs_super_block *sb;
struct btrfs_dev_item *dev_item;
int ret;
int do_barriers;
int max_errors;
int total_errors = 0;
u64 flags;
do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
/*
* max_mirrors == 0 indicates we're from commit_transaction,
* not from fsync where the tree roots in fs_info have not
* been consistent on disk.
*/
if (max_mirrors == 0)
backup_super_roots(fs_info);
sb = fs_info->super_for_commit;
dev_item = &sb->dev_item;
mutex_lock(&fs_info->fs_devices->device_list_mutex);
head = &fs_info->fs_devices->devices;
max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
if (do_barriers) {
ret = barrier_all_devices(fs_info);
if (ret) {
mutex_unlock(
&fs_info->fs_devices->device_list_mutex);
btrfs_handle_fs_error(fs_info, ret,
"errors while submitting device barriers.");
return ret;
}
}
list_for_each_entry(dev, head, dev_list) {
if (!dev->bdev) {
total_errors++;
continue;
}
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
continue;
btrfs_set_stack_device_generation(dev_item, 0);
btrfs_set_stack_device_type(dev_item, dev->type);
btrfs_set_stack_device_id(dev_item, dev->devid);
btrfs_set_stack_device_total_bytes(dev_item,
dev->commit_total_bytes);
btrfs_set_stack_device_bytes_used(dev_item,
dev->commit_bytes_used);
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
btrfs: Introduce support for FSID change without metadata rewrite This field is going to be used when the user wants to change the UUID of the filesystem without having to rewrite all metadata blocks. This field adds another level of indirection such that when the FSID is changed what really happens is the current UUID (the one with which the fs was created) is copied to the 'metadata_uuid' field in the superblock as well as a new incompat flag is set METADATA_UUID. When the kernel detects this flag is set it knows that the superblock in fact has 2 UUIDs: 1. Is the UUID which is user-visible, currently known as FSID. 2. Metadata UUID - this is the UUID which is stamped into all on-disk datastructures belonging to this file system. When the new incompat flag is present device scanning checks whether both fsid/metadata_uuid of the scanned device match any of the registered filesystems. When the flag is not set then both UUIDs are equal and only the FSID is retained on disk, metadata_uuid is set only in-memory during mount. Additionally a new metadata_uuid field is also added to the fs_info struct. It's initialised either with the FSID in case METADATA_UUID incompat flag is not set or with the metdata_uuid of the superblock otherwise. This commit introduces the new fields as well as the new incompat flag and switches all users of the fsid to the new logic. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor updates in comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-30 14:43:23 +00:00
memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
BTRFS_FSID_SIZE);
flags = btrfs_super_flags(sb);
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
btrfs: Do super block verification before writing it to disk There are already 2 reports about strangely corrupted super blocks, where csum still matches but extra garbage gets slipped into super block. The corruption would looks like: ------ superblock: bytenr=65536, device=/dev/sdc1 --------------------------------------------------------- csum_type 41700 (INVALID) csum 0x3b252d3a [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x5b22400000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x5b22400000000000 ) ... ------ Or ------ superblock: bytenr=65536, device=/dev/mapper/x --------------------------------------------------------- csum_type 35355 (INVALID) csum_size 32 csum 0xf0dbeddd [match] bytenr 65536 flags 0x1 ( WRITTEN ) magic _BHRfS_M [match] ... incompat_flags 0x176d200000000169 ( MIXED_BACKREF | COMPRESS_LZO | BIG_METADATA | EXTENDED_IREF | SKINNY_METADATA | unknown flag: 0x176d200000000000 ) ------ Obviously, csum_type and incompat_flags get some garbage, but its csum still matches, which means kernel calculates the csum based on corrupted super block memory. And after manually fixing these values, the filesystem is completely healthy without any problem exposed by btrfs check. Although the cause is still unknown, at least detect it and prevent further corruption. Both reports have same symptoms, there's an overwrite on offset 192 of the superblock, by 4 bytes. The superblock structure is not allocated or freed and stays in the memory for the whole filesystem lifetime, so it's not a use-after-free kind of error on someone else's leaked page. As a vague point for the problable cause is mentioning of other system freezing related to graphic card drivers. Reported-by: Ken Swenson <flat@imo.uto.moe> Reported-by: Ben Parsons <9parsonsb@gmail.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add brief analysis of the reports ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-11 05:35:27 +00:00
ret = btrfs_validate_write_super(fs_info, sb);
if (ret < 0) {
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
btrfs_handle_fs_error(fs_info, -EUCLEAN,
"unexpected superblock corruption detected");
return -EUCLEAN;
}
ret = write_dev_supers(dev, sb, max_mirrors);
if (ret)
total_errors++;
}
if (total_errors > max_errors) {
btrfs_err(fs_info, "%d errors while writing supers",
total_errors);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
/* FUA is masked off if unsupported and can't be the reason */
btrfs_handle_fs_error(fs_info, -EIO,
"%d errors while writing supers",
total_errors);
return -EIO;
}
total_errors = 0;
list_for_each_entry(dev, head, dev_list) {
if (!dev->bdev)
continue;
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
continue;
ret = wait_dev_supers(dev, max_mirrors);
if (ret)
total_errors++;
}
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
if (total_errors > max_errors) {
btrfs_handle_fs_error(fs_info, -EIO,
"%d errors while writing supers",
total_errors);
return -EIO;
}
return 0;
}
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_root *root)
{
bool drop_ref = false;
spin_lock(&fs_info->fs_roots_radix_lock);
radix_tree_delete(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid);
if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
drop_ref = true;
spin_unlock(&fs_info->fs_roots_radix_lock);
if (BTRFS_FS_ERROR(fs_info)) {
btrfs: drop logs when we've aborted a transaction Dave reported a problem where we were panicing with generic/475 with misc-5.7. This is because we were doing IO after we had stopped all of the worker threads, because we do the log tree cleanup on roots at drop time. Cleaning up the log tree will always need to do reads if we happened to have evicted the blocks from memory. Because of this simply add a helper to btrfs_cleanup_transaction() that will go through and drop all of the log roots. This gets run before we do the close_ctree() work, and thus we are allowed to do any reads that we would need. I ran this through many iterations of generic/475 with constrained memory and I did not see the issue. general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 12359 Comm: umount Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x33/0x1c0 [btrfs] RSP: 0018:ffff9cfb015937d8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8eb5e339ed80 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8eb5eb33b770 RDI: ffff8eb5e37a0460 RBP: ffff8eb5eb33b770 R08: 000000000000020c R09: ffffffff9fc09ac0 R10: 0000000000000007 R11: 0000000000000000 R12: 6b6b6b6b6b6b6b6b R13: ffff9cfb00229040 R14: 0000000000000008 R15: ffff8eb5d3868000 FS: 00007f167ea022c0(0000) GS:ffff8eb5fae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167e5e0cb1 CR3: 0000000138c18004 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_end_bio+0x81/0x130 [btrfs] __split_and_process_bio+0xaf/0x4e0 [dm_mod] ? percpu_counter_add_batch+0xa3/0x120 dm_process_bio+0x98/0x290 [dm_mod] ? generic_make_request+0xfb/0x410 dm_make_request+0x4d/0x120 [dm_mod] ? generic_make_request+0xfb/0x410 generic_make_request+0x12a/0x410 ? submit_bio+0x38/0x160 submit_bio+0x38/0x160 ? percpu_counter_add_batch+0xa3/0x120 btrfs_map_bio+0x289/0x570 [btrfs] ? kmem_cache_alloc+0x24d/0x300 btree_submit_bio_hook+0x79/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] read_extent_buffer_pages+0x2fe/0x450 [btrfs] btree_read_extent_buffer_pages+0x7e/0x170 [btrfs] walk_down_log_tree+0x343/0x690 [btrfs] ? walk_log_tree+0x3d/0x380 [btrfs] walk_log_tree+0xf7/0x380 [btrfs] ? plist_requeue+0xf0/0xf0 ? delete_node+0x4b/0x230 free_log_tree+0x4c/0x130 [btrfs] ? wait_log_commit+0x140/0x140 [btrfs] btrfs_free_log+0x17/0x30 [btrfs] btrfs_drop_and_free_fs_root+0xb0/0xd0 [btrfs] btrfs_free_fs_roots+0x10c/0x190 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? release_extent_buffer+0x121/0x170 [btrfs] close_ctree+0x289/0x2e6 [btrfs] generic_shutdown_super+0x6c/0x110 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x3a/0x70 Reported-by: David Sterba <dsterba@suse.com> Fixes: 8c38938c7bb096 ("btrfs: move the root freeing stuff into btrfs_put_root") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-24 14:47:52 +00:00
ASSERT(root->log_root == NULL);
if (root->reloc_root) {
btrfs_put_root(root->reloc_root);
root->reloc_root = NULL;
}
}
if (drop_ref)
btrfs_put_root(root);
}
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root = fs_info->tree_root;
struct btrfs_trans_handle *trans;
mutex_lock(&fs_info->cleaner_mutex);
btrfs_run_delayed_iputs(fs_info);
mutex_unlock(&fs_info->cleaner_mutex);
wake_up_process(fs_info->cleaner_kthread);
/* wait until ongoing cleanup work done */
down_write(&fs_info->cleanup_work_sem);
up_write(&fs_info->cleanup_work_sem);
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
return btrfs_commit_transaction(trans);
}
static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
{
struct btrfs_transaction *trans;
struct btrfs_transaction *tmp;
bool found = false;
if (list_empty(&fs_info->trans_list))
return;
/*
* This function is only called at the very end of close_ctree(),
* thus no other running transaction, no need to take trans_lock.
*/
ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
struct extent_state *cached = NULL;
u64 dirty_bytes = 0;
u64 cur = 0;
u64 found_start;
u64 found_end;
found = true;
while (find_first_extent_bit(&trans->dirty_pages, cur,
&found_start, &found_end, EXTENT_DIRTY, &cached)) {
dirty_bytes += found_end + 1 - found_start;
cur = found_end + 1;
}
btrfs_warn(fs_info,
"transaction %llu (with %llu dirty metadata bytes) is not committed",
trans->transid, dirty_bytes);
btrfs_cleanup_one_transaction(trans, fs_info);
if (trans == fs_info->running_transaction)
fs_info->running_transaction = NULL;
list_del_init(&trans->list);
btrfs_put_transaction(trans);
trace_btrfs_transaction_commit(fs_info);
}
ASSERT(!found);
}
void __cold close_ctree(struct btrfs_fs_info *fs_info)
{
int ret;
set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
btrfs: fix hang during unmount when block group reclaim task is running When we start an unmount, at close_ctree(), if we have the reclaim task running and in the middle of a data block group relocation, we can trigger a deadlock when stopping an async reclaim task, producing a trace like the following: [629724.498185] task:kworker/u16:7 state:D stack: 0 pid:681170 ppid: 2 flags:0x00004000 [629724.499760] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs] [629724.501267] Call Trace: [629724.501759] <TASK> [629724.502174] __schedule+0x3cb/0xed0 [629724.502842] schedule+0x4e/0xb0 [629724.503447] btrfs_wait_on_delayed_iputs+0x7c/0xc0 [btrfs] [629724.504534] ? prepare_to_wait_exclusive+0xc0/0xc0 [629724.505442] flush_space+0x423/0x630 [btrfs] [629724.506296] ? rcu_read_unlock_trace_special+0x20/0x50 [629724.507259] ? lock_release+0x220/0x4a0 [629724.507932] ? btrfs_get_alloc_profile+0xb3/0x290 [btrfs] [629724.508940] ? do_raw_spin_unlock+0x4b/0xa0 [629724.509688] btrfs_async_reclaim_metadata_space+0x139/0x320 [btrfs] [629724.510922] process_one_work+0x252/0x5a0 [629724.511694] ? process_one_work+0x5a0/0x5a0 [629724.512508] worker_thread+0x52/0x3b0 [629724.513220] ? process_one_work+0x5a0/0x5a0 [629724.514021] kthread+0xf2/0x120 [629724.514627] ? kthread_complete_and_exit+0x20/0x20 [629724.515526] ret_from_fork+0x22/0x30 [629724.516236] </TASK> [629724.516694] task:umount state:D stack: 0 pid:719055 ppid:695412 flags:0x00004000 [629724.518269] Call Trace: [629724.518746] <TASK> [629724.519160] __schedule+0x3cb/0xed0 [629724.519835] schedule+0x4e/0xb0 [629724.520467] schedule_timeout+0xed/0x130 [629724.521221] ? lock_release+0x220/0x4a0 [629724.521946] ? lock_acquired+0x19c/0x420 [629724.522662] ? trace_hardirqs_on+0x1b/0xe0 [629724.523411] __wait_for_common+0xaf/0x1f0 [629724.524189] ? usleep_range_state+0xb0/0xb0 [629724.524997] __flush_work+0x26d/0x530 [629724.525698] ? flush_workqueue_prep_pwqs+0x140/0x140 [629724.526580] ? lock_acquire+0x1a0/0x310 [629724.527324] __cancel_work_timer+0x137/0x1c0 [629724.528190] close_ctree+0xfd/0x531 [btrfs] [629724.529000] ? evict_inodes+0x166/0x1c0 [629724.529510] generic_shutdown_super+0x74/0x120 [629724.530103] kill_anon_super+0x14/0x30 [629724.530611] btrfs_kill_super+0x12/0x20 [btrfs] [629724.531246] deactivate_locked_super+0x31/0xa0 [629724.531817] cleanup_mnt+0x147/0x1c0 [629724.532319] task_work_run+0x5c/0xa0 [629724.532984] exit_to_user_mode_prepare+0x1a6/0x1b0 [629724.533598] syscall_exit_to_user_mode+0x16/0x40 [629724.534200] do_syscall_64+0x48/0x90 [629724.534667] entry_SYSCALL_64_after_hwframe+0x44/0xae [629724.535318] RIP: 0033:0x7fa2b90437a7 [629724.535804] RSP: 002b:00007ffe0b7e4458 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [629724.536912] RAX: 0000000000000000 RBX: 00007fa2b9182264 RCX: 00007fa2b90437a7 [629724.538156] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000555d6cf20dd0 [629724.539053] RBP: 0000555d6cf20ba0 R08: 0000000000000000 R09: 00007ffe0b7e3200 [629724.539956] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [629724.540883] R13: 0000555d6cf20dd0 R14: 0000555d6cf20cb0 R15: 0000000000000000 [629724.541796] </TASK> This happens because: 1) Before entering close_ctree() we have the async block group reclaim task running and relocating a data block group; 2) There's an async metadata (or data) space reclaim task running; 3) We enter close_ctree() and park the cleaner kthread; 4) The async space reclaim task is at flush_space() and runs all the existing delayed iputs; 5) Before the async space reclaim task calls btrfs_wait_on_delayed_iputs(), the block group reclaim task which is doing the data block group relocation, creates a delayed iput at replace_file_extents() (called when COWing leaves that have file extent items pointing to relocated data extents, during the merging phase of relocation roots); 6) The async reclaim space reclaim task blocks at btrfs_wait_on_delayed_iputs(), since we have a new delayed iput; 7) The task at close_ctree() then calls cancel_work_sync() to stop the async space reclaim task, but it blocks since that task is waiting for the delayed iput to be run; 8) The delayed iput is never run because the cleaner kthread is parked, and no one else runs delayed iputs, resulting in a hang. So fix this by stopping the async block group reclaim task before we park the cleaner kthread. Fixes: 18bb8bbf13c183 ("btrfs: zoned: automatically reclaim zones") CC: stable@vger.kernel.org # 5.15+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-18 09:41:48 +00:00
/*
* If we had UNFINISHED_DROPS we could still be processing them, so
* clear that bit and wake up relocation so it can stop.
* We must do this before stopping the block group reclaim task, because
* at btrfs_relocate_block_group() we wait for this bit, and after the
* wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
* have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
* return 1.
*/
btrfs_wake_unfinished_drop(fs_info);
btrfs: fix hang during unmount when block group reclaim task is running When we start an unmount, at close_ctree(), if we have the reclaim task running and in the middle of a data block group relocation, we can trigger a deadlock when stopping an async reclaim task, producing a trace like the following: [629724.498185] task:kworker/u16:7 state:D stack: 0 pid:681170 ppid: 2 flags:0x00004000 [629724.499760] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs] [629724.501267] Call Trace: [629724.501759] <TASK> [629724.502174] __schedule+0x3cb/0xed0 [629724.502842] schedule+0x4e/0xb0 [629724.503447] btrfs_wait_on_delayed_iputs+0x7c/0xc0 [btrfs] [629724.504534] ? prepare_to_wait_exclusive+0xc0/0xc0 [629724.505442] flush_space+0x423/0x630 [btrfs] [629724.506296] ? rcu_read_unlock_trace_special+0x20/0x50 [629724.507259] ? lock_release+0x220/0x4a0 [629724.507932] ? btrfs_get_alloc_profile+0xb3/0x290 [btrfs] [629724.508940] ? do_raw_spin_unlock+0x4b/0xa0 [629724.509688] btrfs_async_reclaim_metadata_space+0x139/0x320 [btrfs] [629724.510922] process_one_work+0x252/0x5a0 [629724.511694] ? process_one_work+0x5a0/0x5a0 [629724.512508] worker_thread+0x52/0x3b0 [629724.513220] ? process_one_work+0x5a0/0x5a0 [629724.514021] kthread+0xf2/0x120 [629724.514627] ? kthread_complete_and_exit+0x20/0x20 [629724.515526] ret_from_fork+0x22/0x30 [629724.516236] </TASK> [629724.516694] task:umount state:D stack: 0 pid:719055 ppid:695412 flags:0x00004000 [629724.518269] Call Trace: [629724.518746] <TASK> [629724.519160] __schedule+0x3cb/0xed0 [629724.519835] schedule+0x4e/0xb0 [629724.520467] schedule_timeout+0xed/0x130 [629724.521221] ? lock_release+0x220/0x4a0 [629724.521946] ? lock_acquired+0x19c/0x420 [629724.522662] ? trace_hardirqs_on+0x1b/0xe0 [629724.523411] __wait_for_common+0xaf/0x1f0 [629724.524189] ? usleep_range_state+0xb0/0xb0 [629724.524997] __flush_work+0x26d/0x530 [629724.525698] ? flush_workqueue_prep_pwqs+0x140/0x140 [629724.526580] ? lock_acquire+0x1a0/0x310 [629724.527324] __cancel_work_timer+0x137/0x1c0 [629724.528190] close_ctree+0xfd/0x531 [btrfs] [629724.529000] ? evict_inodes+0x166/0x1c0 [629724.529510] generic_shutdown_super+0x74/0x120 [629724.530103] kill_anon_super+0x14/0x30 [629724.530611] btrfs_kill_super+0x12/0x20 [btrfs] [629724.531246] deactivate_locked_super+0x31/0xa0 [629724.531817] cleanup_mnt+0x147/0x1c0 [629724.532319] task_work_run+0x5c/0xa0 [629724.532984] exit_to_user_mode_prepare+0x1a6/0x1b0 [629724.533598] syscall_exit_to_user_mode+0x16/0x40 [629724.534200] do_syscall_64+0x48/0x90 [629724.534667] entry_SYSCALL_64_after_hwframe+0x44/0xae [629724.535318] RIP: 0033:0x7fa2b90437a7 [629724.535804] RSP: 002b:00007ffe0b7e4458 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [629724.536912] RAX: 0000000000000000 RBX: 00007fa2b9182264 RCX: 00007fa2b90437a7 [629724.538156] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000555d6cf20dd0 [629724.539053] RBP: 0000555d6cf20ba0 R08: 0000000000000000 R09: 00007ffe0b7e3200 [629724.539956] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 [629724.540883] R13: 0000555d6cf20dd0 R14: 0000555d6cf20cb0 R15: 0000000000000000 [629724.541796] </TASK> This happens because: 1) Before entering close_ctree() we have the async block group reclaim task running and relocating a data block group; 2) There's an async metadata (or data) space reclaim task running; 3) We enter close_ctree() and park the cleaner kthread; 4) The async space reclaim task is at flush_space() and runs all the existing delayed iputs; 5) Before the async space reclaim task calls btrfs_wait_on_delayed_iputs(), the block group reclaim task which is doing the data block group relocation, creates a delayed iput at replace_file_extents() (called when COWing leaves that have file extent items pointing to relocated data extents, during the merging phase of relocation roots); 6) The async reclaim space reclaim task blocks at btrfs_wait_on_delayed_iputs(), since we have a new delayed iput; 7) The task at close_ctree() then calls cancel_work_sync() to stop the async space reclaim task, but it blocks since that task is waiting for the delayed iput to be run; 8) The delayed iput is never run because the cleaner kthread is parked, and no one else runs delayed iputs, resulting in a hang. So fix this by stopping the async block group reclaim task before we park the cleaner kthread. Fixes: 18bb8bbf13c183 ("btrfs: zoned: automatically reclaim zones") CC: stable@vger.kernel.org # 5.15+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-18 09:41:48 +00:00
/*
* We may have the reclaim task running and relocating a data block group,
* in which case it may create delayed iputs. So stop it before we park
* the cleaner kthread otherwise we can get new delayed iputs after
* parking the cleaner, and that can make the async reclaim task to hang
* if it's waiting for delayed iputs to complete, since the cleaner is
* parked and can not run delayed iputs - this will make us hang when
* trying to stop the async reclaim task.
*/
cancel_work_sync(&fs_info->reclaim_bgs_work);
Btrfs: fix missing delayed iputs on unmount There's a race between close_ctree() and cleaner_kthread(). close_ctree() sets btrfs_fs_closing(), and the cleaner stops when it sees it set, but this is racy; the cleaner might have already checked the bit and could be cleaning stuff. In particular, if it deletes unused block groups, it will create delayed iputs for the free space cache inodes. As of "btrfs: don't run delayed_iputs in commit", we're no longer running delayed iputs after a commit. Therefore, if the cleaner creates more delayed iputs after delayed iputs are run in btrfs_commit_super(), we will leak inodes on unmount and get a busy inode crash from the VFS. Fix it by parking the cleaner before we actually close anything. Then, any remaining delayed iputs will always be handled in btrfs_commit_super(). This also ensures that the commit in close_ctree() is really the last commit, so we can get rid of the commit in cleaner_kthread(). The fstest/generic/475 followed by 476 can trigger a crash that manifests as a slab corruption caused by accessing the freed kthread structure by a wake up function. Sample trace: [ 5657.077612] BUG: unable to handle kernel NULL pointer dereference at 00000000000000cc [ 5657.079432] PGD 1c57a067 P4D 1c57a067 PUD da10067 PMD 0 [ 5657.080661] Oops: 0000 [#1] PREEMPT SMP [ 5657.081592] CPU: 1 PID: 5157 Comm: fsstress Tainted: G W 4.19.0-rc8-default+ #323 [ 5657.083703] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014 [ 5657.086577] RIP: 0010:shrink_page_list+0x2f9/0xe90 [ 5657.091937] RSP: 0018:ffffb5c745c8f728 EFLAGS: 00010287 [ 5657.092953] RAX: 0000000000000074 RBX: ffffb5c745c8f830 RCX: 0000000000000000 [ 5657.094590] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff9a8747fdf3d0 [ 5657.095987] RBP: ffffb5c745c8f9e0 R08: 0000000000000000 R09: 0000000000000000 [ 5657.097159] R10: ffff9a8747fdf5e8 R11: 0000000000000000 R12: ffffb5c745c8f788 [ 5657.098513] R13: ffff9a877f6ff2c0 R14: ffff9a877f6ff2c8 R15: dead000000000200 [ 5657.099689] FS: 00007f948d853b80(0000) GS:ffff9a877d600000(0000) knlGS:0000000000000000 [ 5657.101032] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5657.101953] CR2: 00000000000000cc CR3: 00000000684bd000 CR4: 00000000000006e0 [ 5657.103159] Call Trace: [ 5657.103776] shrink_inactive_list+0x194/0x410 [ 5657.104671] shrink_node_memcg.constprop.84+0x39a/0x6a0 [ 5657.105750] shrink_node+0x62/0x1c0 [ 5657.106529] try_to_free_pages+0x1a4/0x500 [ 5657.107408] __alloc_pages_slowpath+0x2c9/0xb20 [ 5657.108418] __alloc_pages_nodemask+0x268/0x2b0 [ 5657.109348] kmalloc_large_node+0x37/0x90 [ 5657.110205] __kmalloc_node+0x236/0x310 [ 5657.111014] kvmalloc_node+0x3e/0x70 Fixes: 30928e9baac2 ("btrfs: don't run delayed_iputs in commit") Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add trace ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-31 17:06:08 +00:00
/*
* We don't want the cleaner to start new transactions, add more delayed
* iputs, etc. while we're closing. We can't use kthread_stop() yet
* because that frees the task_struct, and the transaction kthread might
* still try to wake up the cleaner.
*/
kthread_park(fs_info->cleaner_kthread);
/* wait for the qgroup rescan worker to stop */
btrfs_qgroup_wait_for_completion(fs_info, false);
/* wait for the uuid_scan task to finish */
down(&fs_info->uuid_tree_rescan_sem);
/* avoid complains from lockdep et al., set sem back to initial state */
up(&fs_info->uuid_tree_rescan_sem);
/* pause restriper - we want to resume on mount */
btrfs_pause_balance(fs_info);
btrfs_dev_replace_suspend_for_unmount(fs_info);
btrfs_scrub_cancel(fs_info);
/* wait for any defraggers to finish */
wait_event(fs_info->transaction_wait,
(atomic_read(&fs_info->defrag_running) == 0));
/* clear out the rbtree of defraggable inodes */
btrfs_cleanup_defrag_inodes(fs_info);
btrfs: fix hang during unmount when stopping a space reclaim worker Often when running generic/562 from fstests we can hang during unmount, resulting in a trace like this: Sep 07 11:52:00 debian9 unknown: run fstests generic/562 at 2022-09-07 11:52:00 Sep 07 11:55:32 debian9 kernel: INFO: task umount:49438 blocked for more than 120 seconds. Sep 07 11:55:32 debian9 kernel: Not tainted 6.0.0-rc2-btrfs-next-122 #1 Sep 07 11:55:32 debian9 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Sep 07 11:55:32 debian9 kernel: task:umount state:D stack: 0 pid:49438 ppid: 25683 flags:0x00004000 Sep 07 11:55:32 debian9 kernel: Call Trace: Sep 07 11:55:32 debian9 kernel: <TASK> Sep 07 11:55:32 debian9 kernel: __schedule+0x3c8/0xec0 Sep 07 11:55:32 debian9 kernel: ? rcu_read_lock_sched_held+0x12/0x70 Sep 07 11:55:32 debian9 kernel: schedule+0x5d/0xf0 Sep 07 11:55:32 debian9 kernel: schedule_timeout+0xf1/0x130 Sep 07 11:55:32 debian9 kernel: ? lock_release+0x224/0x4a0 Sep 07 11:55:32 debian9 kernel: ? lock_acquired+0x1a0/0x420 Sep 07 11:55:32 debian9 kernel: ? trace_hardirqs_on+0x2c/0xd0 Sep 07 11:55:32 debian9 kernel: __wait_for_common+0xac/0x200 Sep 07 11:55:32 debian9 kernel: ? usleep_range_state+0xb0/0xb0 Sep 07 11:55:32 debian9 kernel: __flush_work+0x26d/0x530 Sep 07 11:55:32 debian9 kernel: ? flush_workqueue_prep_pwqs+0x140/0x140 Sep 07 11:55:32 debian9 kernel: ? trace_clock_local+0xc/0x30 Sep 07 11:55:32 debian9 kernel: __cancel_work_timer+0x11f/0x1b0 Sep 07 11:55:32 debian9 kernel: ? close_ctree+0x12b/0x5b3 [btrfs] Sep 07 11:55:32 debian9 kernel: ? __trace_bputs+0x10b/0x170 Sep 07 11:55:32 debian9 kernel: close_ctree+0x152/0x5b3 [btrfs] Sep 07 11:55:32 debian9 kernel: ? evict_inodes+0x166/0x1c0 Sep 07 11:55:32 debian9 kernel: generic_shutdown_super+0x71/0x120 Sep 07 11:55:32 debian9 kernel: kill_anon_super+0x14/0x30 Sep 07 11:55:32 debian9 kernel: btrfs_kill_super+0x12/0x20 [btrfs] Sep 07 11:55:32 debian9 kernel: deactivate_locked_super+0x2e/0xa0 Sep 07 11:55:32 debian9 kernel: cleanup_mnt+0x100/0x160 Sep 07 11:55:32 debian9 kernel: task_work_run+0x59/0xa0 Sep 07 11:55:32 debian9 kernel: exit_to_user_mode_prepare+0x1a6/0x1b0 Sep 07 11:55:32 debian9 kernel: syscall_exit_to_user_mode+0x16/0x40 Sep 07 11:55:32 debian9 kernel: do_syscall_64+0x48/0x90 Sep 07 11:55:32 debian9 kernel: entry_SYSCALL_64_after_hwframe+0x63/0xcd Sep 07 11:55:32 debian9 kernel: RIP: 0033:0x7fcde59a57a7 Sep 07 11:55:32 debian9 kernel: RSP: 002b:00007ffe914217c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 Sep 07 11:55:32 debian9 kernel: RAX: 0000000000000000 RBX: 00007fcde5ae8264 RCX: 00007fcde59a57a7 Sep 07 11:55:32 debian9 kernel: RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000055b57556cdd0 Sep 07 11:55:32 debian9 kernel: RBP: 000055b57556cba0 R08: 0000000000000000 R09: 00007ffe91420570 Sep 07 11:55:32 debian9 kernel: R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 Sep 07 11:55:32 debian9 kernel: R13: 000055b57556cdd0 R14: 000055b57556ccb8 R15: 0000000000000000 Sep 07 11:55:32 debian9 kernel: </TASK> What happens is the following: 1) The cleaner kthread tries to start a transaction to delete an unused block group, but the metadata reservation can not be satisfied right away, so a reservation ticket is created and it starts the async metadata reclaim task (fs_info->async_reclaim_work); 2) Writeback for all the filler inodes with an i_size of 2K starts (generic/562 creates a lot of 2K files with the goal of filling metadata space). We try to create an inline extent for them, but we fail when trying to insert the inline extent with -ENOSPC (at cow_file_range_inline()) - since this is not critical, we fallback to non-inline mode (back to cow_file_range()), reserve extents, create extent maps and create the ordered extents; 3) An unmount starts, enters close_ctree(); 4) The async reclaim task is flushing stuff, entering the flush states one by one, until it reaches RUN_DELAYED_IPUTS. There it runs all current delayed iputs. After running the delayed iputs and before calling btrfs_wait_on_delayed_iputs(), one or more ordered extents complete, and btrfs_add_delayed_iput() is called for each one through btrfs_finish_ordered_io() -> btrfs_put_ordered_extent(). This results in bumping fs_info->nr_delayed_iputs from 0 to some positive value. So the async reclaim task blocks at btrfs_wait_on_delayed_iputs() waiting for fs_info->nr_delayed_iputs to become 0; 5) The current transaction is committed by the transaction kthread, we then start unpinning extents and end up calling btrfs_try_granting_tickets() through unpin_extent_range(), since we released some space. This results in satisfying the ticket created by the cleaner kthread at step 1, waking up the cleaner kthread; 6) At close_ctree() we ask the cleaner kthread to park; 7) The cleaner kthread starts the transaction, deletes the unused block group, and then calls kthread_should_park(), which returns true, so it parks. And at this point we have the delayed iputs added by the completion of the ordered extents still pending; 8) Then later at close_ctree(), when we call: cancel_work_sync(&fs_info->async_reclaim_work); We hang forever, since the cleaner was parked and no one else can run delayed iputs after that, while the reclaim task is waiting for the remaining delayed iputs to be completed. Fix this by waiting for all ordered extents to complete and running the delayed iputs before attempting to stop the async reclaim tasks. Note that we can not wait for ordered extents with btrfs_wait_ordered_roots() (or other similar functions) because that waits for the BTRFS_ORDERED_COMPLETE flag to be set on an ordered extent, but the delayed iput is added after that, when doing the final btrfs_put_ordered_extent(). So instead wait for the work queues used for executing ordered extent completion to be empty, which works because we do the final put on an ordered extent at btrfs_finish_ordered_io() (while we are in the unmount context). Fixes: d6fd0ae25c6495 ("Btrfs: fix missing delayed iputs on unmount") CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-09-08 11:31:51 +00:00
/*
* After we parked the cleaner kthread, ordered extents may have
* completed and created new delayed iputs. If one of the async reclaim
* tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
* can hang forever trying to stop it, because if a delayed iput is
* added after it ran btrfs_run_delayed_iputs() and before it called
* btrfs_wait_on_delayed_iputs(), it will hang forever since there is
* no one else to run iputs.
*
* So wait for all ongoing ordered extents to complete and then run
* delayed iputs. This works because once we reach this point no one
* can either create new ordered extents nor create delayed iputs
* through some other means.
*
* Also note that btrfs_wait_ordered_roots() is not safe here, because
* it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
* but the delayed iput for the respective inode is made only when doing
* the final btrfs_put_ordered_extent() (which must happen at
* btrfs_finish_ordered_io() when we are unmounting).
*/
btrfs_flush_workqueue(fs_info->endio_write_workers);
/* Ordered extents for free space inodes. */
btrfs_flush_workqueue(fs_info->endio_freespace_worker);
btrfs_run_delayed_iputs(fs_info);
Btrfs: reclaim the reserved metadata space at background Before applying this patch, the task had to reclaim the metadata space by itself if the metadata space was not enough. And When the task started the space reclamation, all the other tasks which wanted to reserve the metadata space were blocked. At some cases, they would be blocked for a long time, it made the performance fluctuate wildly. So we introduce the background metadata space reclamation, when the space is about to be exhausted, we insert a reclaim work into the workqueue, the worker of the workqueue helps us to reclaim the reserved space at the background. By this way, the tasks needn't reclaim the space by themselves at most cases, and even if the tasks have to reclaim the space or are blocked for the space reclamation, they will get enough space more quickly. Here is my test result(Tested by compilebench): Memory: 2GB CPU: 2Cores * 1CPU Partition: 40GB(SSD) Test command: # compilebench -D <mnt> -m Without this patch: intial create total runs 30 avg 54.36 MB/s (user 0.52s sys 2.44s) compile total runs 30 avg 123.72 MB/s (user 0.13s sys 1.17s) read compiled tree total runs 3 avg 81.15 MB/s (user 0.74s sys 4.89s) delete compiled tree total runs 30 avg 5.32 seconds (user 0.35s sys 4.37s) With this patch: intial create total runs 30 avg 59.80 MB/s (user 0.52s sys 2.53s) compile total runs 30 avg 151.44 MB/s (user 0.13s sys 1.11s) read compiled tree total runs 3 avg 83.25 MB/s (user 0.76s sys 4.91s) delete compiled tree total runs 30 avg 5.29 seconds (user 0.34s sys 4.34s) Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-14 00:29:04 +00:00
cancel_work_sync(&fs_info->async_reclaim_work);
cancel_work_sync(&fs_info->async_data_reclaim_work);
btrfs: improve preemptive background space flushing Currently if we ever have to flush space because we do not have enough we allocate a ticket and attach it to the space_info, and then systematically flush things in the filesystem that hold space reservations until our space is reclaimed. However this has a latency cost, we must go to sleep and wait for the flushing to make progress before we are woken up and allowed to continue doing our work. In order to address that we used to kick off the async worker to flush space preemptively, so that we could be reclaiming space hopefully before any tasks needed to stop and wait for space to reclaim. When I introduced the ticketed ENOSPC stuff this broke slightly in the fact that we were using tickets to indicate if we were done flushing. No tickets, no more flushing. However this meant that we essentially never preemptively flushed. This caused a write performance regression that Nikolay noticed in an unrelated patch that removed the committing of the transaction during btrfs_end_transaction. The behavior that happened pre that patch was btrfs_end_transaction() would see that we were low on space, and it would commit the transaction. This was bad because in this particular case you could end up with thousands and thousands of transactions being committed during the 5 minute reproducer. With the patch to remove this behavior we got much more sane transaction commits, but we ended up slower because we would write for a while, flush, write for a while, flush again. To address this we need to reinstate a preemptive flushing mechanism. However it is distinctly different from our ticketing flushing in that it doesn't have tickets to base it's decisions on. Instead of bolting this logic into our existing flushing work, add another worker to handle this preemptive flushing. Here we will attempt to be slightly intelligent about the things that we flushing, attempting to balance between whichever pool is taking up the most space. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-10-09 13:28:22 +00:00
cancel_work_sync(&fs_info->preempt_reclaim_work);
Btrfs: reclaim the reserved metadata space at background Before applying this patch, the task had to reclaim the metadata space by itself if the metadata space was not enough. And When the task started the space reclamation, all the other tasks which wanted to reserve the metadata space were blocked. At some cases, they would be blocked for a long time, it made the performance fluctuate wildly. So we introduce the background metadata space reclamation, when the space is about to be exhausted, we insert a reclaim work into the workqueue, the worker of the workqueue helps us to reclaim the reserved space at the background. By this way, the tasks needn't reclaim the space by themselves at most cases, and even if the tasks have to reclaim the space or are blocked for the space reclamation, they will get enough space more quickly. Here is my test result(Tested by compilebench): Memory: 2GB CPU: 2Cores * 1CPU Partition: 40GB(SSD) Test command: # compilebench -D <mnt> -m Without this patch: intial create total runs 30 avg 54.36 MB/s (user 0.52s sys 2.44s) compile total runs 30 avg 123.72 MB/s (user 0.13s sys 1.17s) read compiled tree total runs 3 avg 81.15 MB/s (user 0.74s sys 4.89s) delete compiled tree total runs 30 avg 5.32 seconds (user 0.35s sys 4.37s) With this patch: intial create total runs 30 avg 59.80 MB/s (user 0.52s sys 2.53s) compile total runs 30 avg 151.44 MB/s (user 0.13s sys 1.11s) read compiled tree total runs 3 avg 83.25 MB/s (user 0.76s sys 4.91s) delete compiled tree total runs 30 avg 5.29 seconds (user 0.34s sys 4.34s) Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Chris Mason <clm@fb.com>
2014-05-14 00:29:04 +00:00
btrfs: add the beginning of async discard, discard workqueue When discard is enabled, everytime a pinned extent is released back to the block_group's free space cache, a discard is issued for the extent. This is an overeager approach when it comes to discarding and helping the SSD maintain enough free space to prevent severe garbage collection situations. This adds the beginning of async discard. Instead of issuing a discard prior to returning it to the free space, it is just marked as untrimmed. The block_group is then added to a LRU which then feeds into a workqueue to issue discards at a much slower rate. Full discarding of unused block groups is still done and will be addressed in a future patch of the series. For now, we don't persist the discard state of extents and bitmaps. Therefore, our failure recovery mode will be to consider extents untrimmed. This lets us handle failure and unmounting as one in the same. On a number of Facebook webservers, I collected data every minute accounting the time we spent in btrfs_finish_extent_commit() (col. 1) and in btrfs_commit_transaction() (col. 2). btrfs_finish_extent_commit() is where we discard extents synchronously before returning them to the free space cache. discard=sync: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) --------------------------------------------------------------- Drive A | 434 | 1170 Drive B | 880 | 2330 Drive C | 2943 | 3920 Drive D | 4763 | 5701 discard=async: p99 total per minute p99 total per minute Drive | extent_commit() (ms) | commit_trans() (ms) -------------------------------------------------------------- Drive A | 134 | 956 Drive B | 64 | 1972 Drive C | 59 | 1032 Drive D | 62 | 1200 While it's not great that the stats are cumulative over 1m, all of these servers are running the same workload and and the delta between the two are substantial. We are spending significantly less time in btrfs_finish_extent_commit() which is responsible for discarding. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-12-14 00:22:14 +00:00
/* Cancel or finish ongoing discard work */
btrfs_discard_cleanup(fs_info);
if (!sb_rdonly(fs_info->sb)) {
/*
Btrfs: fix missing delayed iputs on unmount There's a race between close_ctree() and cleaner_kthread(). close_ctree() sets btrfs_fs_closing(), and the cleaner stops when it sees it set, but this is racy; the cleaner might have already checked the bit and could be cleaning stuff. In particular, if it deletes unused block groups, it will create delayed iputs for the free space cache inodes. As of "btrfs: don't run delayed_iputs in commit", we're no longer running delayed iputs after a commit. Therefore, if the cleaner creates more delayed iputs after delayed iputs are run in btrfs_commit_super(), we will leak inodes on unmount and get a busy inode crash from the VFS. Fix it by parking the cleaner before we actually close anything. Then, any remaining delayed iputs will always be handled in btrfs_commit_super(). This also ensures that the commit in close_ctree() is really the last commit, so we can get rid of the commit in cleaner_kthread(). The fstest/generic/475 followed by 476 can trigger a crash that manifests as a slab corruption caused by accessing the freed kthread structure by a wake up function. Sample trace: [ 5657.077612] BUG: unable to handle kernel NULL pointer dereference at 00000000000000cc [ 5657.079432] PGD 1c57a067 P4D 1c57a067 PUD da10067 PMD 0 [ 5657.080661] Oops: 0000 [#1] PREEMPT SMP [ 5657.081592] CPU: 1 PID: 5157 Comm: fsstress Tainted: G W 4.19.0-rc8-default+ #323 [ 5657.083703] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014 [ 5657.086577] RIP: 0010:shrink_page_list+0x2f9/0xe90 [ 5657.091937] RSP: 0018:ffffb5c745c8f728 EFLAGS: 00010287 [ 5657.092953] RAX: 0000000000000074 RBX: ffffb5c745c8f830 RCX: 0000000000000000 [ 5657.094590] RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff9a8747fdf3d0 [ 5657.095987] RBP: ffffb5c745c8f9e0 R08: 0000000000000000 R09: 0000000000000000 [ 5657.097159] R10: ffff9a8747fdf5e8 R11: 0000000000000000 R12: ffffb5c745c8f788 [ 5657.098513] R13: ffff9a877f6ff2c0 R14: ffff9a877f6ff2c8 R15: dead000000000200 [ 5657.099689] FS: 00007f948d853b80(0000) GS:ffff9a877d600000(0000) knlGS:0000000000000000 [ 5657.101032] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 5657.101953] CR2: 00000000000000cc CR3: 00000000684bd000 CR4: 00000000000006e0 [ 5657.103159] Call Trace: [ 5657.103776] shrink_inactive_list+0x194/0x410 [ 5657.104671] shrink_node_memcg.constprop.84+0x39a/0x6a0 [ 5657.105750] shrink_node+0x62/0x1c0 [ 5657.106529] try_to_free_pages+0x1a4/0x500 [ 5657.107408] __alloc_pages_slowpath+0x2c9/0xb20 [ 5657.108418] __alloc_pages_nodemask+0x268/0x2b0 [ 5657.109348] kmalloc_large_node+0x37/0x90 [ 5657.110205] __kmalloc_node+0x236/0x310 [ 5657.111014] kvmalloc_node+0x3e/0x70 Fixes: 30928e9baac2 ("btrfs: don't run delayed_iputs in commit") Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add trace ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-31 17:06:08 +00:00
* The cleaner kthread is stopped, so do one final pass over
* unused block groups.
*/
btrfs_delete_unused_bgs(fs_info);
Btrfs: fix crash during unmount due to race with delayed inode workers During unmount we can have a job from the delayed inode items work queue still running, that can lead to at least two bad things: 1) A crash, because the worker can try to create a transaction just after the fs roots were freed; 2) A transaction leak, because the worker can create a transaction before the fs roots are freed and just after we committed the last transaction and after we stopped the transaction kthread. A stack trace example of the crash: [79011.691214] kernel BUG at lib/radix-tree.c:982! [79011.692056] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI [79011.693180] CPU: 3 PID: 1394 Comm: kworker/u8:2 Tainted: G W 5.6.0-rc2-btrfs-next-54 #2 (...) [79011.696789] Workqueue: btrfs-delayed-meta btrfs_work_helper [btrfs] [79011.697904] RIP: 0010:radix_tree_tag_set+0xe7/0x170 (...) [79011.702014] RSP: 0018:ffffb3c84a317ca0 EFLAGS: 00010293 [79011.702949] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000 [79011.704202] RDX: ffffb3c84a317cb0 RSI: ffffb3c84a317ca8 RDI: ffff8db3931340a0 [79011.705463] RBP: 0000000000000005 R08: 0000000000000005 R09: ffffffff974629d0 [79011.706756] R10: ffffb3c84a317bc0 R11: 0000000000000001 R12: ffff8db393134000 [79011.708010] R13: ffff8db3931340a0 R14: ffff8db393134068 R15: 0000000000000001 [79011.709270] FS: 0000000000000000(0000) GS:ffff8db3b6a00000(0000) knlGS:0000000000000000 [79011.710699] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [79011.711710] CR2: 00007f22c2a0a000 CR3: 0000000232ad4005 CR4: 00000000003606e0 [79011.712958] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [79011.714205] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [79011.715448] Call Trace: [79011.715925] record_root_in_trans+0x72/0xf0 [btrfs] [79011.716819] btrfs_record_root_in_trans+0x4b/0x70 [btrfs] [79011.717925] start_transaction+0xdd/0x5c0 [btrfs] [79011.718829] btrfs_async_run_delayed_root+0x17e/0x2b0 [btrfs] [79011.719915] btrfs_work_helper+0xaa/0x720 [btrfs] [79011.720773] process_one_work+0x26d/0x6a0 [79011.721497] worker_thread+0x4f/0x3e0 [79011.722153] ? process_one_work+0x6a0/0x6a0 [79011.722901] kthread+0x103/0x140 [79011.723481] ? kthread_create_worker_on_cpu+0x70/0x70 [79011.724379] ret_from_fork+0x3a/0x50 (...) The following diagram shows a sequence of steps that lead to the crash during ummount of the filesystem: CPU 1 CPU 2 CPU 3 btrfs_punch_hole() btrfs_btree_balance_dirty() btrfs_balance_delayed_items() --> sees fs_info->delayed_root->items with value 200, which is greater than BTRFS_DELAYED_BACKGROUND (128) and smaller than BTRFS_DELAYED_WRITEBACK (512) btrfs_wq_run_delayed_node() --> queues a job for fs_info->delayed_workers to run btrfs_async_run_delayed_root() btrfs_async_run_delayed_root() --> job queued by CPU 1 --> starts picking and running delayed nodes from the prepare_list list close_ctree() btrfs_delete_unused_bgs() btrfs_commit_super() btrfs_join_transaction() --> gets transaction N btrfs_commit_transaction(N) --> set transaction state to TRANTS_STATE_COMMIT_START btrfs_first_prepared_delayed_node() --> picks delayed node X through the prepared_list list btrfs_run_delayed_items() btrfs_first_delayed_node() --> also picks delayed node X but through the node_list list __btrfs_commit_inode_delayed_items() --> runs all delayed items from this node and drops the node's item count to 0 through call to btrfs_release_delayed_inode() --> finishes running any remaining delayed nodes --> finishes transaction commit --> stops cleaner and transaction threads btrfs_free_fs_roots() --> frees all roots and removes them from the radix tree fs_info->fs_roots_radix btrfs_join_transaction() start_transaction() btrfs_record_root_in_trans() record_root_in_trans() radix_tree_tag_set() --> crashes because the root is not in the radix tree anymore If the worker is able to call btrfs_join_transaction() before the unmount task frees the fs roots, we end up leaking a transaction and all its resources, since after the call to btrfs_commit_super() and stopping the transaction kthread, we don't expect to have any transaction open anymore. When this situation happens the worker has a delayed node that has no more items to run, since the task calling btrfs_run_delayed_items(), which is doing a transaction commit, picks the same node and runs all its items first. We can not wait for the worker to complete when running delayed items through btrfs_run_delayed_items(), because we call that function in several phases of a transaction commit, and that could cause a deadlock because the worker calls btrfs_join_transaction() and the task doing the transaction commit may have already set the transaction state to TRANS_STATE_COMMIT_DOING. Also it's not possible to get into a situation where only some of the items of a delayed node are added to the fs/subvolume tree in the current transaction and the remaining ones in the next transaction, because when running the items of a delayed inode we lock its mutex, effectively waiting for the worker if the worker is running the items of the delayed node already. Since this can only cause issues when unmounting a filesystem, fix it in a simple way by waiting for any jobs on the delayed workers queue before calling btrfs_commit_supper() at close_ctree(). This works because at this point no one can call btrfs_btree_balance_dirty() or btrfs_balance_delayed_items(), and if we end up waiting for any worker to complete, btrfs_commit_super() will commit the transaction created by the worker. CC: stable@vger.kernel.org # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-02-28 13:04:36 +00:00
/*
* There might be existing delayed inode workers still running
* and holding an empty delayed inode item. We must wait for
* them to complete first because they can create a transaction.
* This happens when someone calls btrfs_balance_delayed_items()
* and then a transaction commit runs the same delayed nodes
* before any delayed worker has done something with the nodes.
* We must wait for any worker here and not at transaction
* commit time since that could cause a deadlock.
* This is a very rare case.
*/
btrfs_flush_workqueue(fs_info->delayed_workers);
ret = btrfs_commit_super(fs_info);
if (ret)
btrfs_err(fs_info, "commit super ret %d", ret);
}
if (BTRFS_FS_ERROR(fs_info))
btrfs_error_commit_super(fs_info);
kthread_stop(fs_info->transaction_kthread);
kthread_stop(fs_info->cleaner_kthread);
ASSERT(list_empty(&fs_info->delayed_iputs));
set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
if (btrfs_check_quota_leak(fs_info)) {
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
btrfs_err(fs_info, "qgroup reserved space leaked");
}
btrfs_free_qgroup_config(fs_info);
btrfs: Fix delalloc inodes invalidation during transaction abort When a transaction is aborted btrfs_cleanup_transaction is called to cleanup all the various in-flight bits and pieces which migth be active. One of those is delalloc inodes - inodes which have dirty pages which haven't been persisted yet. Currently the process of freeing such delalloc inodes in exceptional circumstances such as transaction abort boiled down to calling btrfs_invalidate_inodes whose sole job is to invalidate the dentries for all inodes related to a root. This is in fact wrong and insufficient since such delalloc inodes will likely have pending pages or ordered-extents and will be linked to the sb->s_inode_list. This means that unmounting a btrfs instance with an aborted transaction could potentially lead inodes/their pages visible to the system long after their superblock has been freed. This in turn leads to a "use-after-free" situation once page shrink is triggered. This situation could be simulated by running generic/019 which would cause such inodes to be left hanging, followed by generic/176 which causes memory pressure and page eviction which lead to touching the freed super block instance. This situation is additionally detected by the unmount code of VFS with the following message: "VFS: Busy inodes after unmount of Self-destruct in 5 seconds. Have a nice day..." Additionally btrfs hits WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); in free_fs_root for the same reason. This patch aims to rectify the sitaution by doing the following: 1. Change btrfs_destroy_delalloc_inodes so that it calls invalidate_inode_pages2 for every inode on the delalloc list, this ensures that all the pages of the inode are released. This function boils down to calling btrfs_releasepage. During test I observed cases where inodes on the delalloc list were having an i_count of 0, so this necessitates using igrab to be sure we are working on a non-freed inode. 2. Since calling btrfs_releasepage might queue delayed iputs move the call out to btrfs_cleanup_transaction in btrfs_error_commit_super before calling run_delayed_iputs for the last time. This is necessary to ensure that delayed iputs are run. Note: this patch is tagged for 4.14 stable but the fix applies to older versions too but needs to be backported manually due to conflicts. CC: stable@vger.kernel.org # 4.14.x: 2b8773313494: btrfs: Split btrfs_del_delalloc_inode into 2 functions CC: stable@vger.kernel.org # 4.14.x Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment to igrab ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-27 09:21:53 +00:00
ASSERT(list_empty(&fs_info->delalloc_roots));
if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
btrfs_info(fs_info, "at unmount delalloc count %lld",
percpu_counter_sum(&fs_info->delalloc_bytes));
}
if (percpu_counter_sum(&fs_info->ordered_bytes))
btrfs_info(fs_info, "at unmount dio bytes count %lld",
percpu_counter_sum(&fs_info->ordered_bytes));
btrfs_sysfs_remove_mounted(fs_info);
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
btrfs_put_block_group_cache(fs_info);
/*
* we must make sure there is not any read request to
* submit after we stopping all workers.
*/
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
btrfs_stop_all_workers(fs_info);
/* We shouldn't have any transaction open at this point */
warn_about_uncommitted_trans(fs_info);
clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
free_root_pointers(fs_info, true);
btrfs_free_fs_roots(fs_info);
/*
* We must free the block groups after dropping the fs_roots as we could
* have had an IO error and have left over tree log blocks that aren't
* cleaned up until the fs roots are freed. This makes the block group
* accounting appear to be wrong because there's pending reserved bytes,
* so make sure we do the block group cleanup afterwards.
*/
btrfs_free_block_groups(fs_info);
iput(fs_info->btree_inode);
btrfs: use a dedicated data structure for chunk maps Currently we abuse the extent_map structure for two purposes: 1) To actually represent extents for inodes; 2) To represent chunk mappings. This is odd and has several disadvantages: 1) To create a chunk map, we need to do two memory allocations: one for an extent_map structure and another one for a map_lookup structure, so more potential for an allocation failure and more complicated code to manage and link two structures; 2) For a chunk map we actually only use 3 fields (24 bytes) of the respective extent map structure: the 'start' field to have the logical start address of the chunk, the 'len' field to have the chunk's size, and the 'orig_block_len' field to contain the chunk's stripe size. Besides wasting a memory, it's also odd and not intuitive at all to have the stripe size in a field named 'orig_block_len'. We are also using 'block_len' of the extent_map structure to contain the chunk size, so we have 2 fields for the same value, 'len' and 'block_len', which is pointless; 3) When an extent map is associated to a chunk mapping, we set the bit EXTENT_FLAG_FS_MAPPING on its flags and then make its member named 'map_lookup' point to the associated map_lookup structure. This means that for an extent map associated to an inode extent, we are not using this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform); 4) Extent maps associated to a chunk mapping are never merged or split so it's pointless to use the existing extent map infrastructure. So add a dedicated data structure named 'btrfs_chunk_map' to represent chunk mappings, this is basically the existing map_lookup structure with some extra fields: 1) 'start' to contain the chunk logical address; 2) 'chunk_len' to contain the chunk's length; 3) 'stripe_size' for the stripe size; 4) 'rb_node' for insertion into a rb tree; 5) 'refs' for reference counting. This way we do a single memory allocation for chunk mappings and we don't waste memory for them with unused/unnecessary fields from an extent_map. We also save 8 bytes from the extent_map structure by removing the 'map_lookup' pointer, so the size of struct extent_map is reduced from 144 bytes down to 136 bytes, and we can now have 30 extents map per 4K page instead of 28. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-11-21 13:38:38 +00:00
btrfs_mapping_tree_free(fs_info);
btrfs_close_devices(fs_info->fs_devices);
}
void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
struct extent_buffer *buf)
{
struct btrfs_fs_info *fs_info = buf->fs_info;
u64 transid = btrfs_header_generation(buf);
Btrfs: Change btree locking to use explicit blocking points Most of the btrfs metadata operations can be protected by a spinlock, but some operations still need to schedule. So far, btrfs has been using a mutex along with a trylock loop, most of the time it is able to avoid going for the full mutex, so the trylock loop is a big performance gain. This commit is step one for getting rid of the blocking locks entirely. btrfs_tree_lock takes a spinlock, and the code explicitly switches to a blocking lock when it starts an operation that can schedule. We'll be able get rid of the blocking locks in smaller pieces over time. Tracing allows us to find the most common cause of blocking, so we can start with the hot spots first. The basic idea is: btrfs_tree_lock() returns with the spin lock held btrfs_set_lock_blocking() sets the EXTENT_BUFFER_BLOCKING bit in the extent buffer flags, and then drops the spin lock. The buffer is still considered locked by all of the btrfs code. If btrfs_tree_lock gets the spinlock but finds the blocking bit set, it drops the spin lock and waits on a wait queue for the blocking bit to go away. Much of the code that needs to set the blocking bit finishes without actually blocking a good percentage of the time. So, an adaptive spin is still used against the blocking bit to avoid very high context switch rates. btrfs_clear_lock_blocking() clears the blocking bit and returns with the spinlock held again. btrfs_tree_unlock() can be called on either blocking or spinning locks, it does the right thing based on the blocking bit. ctree.c has a helper function to set/clear all the locked buffers in a path as blocking. Signed-off-by: Chris Mason <chris.mason@oracle.com>
2009-02-04 14:25:08 +00:00
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/*
* This is a fast path so only do this check if we have sanity tests
* enabled. Normal people shouldn't be using unmapped buffers as dirty
* outside of the sanity tests.
*/
if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
return;
#endif
/* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
ASSERT(trans->transid == fs_info->generation);
btrfs_assert_tree_write_locked(buf);
if (unlikely(transid != fs_info->generation)) {
btrfs_abort_transaction(trans, -EUCLEAN);
btrfs_crit(fs_info,
"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
buf->start, transid, fs_info->generation);
}
set_extent_buffer_dirty(buf);
}
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
int flush_delayed)
btrfs: implement delayed inode items operation Changelog V5 -> V6: - Fix oom when the memory load is high, by storing the delayed nodes into the root's radix tree, and letting btrfs inodes go. Changelog V4 -> V5: - Fix the race on adding the delayed node to the inode, which is spotted by Chris Mason. - Merge Chris Mason's incremental patch into this patch. - Fix deadlock between readdir() and memory fault, which is reported by Itaru Kitayama. Changelog V3 -> V4: - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache inode in time. Changelog V2 -> V3: - Fix the race between the delayed worker and the task which does delayed items balance, which is reported by Tsutomu Itoh. - Modify the patch address David Sterba's comment. - Fix the bug of the cpu recursion spinlock, reported by Chris Mason Changelog V1 -> V2: - break up the global rb-tree, use a list to manage the delayed nodes, which is created for every directory and file, and used to manage the delayed directory name index items and the delayed inode item. - introduce a worker to deal with the delayed nodes. Compare with Ext3/4, the performance of file creation and deletion on btrfs is very poor. the reason is that btrfs must do a lot of b+ tree insertions, such as inode item, directory name item, directory name index and so on. If we can do some delayed b+ tree insertion or deletion, we can improve the performance, so we made this patch which implemented delayed directory name index insertion/deletion and delayed inode update. Implementation: - introduce a delayed root object into the filesystem, that use two lists to manage the delayed nodes which are created for every file/directory. One is used to manage all the delayed nodes that have delayed items. And the other is used to manage the delayed nodes which is waiting to be dealt with by the work thread. - Every delayed node has two rb-tree, one is used to manage the directory name index which is going to be inserted into b+ tree, and the other is used to manage the directory name index which is going to be deleted from b+ tree. - introduce a worker to deal with the delayed operation. This worker is used to deal with the works of the delayed directory name index items insertion and deletion and the delayed inode update. When the delayed items is beyond the lower limit, we create works for some delayed nodes and insert them into the work queue of the worker, and then go back. When the delayed items is beyond the upper bound, we create works for all the delayed nodes that haven't been dealt with, and insert them into the work queue of the worker, and then wait for that the untreated items is below some threshold value. - When we want to insert a directory name index into b+ tree, we just add the information into the delayed inserting rb-tree. And then we check the number of the delayed items and do delayed items balance. (The balance policy is above.) - When we want to delete a directory name index from the b+ tree, we search it in the inserting rb-tree at first. If we look it up, just drop it. If not, add the key of it into the delayed deleting rb-tree. Similar to the delayed inserting rb-tree, we also check the number of the delayed items and do delayed items balance. (The same to inserting manipulation) - When we want to update the metadata of some inode, we cached the data of the inode into the delayed node. the worker will flush it into the b+ tree after dealing with the delayed insertion and deletion. - We will move the delayed node to the tail of the list after we access the delayed node, By this way, we can cache more delayed items and merge more inode updates. - If we want to commit transaction, we will deal with all the delayed node. - the delayed node will be freed when we free the btrfs inode. - Before we log the inode items, we commit all the directory name index items and the delayed inode update. I did a quick test by the benchmark tool[1] and found we can improve the performance of file creation by ~15%, and file deletion by ~20%. Before applying this patch: Create files: Total files: 50000 Total time: 1.096108 Average time: 0.000022 Delete files: Total files: 50000 Total time: 1.510403 Average time: 0.000030 After applying this patch: Create files: Total files: 50000 Total time: 0.932899 Average time: 0.000019 Delete files: Total files: 50000 Total time: 1.215732 Average time: 0.000024 [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3 Many thanks for Kitayama-san's help! Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: David Sterba <dave@jikos.cz> Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 10:12:22 +00:00
{
/*
* looks as though older kernels can get into trouble with
* this code, they end up stuck in balance_dirty_pages forever
*/
int ret;
btrfs: implement delayed inode items operation Changelog V5 -> V6: - Fix oom when the memory load is high, by storing the delayed nodes into the root's radix tree, and letting btrfs inodes go. Changelog V4 -> V5: - Fix the race on adding the delayed node to the inode, which is spotted by Chris Mason. - Merge Chris Mason's incremental patch into this patch. - Fix deadlock between readdir() and memory fault, which is reported by Itaru Kitayama. Changelog V3 -> V4: - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache inode in time. Changelog V2 -> V3: - Fix the race between the delayed worker and the task which does delayed items balance, which is reported by Tsutomu Itoh. - Modify the patch address David Sterba's comment. - Fix the bug of the cpu recursion spinlock, reported by Chris Mason Changelog V1 -> V2: - break up the global rb-tree, use a list to manage the delayed nodes, which is created for every directory and file, and used to manage the delayed directory name index items and the delayed inode item. - introduce a worker to deal with the delayed nodes. Compare with Ext3/4, the performance of file creation and deletion on btrfs is very poor. the reason is that btrfs must do a lot of b+ tree insertions, such as inode item, directory name item, directory name index and so on. If we can do some delayed b+ tree insertion or deletion, we can improve the performance, so we made this patch which implemented delayed directory name index insertion/deletion and delayed inode update. Implementation: - introduce a delayed root object into the filesystem, that use two lists to manage the delayed nodes which are created for every file/directory. One is used to manage all the delayed nodes that have delayed items. And the other is used to manage the delayed nodes which is waiting to be dealt with by the work thread. - Every delayed node has two rb-tree, one is used to manage the directory name index which is going to be inserted into b+ tree, and the other is used to manage the directory name index which is going to be deleted from b+ tree. - introduce a worker to deal with the delayed operation. This worker is used to deal with the works of the delayed directory name index items insertion and deletion and the delayed inode update. When the delayed items is beyond the lower limit, we create works for some delayed nodes and insert them into the work queue of the worker, and then go back. When the delayed items is beyond the upper bound, we create works for all the delayed nodes that haven't been dealt with, and insert them into the work queue of the worker, and then wait for that the untreated items is below some threshold value. - When we want to insert a directory name index into b+ tree, we just add the information into the delayed inserting rb-tree. And then we check the number of the delayed items and do delayed items balance. (The balance policy is above.) - When we want to delete a directory name index from the b+ tree, we search it in the inserting rb-tree at first. If we look it up, just drop it. If not, add the key of it into the delayed deleting rb-tree. Similar to the delayed inserting rb-tree, we also check the number of the delayed items and do delayed items balance. (The same to inserting manipulation) - When we want to update the metadata of some inode, we cached the data of the inode into the delayed node. the worker will flush it into the b+ tree after dealing with the delayed insertion and deletion. - We will move the delayed node to the tail of the list after we access the delayed node, By this way, we can cache more delayed items and merge more inode updates. - If we want to commit transaction, we will deal with all the delayed node. - the delayed node will be freed when we free the btrfs inode. - Before we log the inode items, we commit all the directory name index items and the delayed inode update. I did a quick test by the benchmark tool[1] and found we can improve the performance of file creation by ~15%, and file deletion by ~20%. Before applying this patch: Create files: Total files: 50000 Total time: 1.096108 Average time: 0.000022 Delete files: Total files: 50000 Total time: 1.510403 Average time: 0.000030 After applying this patch: Create files: Total files: 50000 Total time: 0.932899 Average time: 0.000019 Delete files: Total files: 50000 Total time: 1.215732 Average time: 0.000024 [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3 Many thanks for Kitayama-san's help! Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: David Sterba <dave@jikos.cz> Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 10:12:22 +00:00
if (current->flags & PF_MEMALLOC)
return;
if (flush_delayed)
btrfs_balance_delayed_items(fs_info);
btrfs: implement delayed inode items operation Changelog V5 -> V6: - Fix oom when the memory load is high, by storing the delayed nodes into the root's radix tree, and letting btrfs inodes go. Changelog V4 -> V5: - Fix the race on adding the delayed node to the inode, which is spotted by Chris Mason. - Merge Chris Mason's incremental patch into this patch. - Fix deadlock between readdir() and memory fault, which is reported by Itaru Kitayama. Changelog V3 -> V4: - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache inode in time. Changelog V2 -> V3: - Fix the race between the delayed worker and the task which does delayed items balance, which is reported by Tsutomu Itoh. - Modify the patch address David Sterba's comment. - Fix the bug of the cpu recursion spinlock, reported by Chris Mason Changelog V1 -> V2: - break up the global rb-tree, use a list to manage the delayed nodes, which is created for every directory and file, and used to manage the delayed directory name index items and the delayed inode item. - introduce a worker to deal with the delayed nodes. Compare with Ext3/4, the performance of file creation and deletion on btrfs is very poor. the reason is that btrfs must do a lot of b+ tree insertions, such as inode item, directory name item, directory name index and so on. If we can do some delayed b+ tree insertion or deletion, we can improve the performance, so we made this patch which implemented delayed directory name index insertion/deletion and delayed inode update. Implementation: - introduce a delayed root object into the filesystem, that use two lists to manage the delayed nodes which are created for every file/directory. One is used to manage all the delayed nodes that have delayed items. And the other is used to manage the delayed nodes which is waiting to be dealt with by the work thread. - Every delayed node has two rb-tree, one is used to manage the directory name index which is going to be inserted into b+ tree, and the other is used to manage the directory name index which is going to be deleted from b+ tree. - introduce a worker to deal with the delayed operation. This worker is used to deal with the works of the delayed directory name index items insertion and deletion and the delayed inode update. When the delayed items is beyond the lower limit, we create works for some delayed nodes and insert them into the work queue of the worker, and then go back. When the delayed items is beyond the upper bound, we create works for all the delayed nodes that haven't been dealt with, and insert them into the work queue of the worker, and then wait for that the untreated items is below some threshold value. - When we want to insert a directory name index into b+ tree, we just add the information into the delayed inserting rb-tree. And then we check the number of the delayed items and do delayed items balance. (The balance policy is above.) - When we want to delete a directory name index from the b+ tree, we search it in the inserting rb-tree at first. If we look it up, just drop it. If not, add the key of it into the delayed deleting rb-tree. Similar to the delayed inserting rb-tree, we also check the number of the delayed items and do delayed items balance. (The same to inserting manipulation) - When we want to update the metadata of some inode, we cached the data of the inode into the delayed node. the worker will flush it into the b+ tree after dealing with the delayed insertion and deletion. - We will move the delayed node to the tail of the list after we access the delayed node, By this way, we can cache more delayed items and merge more inode updates. - If we want to commit transaction, we will deal with all the delayed node. - the delayed node will be freed when we free the btrfs inode. - Before we log the inode items, we commit all the directory name index items and the delayed inode update. I did a quick test by the benchmark tool[1] and found we can improve the performance of file creation by ~15%, and file deletion by ~20%. Before applying this patch: Create files: Total files: 50000 Total time: 1.096108 Average time: 0.000022 Delete files: Total files: 50000 Total time: 1.510403 Average time: 0.000030 After applying this patch: Create files: Total files: 50000 Total time: 0.932899 Average time: 0.000019 Delete files: Total files: 50000 Total time: 1.215732 Average time: 0.000024 [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3 Many thanks for Kitayama-san's help! Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: David Sterba <dave@jikos.cz> Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 10:12:22 +00:00
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
BTRFS_DIRTY_METADATA_THRESH,
fs_info->dirty_metadata_batch);
if (ret > 0) {
balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
btrfs: implement delayed inode items operation Changelog V5 -> V6: - Fix oom when the memory load is high, by storing the delayed nodes into the root's radix tree, and letting btrfs inodes go. Changelog V4 -> V5: - Fix the race on adding the delayed node to the inode, which is spotted by Chris Mason. - Merge Chris Mason's incremental patch into this patch. - Fix deadlock between readdir() and memory fault, which is reported by Itaru Kitayama. Changelog V3 -> V4: - Fix nested lock, which is reported by Itaru Kitayama, by updating space cache inode in time. Changelog V2 -> V3: - Fix the race between the delayed worker and the task which does delayed items balance, which is reported by Tsutomu Itoh. - Modify the patch address David Sterba's comment. - Fix the bug of the cpu recursion spinlock, reported by Chris Mason Changelog V1 -> V2: - break up the global rb-tree, use a list to manage the delayed nodes, which is created for every directory and file, and used to manage the delayed directory name index items and the delayed inode item. - introduce a worker to deal with the delayed nodes. Compare with Ext3/4, the performance of file creation and deletion on btrfs is very poor. the reason is that btrfs must do a lot of b+ tree insertions, such as inode item, directory name item, directory name index and so on. If we can do some delayed b+ tree insertion or deletion, we can improve the performance, so we made this patch which implemented delayed directory name index insertion/deletion and delayed inode update. Implementation: - introduce a delayed root object into the filesystem, that use two lists to manage the delayed nodes which are created for every file/directory. One is used to manage all the delayed nodes that have delayed items. And the other is used to manage the delayed nodes which is waiting to be dealt with by the work thread. - Every delayed node has two rb-tree, one is used to manage the directory name index which is going to be inserted into b+ tree, and the other is used to manage the directory name index which is going to be deleted from b+ tree. - introduce a worker to deal with the delayed operation. This worker is used to deal with the works of the delayed directory name index items insertion and deletion and the delayed inode update. When the delayed items is beyond the lower limit, we create works for some delayed nodes and insert them into the work queue of the worker, and then go back. When the delayed items is beyond the upper bound, we create works for all the delayed nodes that haven't been dealt with, and insert them into the work queue of the worker, and then wait for that the untreated items is below some threshold value. - When we want to insert a directory name index into b+ tree, we just add the information into the delayed inserting rb-tree. And then we check the number of the delayed items and do delayed items balance. (The balance policy is above.) - When we want to delete a directory name index from the b+ tree, we search it in the inserting rb-tree at first. If we look it up, just drop it. If not, add the key of it into the delayed deleting rb-tree. Similar to the delayed inserting rb-tree, we also check the number of the delayed items and do delayed items balance. (The same to inserting manipulation) - When we want to update the metadata of some inode, we cached the data of the inode into the delayed node. the worker will flush it into the b+ tree after dealing with the delayed insertion and deletion. - We will move the delayed node to the tail of the list after we access the delayed node, By this way, we can cache more delayed items and merge more inode updates. - If we want to commit transaction, we will deal with all the delayed node. - the delayed node will be freed when we free the btrfs inode. - Before we log the inode items, we commit all the directory name index items and the delayed inode update. I did a quick test by the benchmark tool[1] and found we can improve the performance of file creation by ~15%, and file deletion by ~20%. Before applying this patch: Create files: Total files: 50000 Total time: 1.096108 Average time: 0.000022 Delete files: Total files: 50000 Total time: 1.510403 Average time: 0.000030 After applying this patch: Create files: Total files: 50000 Total time: 0.932899 Average time: 0.000019 Delete files: Total files: 50000 Total time: 1.215732 Average time: 0.000024 [1] http://marc.info/?l=linux-btrfs&m=128212635122920&q=p3 Many thanks for Kitayama-san's help! Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Reviewed-by: David Sterba <dave@jikos.cz> Tested-by: Tsutomu Itoh <t-itoh@jp.fujitsu.com> Tested-by: Itaru Kitayama <kitayama@cl.bb4u.ne.jp> Signed-off-by: Chris Mason <chris.mason@oracle.com>
2011-04-22 10:12:22 +00:00
}
}
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
{
__btrfs_btree_balance_dirty(fs_info, 1);
}
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
{
__btrfs_btree_balance_dirty(fs_info, 0);
}
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
{
btrfs: Fix delalloc inodes invalidation during transaction abort When a transaction is aborted btrfs_cleanup_transaction is called to cleanup all the various in-flight bits and pieces which migth be active. One of those is delalloc inodes - inodes which have dirty pages which haven't been persisted yet. Currently the process of freeing such delalloc inodes in exceptional circumstances such as transaction abort boiled down to calling btrfs_invalidate_inodes whose sole job is to invalidate the dentries for all inodes related to a root. This is in fact wrong and insufficient since such delalloc inodes will likely have pending pages or ordered-extents and will be linked to the sb->s_inode_list. This means that unmounting a btrfs instance with an aborted transaction could potentially lead inodes/their pages visible to the system long after their superblock has been freed. This in turn leads to a "use-after-free" situation once page shrink is triggered. This situation could be simulated by running generic/019 which would cause such inodes to be left hanging, followed by generic/176 which causes memory pressure and page eviction which lead to touching the freed super block instance. This situation is additionally detected by the unmount code of VFS with the following message: "VFS: Busy inodes after unmount of Self-destruct in 5 seconds. Have a nice day..." Additionally btrfs hits WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); in free_fs_root for the same reason. This patch aims to rectify the sitaution by doing the following: 1. Change btrfs_destroy_delalloc_inodes so that it calls invalidate_inode_pages2 for every inode on the delalloc list, this ensures that all the pages of the inode are released. This function boils down to calling btrfs_releasepage. During test I observed cases where inodes on the delalloc list were having an i_count of 0, so this necessitates using igrab to be sure we are working on a non-freed inode. 2. Since calling btrfs_releasepage might queue delayed iputs move the call out to btrfs_cleanup_transaction in btrfs_error_commit_super before calling run_delayed_iputs for the last time. This is necessary to ensure that delayed iputs are run. Note: this patch is tagged for 4.14 stable but the fix applies to older versions too but needs to be backported manually due to conflicts. CC: stable@vger.kernel.org # 4.14.x: 2b8773313494: btrfs: Split btrfs_del_delalloc_inode into 2 functions CC: stable@vger.kernel.org # 4.14.x Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment to igrab ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-27 09:21:53 +00:00
/* cleanup FS via transaction */
btrfs_cleanup_transaction(fs_info);
mutex_lock(&fs_info->cleaner_mutex);
btrfs_run_delayed_iputs(fs_info);
mutex_unlock(&fs_info->cleaner_mutex);
down_write(&fs_info->cleanup_work_sem);
up_write(&fs_info->cleanup_work_sem);
}
btrfs: drop logs when we've aborted a transaction Dave reported a problem where we were panicing with generic/475 with misc-5.7. This is because we were doing IO after we had stopped all of the worker threads, because we do the log tree cleanup on roots at drop time. Cleaning up the log tree will always need to do reads if we happened to have evicted the blocks from memory. Because of this simply add a helper to btrfs_cleanup_transaction() that will go through and drop all of the log roots. This gets run before we do the close_ctree() work, and thus we are allowed to do any reads that we would need. I ran this through many iterations of generic/475 with constrained memory and I did not see the issue. general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 12359 Comm: umount Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x33/0x1c0 [btrfs] RSP: 0018:ffff9cfb015937d8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8eb5e339ed80 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8eb5eb33b770 RDI: ffff8eb5e37a0460 RBP: ffff8eb5eb33b770 R08: 000000000000020c R09: ffffffff9fc09ac0 R10: 0000000000000007 R11: 0000000000000000 R12: 6b6b6b6b6b6b6b6b R13: ffff9cfb00229040 R14: 0000000000000008 R15: ffff8eb5d3868000 FS: 00007f167ea022c0(0000) GS:ffff8eb5fae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167e5e0cb1 CR3: 0000000138c18004 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_end_bio+0x81/0x130 [btrfs] __split_and_process_bio+0xaf/0x4e0 [dm_mod] ? percpu_counter_add_batch+0xa3/0x120 dm_process_bio+0x98/0x290 [dm_mod] ? generic_make_request+0xfb/0x410 dm_make_request+0x4d/0x120 [dm_mod] ? generic_make_request+0xfb/0x410 generic_make_request+0x12a/0x410 ? submit_bio+0x38/0x160 submit_bio+0x38/0x160 ? percpu_counter_add_batch+0xa3/0x120 btrfs_map_bio+0x289/0x570 [btrfs] ? kmem_cache_alloc+0x24d/0x300 btree_submit_bio_hook+0x79/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] read_extent_buffer_pages+0x2fe/0x450 [btrfs] btree_read_extent_buffer_pages+0x7e/0x170 [btrfs] walk_down_log_tree+0x343/0x690 [btrfs] ? walk_log_tree+0x3d/0x380 [btrfs] walk_log_tree+0xf7/0x380 [btrfs] ? plist_requeue+0xf0/0xf0 ? delete_node+0x4b/0x230 free_log_tree+0x4c/0x130 [btrfs] ? wait_log_commit+0x140/0x140 [btrfs] btrfs_free_log+0x17/0x30 [btrfs] btrfs_drop_and_free_fs_root+0xb0/0xd0 [btrfs] btrfs_free_fs_roots+0x10c/0x190 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? release_extent_buffer+0x121/0x170 [btrfs] close_ctree+0x289/0x2e6 [btrfs] generic_shutdown_super+0x6c/0x110 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x3a/0x70 Reported-by: David Sterba <dsterba@suse.com> Fixes: 8c38938c7bb096 ("btrfs: move the root freeing stuff into btrfs_put_root") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-24 14:47:52 +00:00
static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *gang[8];
u64 root_objectid = 0;
int ret;
spin_lock(&fs_info->fs_roots_radix_lock);
while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)gang, root_objectid,
ARRAY_SIZE(gang))) != 0) {
int i;
for (i = 0; i < ret; i++)
gang[i] = btrfs_grab_root(gang[i]);
spin_unlock(&fs_info->fs_roots_radix_lock);
for (i = 0; i < ret; i++) {
if (!gang[i])
btrfs: drop logs when we've aborted a transaction Dave reported a problem where we were panicing with generic/475 with misc-5.7. This is because we were doing IO after we had stopped all of the worker threads, because we do the log tree cleanup on roots at drop time. Cleaning up the log tree will always need to do reads if we happened to have evicted the blocks from memory. Because of this simply add a helper to btrfs_cleanup_transaction() that will go through and drop all of the log roots. This gets run before we do the close_ctree() work, and thus we are allowed to do any reads that we would need. I ran this through many iterations of generic/475 with constrained memory and I did not see the issue. general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 12359 Comm: umount Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x33/0x1c0 [btrfs] RSP: 0018:ffff9cfb015937d8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8eb5e339ed80 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8eb5eb33b770 RDI: ffff8eb5e37a0460 RBP: ffff8eb5eb33b770 R08: 000000000000020c R09: ffffffff9fc09ac0 R10: 0000000000000007 R11: 0000000000000000 R12: 6b6b6b6b6b6b6b6b R13: ffff9cfb00229040 R14: 0000000000000008 R15: ffff8eb5d3868000 FS: 00007f167ea022c0(0000) GS:ffff8eb5fae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167e5e0cb1 CR3: 0000000138c18004 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_end_bio+0x81/0x130 [btrfs] __split_and_process_bio+0xaf/0x4e0 [dm_mod] ? percpu_counter_add_batch+0xa3/0x120 dm_process_bio+0x98/0x290 [dm_mod] ? generic_make_request+0xfb/0x410 dm_make_request+0x4d/0x120 [dm_mod] ? generic_make_request+0xfb/0x410 generic_make_request+0x12a/0x410 ? submit_bio+0x38/0x160 submit_bio+0x38/0x160 ? percpu_counter_add_batch+0xa3/0x120 btrfs_map_bio+0x289/0x570 [btrfs] ? kmem_cache_alloc+0x24d/0x300 btree_submit_bio_hook+0x79/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] read_extent_buffer_pages+0x2fe/0x450 [btrfs] btree_read_extent_buffer_pages+0x7e/0x170 [btrfs] walk_down_log_tree+0x343/0x690 [btrfs] ? walk_log_tree+0x3d/0x380 [btrfs] walk_log_tree+0xf7/0x380 [btrfs] ? plist_requeue+0xf0/0xf0 ? delete_node+0x4b/0x230 free_log_tree+0x4c/0x130 [btrfs] ? wait_log_commit+0x140/0x140 [btrfs] btrfs_free_log+0x17/0x30 [btrfs] btrfs_drop_and_free_fs_root+0xb0/0xd0 [btrfs] btrfs_free_fs_roots+0x10c/0x190 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? release_extent_buffer+0x121/0x170 [btrfs] close_ctree+0x289/0x2e6 [btrfs] generic_shutdown_super+0x6c/0x110 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x3a/0x70 Reported-by: David Sterba <dsterba@suse.com> Fixes: 8c38938c7bb096 ("btrfs: move the root freeing stuff into btrfs_put_root") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-24 14:47:52 +00:00
continue;
root_objectid = gang[i]->root_key.objectid;
btrfs_free_log(NULL, gang[i]);
btrfs_put_root(gang[i]);
btrfs: drop logs when we've aborted a transaction Dave reported a problem where we were panicing with generic/475 with misc-5.7. This is because we were doing IO after we had stopped all of the worker threads, because we do the log tree cleanup on roots at drop time. Cleaning up the log tree will always need to do reads if we happened to have evicted the blocks from memory. Because of this simply add a helper to btrfs_cleanup_transaction() that will go through and drop all of the log roots. This gets run before we do the close_ctree() work, and thus we are allowed to do any reads that we would need. I ran this through many iterations of generic/475 with constrained memory and I did not see the issue. general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 12359 Comm: umount Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x33/0x1c0 [btrfs] RSP: 0018:ffff9cfb015937d8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8eb5e339ed80 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8eb5eb33b770 RDI: ffff8eb5e37a0460 RBP: ffff8eb5eb33b770 R08: 000000000000020c R09: ffffffff9fc09ac0 R10: 0000000000000007 R11: 0000000000000000 R12: 6b6b6b6b6b6b6b6b R13: ffff9cfb00229040 R14: 0000000000000008 R15: ffff8eb5d3868000 FS: 00007f167ea022c0(0000) GS:ffff8eb5fae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167e5e0cb1 CR3: 0000000138c18004 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_end_bio+0x81/0x130 [btrfs] __split_and_process_bio+0xaf/0x4e0 [dm_mod] ? percpu_counter_add_batch+0xa3/0x120 dm_process_bio+0x98/0x290 [dm_mod] ? generic_make_request+0xfb/0x410 dm_make_request+0x4d/0x120 [dm_mod] ? generic_make_request+0xfb/0x410 generic_make_request+0x12a/0x410 ? submit_bio+0x38/0x160 submit_bio+0x38/0x160 ? percpu_counter_add_batch+0xa3/0x120 btrfs_map_bio+0x289/0x570 [btrfs] ? kmem_cache_alloc+0x24d/0x300 btree_submit_bio_hook+0x79/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] read_extent_buffer_pages+0x2fe/0x450 [btrfs] btree_read_extent_buffer_pages+0x7e/0x170 [btrfs] walk_down_log_tree+0x343/0x690 [btrfs] ? walk_log_tree+0x3d/0x380 [btrfs] walk_log_tree+0xf7/0x380 [btrfs] ? plist_requeue+0xf0/0xf0 ? delete_node+0x4b/0x230 free_log_tree+0x4c/0x130 [btrfs] ? wait_log_commit+0x140/0x140 [btrfs] btrfs_free_log+0x17/0x30 [btrfs] btrfs_drop_and_free_fs_root+0xb0/0xd0 [btrfs] btrfs_free_fs_roots+0x10c/0x190 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? release_extent_buffer+0x121/0x170 [btrfs] close_ctree+0x289/0x2e6 [btrfs] generic_shutdown_super+0x6c/0x110 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x3a/0x70 Reported-by: David Sterba <dsterba@suse.com> Fixes: 8c38938c7bb096 ("btrfs: move the root freeing stuff into btrfs_put_root") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-24 14:47:52 +00:00
}
root_objectid++;
spin_lock(&fs_info->fs_roots_radix_lock);
btrfs: drop logs when we've aborted a transaction Dave reported a problem where we were panicing with generic/475 with misc-5.7. This is because we were doing IO after we had stopped all of the worker threads, because we do the log tree cleanup on roots at drop time. Cleaning up the log tree will always need to do reads if we happened to have evicted the blocks from memory. Because of this simply add a helper to btrfs_cleanup_transaction() that will go through and drop all of the log roots. This gets run before we do the close_ctree() work, and thus we are allowed to do any reads that we would need. I ran this through many iterations of generic/475 with constrained memory and I did not see the issue. general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 12359 Comm: umount Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x33/0x1c0 [btrfs] RSP: 0018:ffff9cfb015937d8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8eb5e339ed80 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8eb5eb33b770 RDI: ffff8eb5e37a0460 RBP: ffff8eb5eb33b770 R08: 000000000000020c R09: ffffffff9fc09ac0 R10: 0000000000000007 R11: 0000000000000000 R12: 6b6b6b6b6b6b6b6b R13: ffff9cfb00229040 R14: 0000000000000008 R15: ffff8eb5d3868000 FS: 00007f167ea022c0(0000) GS:ffff8eb5fae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167e5e0cb1 CR3: 0000000138c18004 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_end_bio+0x81/0x130 [btrfs] __split_and_process_bio+0xaf/0x4e0 [dm_mod] ? percpu_counter_add_batch+0xa3/0x120 dm_process_bio+0x98/0x290 [dm_mod] ? generic_make_request+0xfb/0x410 dm_make_request+0x4d/0x120 [dm_mod] ? generic_make_request+0xfb/0x410 generic_make_request+0x12a/0x410 ? submit_bio+0x38/0x160 submit_bio+0x38/0x160 ? percpu_counter_add_batch+0xa3/0x120 btrfs_map_bio+0x289/0x570 [btrfs] ? kmem_cache_alloc+0x24d/0x300 btree_submit_bio_hook+0x79/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] read_extent_buffer_pages+0x2fe/0x450 [btrfs] btree_read_extent_buffer_pages+0x7e/0x170 [btrfs] walk_down_log_tree+0x343/0x690 [btrfs] ? walk_log_tree+0x3d/0x380 [btrfs] walk_log_tree+0xf7/0x380 [btrfs] ? plist_requeue+0xf0/0xf0 ? delete_node+0x4b/0x230 free_log_tree+0x4c/0x130 [btrfs] ? wait_log_commit+0x140/0x140 [btrfs] btrfs_free_log+0x17/0x30 [btrfs] btrfs_drop_and_free_fs_root+0xb0/0xd0 [btrfs] btrfs_free_fs_roots+0x10c/0x190 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? release_extent_buffer+0x121/0x170 [btrfs] close_ctree+0x289/0x2e6 [btrfs] generic_shutdown_super+0x6c/0x110 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x3a/0x70 Reported-by: David Sterba <dsterba@suse.com> Fixes: 8c38938c7bb096 ("btrfs: move the root freeing stuff into btrfs_put_root") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-24 14:47:52 +00:00
}
spin_unlock(&fs_info->fs_roots_radix_lock);
btrfs: drop logs when we've aborted a transaction Dave reported a problem where we were panicing with generic/475 with misc-5.7. This is because we were doing IO after we had stopped all of the worker threads, because we do the log tree cleanup on roots at drop time. Cleaning up the log tree will always need to do reads if we happened to have evicted the blocks from memory. Because of this simply add a helper to btrfs_cleanup_transaction() that will go through and drop all of the log roots. This gets run before we do the close_ctree() work, and thus we are allowed to do any reads that we would need. I ran this through many iterations of generic/475 with constrained memory and I did not see the issue. general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 12359 Comm: umount Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x33/0x1c0 [btrfs] RSP: 0018:ffff9cfb015937d8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8eb5e339ed80 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8eb5eb33b770 RDI: ffff8eb5e37a0460 RBP: ffff8eb5eb33b770 R08: 000000000000020c R09: ffffffff9fc09ac0 R10: 0000000000000007 R11: 0000000000000000 R12: 6b6b6b6b6b6b6b6b R13: ffff9cfb00229040 R14: 0000000000000008 R15: ffff8eb5d3868000 FS: 00007f167ea022c0(0000) GS:ffff8eb5fae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167e5e0cb1 CR3: 0000000138c18004 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_end_bio+0x81/0x130 [btrfs] __split_and_process_bio+0xaf/0x4e0 [dm_mod] ? percpu_counter_add_batch+0xa3/0x120 dm_process_bio+0x98/0x290 [dm_mod] ? generic_make_request+0xfb/0x410 dm_make_request+0x4d/0x120 [dm_mod] ? generic_make_request+0xfb/0x410 generic_make_request+0x12a/0x410 ? submit_bio+0x38/0x160 submit_bio+0x38/0x160 ? percpu_counter_add_batch+0xa3/0x120 btrfs_map_bio+0x289/0x570 [btrfs] ? kmem_cache_alloc+0x24d/0x300 btree_submit_bio_hook+0x79/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] read_extent_buffer_pages+0x2fe/0x450 [btrfs] btree_read_extent_buffer_pages+0x7e/0x170 [btrfs] walk_down_log_tree+0x343/0x690 [btrfs] ? walk_log_tree+0x3d/0x380 [btrfs] walk_log_tree+0xf7/0x380 [btrfs] ? plist_requeue+0xf0/0xf0 ? delete_node+0x4b/0x230 free_log_tree+0x4c/0x130 [btrfs] ? wait_log_commit+0x140/0x140 [btrfs] btrfs_free_log+0x17/0x30 [btrfs] btrfs_drop_and_free_fs_root+0xb0/0xd0 [btrfs] btrfs_free_fs_roots+0x10c/0x190 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? release_extent_buffer+0x121/0x170 [btrfs] close_ctree+0x289/0x2e6 [btrfs] generic_shutdown_super+0x6c/0x110 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x3a/0x70 Reported-by: David Sterba <dsterba@suse.com> Fixes: 8c38938c7bb096 ("btrfs: move the root freeing stuff into btrfs_put_root") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-24 14:47:52 +00:00
btrfs_free_log_root_tree(NULL, fs_info);
}
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
{
struct btrfs_ordered_extent *ordered;
spin_lock(&root->ordered_extent_lock);
/*
* This will just short circuit the ordered completion stuff which will
* make sure the ordered extent gets properly cleaned up.
*/
list_for_each_entry(ordered, &root->ordered_extents,
root_extent_list)
set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
spin_unlock(&root->ordered_extent_lock);
}
static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
LIST_HEAD(splice);
spin_lock(&fs_info->ordered_root_lock);
list_splice_init(&fs_info->ordered_roots, &splice);
while (!list_empty(&splice)) {
root = list_first_entry(&splice, struct btrfs_root,
ordered_root);
list_move_tail(&root->ordered_root,
&fs_info->ordered_roots);
Btrfs: fix possible deadlock in btrfs_cleanup_transaction [13654.480669] ====================================================== [13654.480905] [ INFO: possible circular locking dependency detected ] [13654.481003] 3.12.0+ #4 Tainted: G W O [13654.481060] ------------------------------------------------------- [13654.481060] btrfs-transacti/9347 is trying to acquire lock: [13654.481060] (&(&root->ordered_extent_lock)->rlock){+.+...}, at: [<ffffffffa02d30a1>] btrfs_cleanup_transaction+0x271/0x570 [btrfs] [13654.481060] but task is already holding lock: [13654.481060] (&(&fs_info->ordered_root_lock)->rlock){+.+...}, at: [<ffffffffa02d3015>] btrfs_cleanup_transaction+0x1e5/0x570 [btrfs] [13654.481060] which lock already depends on the new lock. [13654.481060] the existing dependency chain (in reverse order) is: [13654.481060] -> #1 (&(&fs_info->ordered_root_lock)->rlock){+.+...}: [13654.481060] [<ffffffff810c4103>] lock_acquire+0x93/0x130 [13654.481060] [<ffffffff81689991>] _raw_spin_lock+0x41/0x50 [13654.481060] [<ffffffffa02f011b>] __btrfs_add_ordered_extent+0x39b/0x450 [btrfs] [13654.481060] [<ffffffffa02f0202>] btrfs_add_ordered_extent+0x32/0x40 [btrfs] [13654.481060] [<ffffffffa02df6aa>] run_delalloc_nocow+0x78a/0x9d0 [btrfs] [13654.481060] [<ffffffffa02dfc0d>] run_delalloc_range+0x31d/0x390 [btrfs] [13654.481060] [<ffffffffa02f7c00>] __extent_writepage+0x310/0x780 [btrfs] [13654.481060] [<ffffffffa02f830a>] extent_write_cache_pages.isra.29.constprop.48+0x29a/0x410 [btrfs] [13654.481060] [<ffffffffa02f879d>] extent_writepages+0x4d/0x70 [btrfs] [13654.481060] [<ffffffffa02d9f68>] btrfs_writepages+0x28/0x30 [btrfs] [13654.481060] [<ffffffff8114be91>] do_writepages+0x21/0x50 [13654.481060] [<ffffffff81140d49>] __filemap_fdatawrite_range+0x59/0x60 [13654.481060] [<ffffffff81140e13>] filemap_fdatawrite_range+0x13/0x20 [13654.481060] [<ffffffffa02f1db9>] btrfs_wait_ordered_range+0x49/0x140 [btrfs] [13654.481060] [<ffffffffa0318fe2>] __btrfs_write_out_cache+0x682/0x8b0 [btrfs] [13654.481060] [<ffffffffa031952d>] btrfs_write_out_cache+0x8d/0xe0 [btrfs] [13654.481060] [<ffffffffa02c7083>] btrfs_write_dirty_block_groups+0x593/0x680 [btrfs] [13654.481060] [<ffffffffa0345307>] commit_cowonly_roots+0x14b/0x20d [btrfs] [13654.481060] [<ffffffffa02d7c1a>] btrfs_commit_transaction+0x43a/0x9d0 [btrfs] [13654.481060] [<ffffffffa030061a>] btrfs_create_uuid_tree+0x5a/0x100 [btrfs] [13654.481060] [<ffffffffa02d5a8a>] open_ctree+0x21da/0x2210 [btrfs] [13654.481060] [<ffffffffa02ab6fe>] btrfs_mount+0x68e/0x870 [btrfs] [13654.481060] [<ffffffff811b2409>] mount_fs+0x39/0x1b0 [13654.481060] [<ffffffff811cd653>] vfs_kern_mount+0x63/0xf0 [13654.481060] [<ffffffff811cfcce>] do_mount+0x23e/0xa90 [13654.481060] [<ffffffff811d05a3>] SyS_mount+0x83/0xc0 [13654.481060] [<ffffffff81692b52>] system_call_fastpath+0x16/0x1b [13654.481060] -> #0 (&(&root->ordered_extent_lock)->rlock){+.+...}: [13654.481060] [<ffffffff810c340a>] __lock_acquire+0x150a/0x1a70 [13654.481060] [<ffffffff810c4103>] lock_acquire+0x93/0x130 [13654.481060] [<ffffffff81689991>] _raw_spin_lock+0x41/0x50 [13654.481060] [<ffffffffa02d30a1>] btrfs_cleanup_transaction+0x271/0x570 [btrfs] [13654.481060] [<ffffffffa02d35ce>] transaction_kthread+0x22e/0x270 [btrfs] [13654.481060] [<ffffffff81079efa>] kthread+0xea/0xf0 [13654.481060] [<ffffffff81692aac>] ret_from_fork+0x7c/0xb0 [13654.481060] other info that might help us debug this: [13654.481060] Possible unsafe locking scenario: [13654.481060] CPU0 CPU1 [13654.481060] ---- ---- [13654.481060] lock(&(&fs_info->ordered_root_lock)->rlock); [13654.481060] lock(&(&root->ordered_extent_lock)->rlock); [13654.481060] lock(&(&fs_info->ordered_root_lock)->rlock); [13654.481060] lock(&(&root->ordered_extent_lock)->rlock); [13654.481060] *** DEADLOCK *** [...] ====================================================== btrfs_destroy_all_ordered_extents() gets &fs_info->ordered_root_lock __BEFORE__ acquiring &root->ordered_extent_lock, while btrfs_[add,remove]_ordered_extent() acquires &fs_info->ordered_root_lock __AFTER__ getting &root->ordered_extent_lock. This patch fixes the above problem. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-02-10 09:07:16 +00:00
spin_unlock(&fs_info->ordered_root_lock);
btrfs_destroy_ordered_extents(root);
Btrfs: fix possible deadlock in btrfs_cleanup_transaction [13654.480669] ====================================================== [13654.480905] [ INFO: possible circular locking dependency detected ] [13654.481003] 3.12.0+ #4 Tainted: G W O [13654.481060] ------------------------------------------------------- [13654.481060] btrfs-transacti/9347 is trying to acquire lock: [13654.481060] (&(&root->ordered_extent_lock)->rlock){+.+...}, at: [<ffffffffa02d30a1>] btrfs_cleanup_transaction+0x271/0x570 [btrfs] [13654.481060] but task is already holding lock: [13654.481060] (&(&fs_info->ordered_root_lock)->rlock){+.+...}, at: [<ffffffffa02d3015>] btrfs_cleanup_transaction+0x1e5/0x570 [btrfs] [13654.481060] which lock already depends on the new lock. [13654.481060] the existing dependency chain (in reverse order) is: [13654.481060] -> #1 (&(&fs_info->ordered_root_lock)->rlock){+.+...}: [13654.481060] [<ffffffff810c4103>] lock_acquire+0x93/0x130 [13654.481060] [<ffffffff81689991>] _raw_spin_lock+0x41/0x50 [13654.481060] [<ffffffffa02f011b>] __btrfs_add_ordered_extent+0x39b/0x450 [btrfs] [13654.481060] [<ffffffffa02f0202>] btrfs_add_ordered_extent+0x32/0x40 [btrfs] [13654.481060] [<ffffffffa02df6aa>] run_delalloc_nocow+0x78a/0x9d0 [btrfs] [13654.481060] [<ffffffffa02dfc0d>] run_delalloc_range+0x31d/0x390 [btrfs] [13654.481060] [<ffffffffa02f7c00>] __extent_writepage+0x310/0x780 [btrfs] [13654.481060] [<ffffffffa02f830a>] extent_write_cache_pages.isra.29.constprop.48+0x29a/0x410 [btrfs] [13654.481060] [<ffffffffa02f879d>] extent_writepages+0x4d/0x70 [btrfs] [13654.481060] [<ffffffffa02d9f68>] btrfs_writepages+0x28/0x30 [btrfs] [13654.481060] [<ffffffff8114be91>] do_writepages+0x21/0x50 [13654.481060] [<ffffffff81140d49>] __filemap_fdatawrite_range+0x59/0x60 [13654.481060] [<ffffffff81140e13>] filemap_fdatawrite_range+0x13/0x20 [13654.481060] [<ffffffffa02f1db9>] btrfs_wait_ordered_range+0x49/0x140 [btrfs] [13654.481060] [<ffffffffa0318fe2>] __btrfs_write_out_cache+0x682/0x8b0 [btrfs] [13654.481060] [<ffffffffa031952d>] btrfs_write_out_cache+0x8d/0xe0 [btrfs] [13654.481060] [<ffffffffa02c7083>] btrfs_write_dirty_block_groups+0x593/0x680 [btrfs] [13654.481060] [<ffffffffa0345307>] commit_cowonly_roots+0x14b/0x20d [btrfs] [13654.481060] [<ffffffffa02d7c1a>] btrfs_commit_transaction+0x43a/0x9d0 [btrfs] [13654.481060] [<ffffffffa030061a>] btrfs_create_uuid_tree+0x5a/0x100 [btrfs] [13654.481060] [<ffffffffa02d5a8a>] open_ctree+0x21da/0x2210 [btrfs] [13654.481060] [<ffffffffa02ab6fe>] btrfs_mount+0x68e/0x870 [btrfs] [13654.481060] [<ffffffff811b2409>] mount_fs+0x39/0x1b0 [13654.481060] [<ffffffff811cd653>] vfs_kern_mount+0x63/0xf0 [13654.481060] [<ffffffff811cfcce>] do_mount+0x23e/0xa90 [13654.481060] [<ffffffff811d05a3>] SyS_mount+0x83/0xc0 [13654.481060] [<ffffffff81692b52>] system_call_fastpath+0x16/0x1b [13654.481060] -> #0 (&(&root->ordered_extent_lock)->rlock){+.+...}: [13654.481060] [<ffffffff810c340a>] __lock_acquire+0x150a/0x1a70 [13654.481060] [<ffffffff810c4103>] lock_acquire+0x93/0x130 [13654.481060] [<ffffffff81689991>] _raw_spin_lock+0x41/0x50 [13654.481060] [<ffffffffa02d30a1>] btrfs_cleanup_transaction+0x271/0x570 [btrfs] [13654.481060] [<ffffffffa02d35ce>] transaction_kthread+0x22e/0x270 [btrfs] [13654.481060] [<ffffffff81079efa>] kthread+0xea/0xf0 [13654.481060] [<ffffffff81692aac>] ret_from_fork+0x7c/0xb0 [13654.481060] other info that might help us debug this: [13654.481060] Possible unsafe locking scenario: [13654.481060] CPU0 CPU1 [13654.481060] ---- ---- [13654.481060] lock(&(&fs_info->ordered_root_lock)->rlock); [13654.481060] lock(&(&root->ordered_extent_lock)->rlock); [13654.481060] lock(&(&fs_info->ordered_root_lock)->rlock); [13654.481060] lock(&(&root->ordered_extent_lock)->rlock); [13654.481060] *** DEADLOCK *** [...] ====================================================== btrfs_destroy_all_ordered_extents() gets &fs_info->ordered_root_lock __BEFORE__ acquiring &root->ordered_extent_lock, while btrfs_[add,remove]_ordered_extent() acquires &fs_info->ordered_root_lock __AFTER__ getting &root->ordered_extent_lock. This patch fixes the above problem. Signed-off-by: Liu Bo <bo.li.liu@oracle.com> Signed-off-by: Josef Bacik <jbacik@fb.com>
2014-02-10 09:07:16 +00:00
cond_resched();
spin_lock(&fs_info->ordered_root_lock);
}
spin_unlock(&fs_info->ordered_root_lock);
btrfs: wait on ordered extents on abort cleanup If we flip read-only before we initiate writeback on all dirty pages for ordered extents we've created then we'll have ordered extents left over on umount, which results in all sorts of bad things happening. Fix this by making sure we wait on ordered extents if we have to do the aborted transaction cleanup stuff. generic/475 can produce this warning: [ 8531.177332] WARNING: CPU: 2 PID: 11997 at fs/btrfs/disk-io.c:3856 btrfs_free_fs_root+0x95/0xa0 [btrfs] [ 8531.183282] CPU: 2 PID: 11997 Comm: umount Tainted: G W 5.0.0-rc1-default+ #394 [ 8531.185164] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),BIOS rel-1.11.2-0-gf9626cc-prebuilt.qemu-project.org 04/01/2014 [ 8531.187851] RIP: 0010:btrfs_free_fs_root+0x95/0xa0 [btrfs] [ 8531.193082] RSP: 0018:ffffb1ab86163d98 EFLAGS: 00010286 [ 8531.194198] RAX: ffff9f3449494d18 RBX: ffff9f34a2695000 RCX:0000000000000000 [ 8531.195629] RDX: 0000000000000002 RSI: 0000000000000001 RDI:0000000000000000 [ 8531.197315] RBP: ffff9f344e930000 R08: 0000000000000001 R09:0000000000000000 [ 8531.199095] R10: 0000000000000000 R11: ffff9f34494d4ff8 R12:ffffb1ab86163dc0 [ 8531.200870] R13: ffff9f344e9300b0 R14: ffffb1ab86163db8 R15:0000000000000000 [ 8531.202707] FS: 00007fc68e949fc0(0000) GS:ffff9f34bd800000(0000)knlGS:0000000000000000 [ 8531.204851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 8531.205942] CR2: 00007ffde8114dd8 CR3: 000000002dfbd000 CR4:00000000000006e0 [ 8531.207516] Call Trace: [ 8531.208175] btrfs_free_fs_roots+0xdb/0x170 [btrfs] [ 8531.210209] ? wait_for_completion+0x5b/0x190 [ 8531.211303] close_ctree+0x157/0x350 [btrfs] [ 8531.212412] generic_shutdown_super+0x64/0x100 [ 8531.213485] kill_anon_super+0x14/0x30 [ 8531.214430] btrfs_kill_super+0x12/0xa0 [btrfs] [ 8531.215539] deactivate_locked_super+0x29/0x60 [ 8531.216633] cleanup_mnt+0x3b/0x70 [ 8531.217497] task_work_run+0x98/0xc0 [ 8531.218397] exit_to_usermode_loop+0x83/0x90 [ 8531.219324] do_syscall_64+0x15b/0x180 [ 8531.220192] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 8531.221286] RIP: 0033:0x7fc68e5e4d07 [ 8531.225621] RSP: 002b:00007ffde8116608 EFLAGS: 00000246 ORIG_RAX:00000000000000a6 [ 8531.227512] RAX: 0000000000000000 RBX: 00005580c2175970 RCX:00007fc68e5e4d07 [ 8531.229098] RDX: 0000000000000001 RSI: 0000000000000000 RDI:00005580c2175b80 [ 8531.230730] RBP: 0000000000000000 R08: 00005580c2175ba0 R09:00007ffde8114e80 [ 8531.232269] R10: 0000000000000000 R11: 0000000000000246 R12:00005580c2175b80 [ 8531.233839] R13: 00007fc68eac61c4 R14: 00005580c2175a68 R15:0000000000000000 Leaving a tree in the rb-tree: 3853 void btrfs_free_fs_root(struct btrfs_root *root) 3854 { 3855 iput(root->ino_cache_inode); 3856 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); CC: stable@vger.kernel.org Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add stacktrace ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-21 19:05:45 +00:00
/*
* We need this here because if we've been flipped read-only we won't
* get sync() from the umount, so we need to make sure any ordered
* extents that haven't had their dirty pages IO start writeout yet
* actually get run and error out properly.
*/
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
}
static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
struct btrfs_fs_info *fs_info)
{
struct rb_node *node;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
delayed_refs = &trans->delayed_refs;
spin_lock(&delayed_refs->lock);
if (atomic_read(&delayed_refs->num_entries) == 0) {
spin_unlock(&delayed_refs->lock);
btrfs_debug(fs_info, "delayed_refs has NO entry");
return;
}
Btrfs: delayed-refs: use rb_first_cached for href_root rb_first_cached() trades an extra pointer "leftmost" for doing the same job as rb_first() but in O(1). Functions manipulating href_root need to get the first entry, this converts href_root to use rb_first_cached(). This patch is first in the sequenct of similar updates to other rbtrees and this is analysis of the expected behaviour and improvements. There's a common pattern: while (node = rb_first) { entry = rb_entry(node) next = rb_next(node) rb_erase(node) cleanup(entry) } rb_first needs to traverse the tree up to logN depth, rb_erase can completely reshuffle the tree. With the caching we'll skip the traversal in rb_first. That's a cached memory access vs looped pointer dereference trade-off that IMHO has a clear winner. Measurements show there's not much difference in a sample tree with 10000 nodes: 4.5s / rb_first and 4.8s / rb_first_cached. Real effects of caching and pointer chasing are unpredictable though. Further optimzations can be done to avoid the expensive rb_erase step. In some cases it's ok to process the nodes in any order, so the tree can be traversed in post-order, not rebalancing the children nodes and just calling free. Care must be taken regarding the next node. Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: Liu Bo <bo.liu@linux.alibaba.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog from mail discussions ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-22 19:51:49 +00:00
while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
struct btrfs_delayed_ref_head *head;
struct rb_node *n;
bool pin_bytes = false;
head = rb_entry(node, struct btrfs_delayed_ref_head,
href_node);
if (btrfs_delayed_ref_lock(delayed_refs, head))
continue;
spin_lock(&head->lock);
while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
ref = rb_entry(n, struct btrfs_delayed_ref_node,
ref_node);
rb_erase_cached(&ref->ref_node, &head->ref_tree);
RB_CLEAR_NODE(&ref->ref_node);
btrfs: improve delayed refs iterations This issue was found when I tried to delete a heavily reflinked file, when deleting such files, other transaction operation will not have a chance to make progress, for example, start_transaction() will blocked in wait_current_trans(root) for long time, sometimes it even triggers soft lockups, and the time taken to delete such heavily reflinked file is also very large, often hundreds of seconds. Using perf top, it reports that: PerfTop: 7416 irqs/sec kernel:99.8% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs) --------------------------------------------------------------------------------------- 84.37% [btrfs] [k] __btrfs_run_delayed_refs.constprop.80 11.02% [kernel] [k] delay_tsc 0.79% [kernel] [k] _raw_spin_unlock_irq 0.78% [kernel] [k] _raw_spin_unlock_irqrestore 0.45% [kernel] [k] do_raw_spin_lock 0.18% [kernel] [k] __slab_alloc It seems __btrfs_run_delayed_refs() took most cpu time, after some debug work, I found it's select_delayed_ref() causing this issue, for a delayed head, in our case, it'll be full of BTRFS_DROP_DELAYED_REF nodes, but select_delayed_ref() will firstly try to iterate node list to find BTRFS_ADD_DELAYED_REF nodes, obviously it's a disaster in this case, and waste much time. To fix this issue, we introduce a new ref_add_list in struct btrfs_delayed_ref_head, then in select_delayed_ref(), if this list is not empty, we can directly use nodes in this list. With this patch, it just took about 10~15 seconds to delte the same file. Now using perf top, it reports that: PerfTop: 2734 irqs/sec kernel:99.5% exact: 0.0% [4000Hz cpu-clock], (all, 4 CPUs) ---------------------------------------------------------------------------------------- 20.74% [kernel] [k] _raw_spin_unlock_irqrestore 16.33% [kernel] [k] __slab_alloc 5.41% [kernel] [k] lock_acquired 4.42% [kernel] [k] lock_acquire 4.05% [kernel] [k] lock_release 3.37% [kernel] [k] _raw_spin_unlock_irq For normal files, this patch also gives help, at least we do not need to iterate whole list to found BTRFS_ADD_DELAYED_REF nodes. Signed-off-by: Wang Xiaoguang <wangxg.fnst@cn.fujitsu.com> Reviewed-by: Liu Bo <bo.li.liu@oracle.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Signed-off-by: David Sterba <dsterba@suse.com>
2016-10-26 10:07:33 +00:00
if (!list_empty(&ref->add_list))
list_del(&ref->add_list);
atomic_dec(&delayed_refs->num_entries);
btrfs_put_delayed_ref(ref);
btrfs: stop doing excessive space reservation for csum deletion Currently when reserving space for deleting the csum items for a data extent, when adding or updating a delayed ref head, we determine how many leaves of csum items we can have and then pass that number to the helper btrfs_calc_delayed_ref_bytes(). This helper is used for calculating space for all tree modifications we need when running delayed references, however the amount of space it computes is excessive for deleting csum items because: 1) It uses btrfs_calc_insert_metadata_size() which is excessive because we only need to delete csum items from the csum tree, we don't need to insert any items, so btrfs_calc_metadata_size() is all we need (as it computes space needed to delete an item); 2) If the free space tree is enabled, it doubles the amount of space, which is pointless for csum deletion since we don't need to touch the free space tree or any other tree other than the csum tree. So improve on this by tracking how many csum deletions we have and using a new helper to calculate space for csum deletions (just a wrapper around btrfs_calc_metadata_size() with a comment). This reduces the amount of space we need to reserve for csum deletions by a factor of 4, and it helps reduce the number of times we have to block space reservations and have the reclaim task enter the space flushing algorithm (flush delayed items, flush delayed refs, etc) in order to satisfy tickets. For example this results in a total time decrease when unlinking (or truncating) files with many extents, as we end up having to block on space metadata reservations less often. Example test: $ cat test.sh #!/bin/bash DEV=/dev/nullb0 MNT=/mnt/test umount $DEV &> /dev/null mkfs.btrfs -f $DEV # Use compression to quickly create files with a lot of extents # (each with a size of 128K). mount -o compress=lzo $DEV $MNT # 100G gives at least 983040 extents with a size of 128K. xfs_io -f -c "pwrite -S 0xab -b 1M 0 120G" $MNT/foobar # Flush all delalloc and clear all metadata from memory. umount $MNT mount -o compress=lzo $DEV $MNT start=$(date +%s%N) rm -f $MNT/foobar end=$(date +%s%N) dur=$(( (end - start) / 1000000 )) echo "rm took $dur milliseconds" umount $MNT Before this change rm took: 7504 milliseconds After this change rm took: 6574 milliseconds (-12.4%) Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-09-08 17:20:37 +00:00
btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
}
if (head->must_insert_reserved)
pin_bytes = true;
btrfs_free_delayed_extent_op(head->extent_op);
btrfs_delete_ref_head(delayed_refs, head);
spin_unlock(&head->lock);
spin_unlock(&delayed_refs->lock);
mutex_unlock(&head->mutex);
if (pin_bytes) {
struct btrfs_block_group *cache;
cache = btrfs_lookup_block_group(fs_info, head->bytenr);
BUG_ON(!cache);
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
cache->pinned += head->num_bytes;
btrfs_space_info_update_bytes_pinned(fs_info,
cache->space_info, head->num_bytes);
cache->reserved -= head->num_bytes;
cache->space_info->bytes_reserved -= head->num_bytes;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
btrfs_put_block_group(cache);
btrfs_error_unpin_extent_range(fs_info, head->bytenr,
head->bytenr + head->num_bytes - 1);
}
btrfs: handle delayed ref head accounting cleanup in abort We weren't doing any of the accounting cleanup when we aborted transactions. Fix this by making cleanup_ref_head_accounting global and calling it from the abort code, this fixes the issue where our accounting was all wrong after the fs aborts. The test generic/475 on a 2G VM can trigger the problems eg.: [ 8502.136957] WARNING: CPU: 0 PID: 11064 at fs/btrfs/extent-tree.c:5986 btrfs_free_block_grou +ps+0x3dc/0x410 [btrfs] [ 8502.148372] CPU: 0 PID: 11064 Comm: umount Not tainted 5.0.0-rc1-default+ #394 [ 8502.150807] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626 +cc-prebuilt.qemu-project.org 04/01/2014 [ 8502.154317] RIP: 0010:btrfs_free_block_groups+0x3dc/0x410 [btrfs] [ 8502.160623] RSP: 0018:ffffb1ab84b93de8 EFLAGS: 00010206 [ 8502.161906] RAX: 0000000001000000 RBX: ffff9f34b1756400 RCX: 0000000000000000 [ 8502.163448] RDX: 0000000000000002 RSI: 0000000000000001 RDI: ffff9f34b1755400 [ 8502.164906] RBP: ffff9f34b7e8c000 R08: 0000000000000001 R09: 0000000000000000 [ 8502.166716] R10: 0000000000000000 R11: 0000000000000001 R12: ffff9f34b7e8c108 [ 8502.168498] R13: ffff9f34b7e8c158 R14: 0000000000000000 R15: dead000000000100 [ 8502.170296] FS: 00007fb1cf15ffc0(0000) GS:ffff9f34bd400000(0000) knlGS:0000000000000000 [ 8502.172439] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 8502.173669] CR2: 00007fb1ced507b0 CR3: 000000002f7a6000 CR4: 00000000000006f0 [ 8502.175094] Call Trace: [ 8502.175759] close_ctree+0x17f/0x350 [btrfs] [ 8502.176721] generic_shutdown_super+0x64/0x100 [ 8502.177702] kill_anon_super+0x14/0x30 [ 8502.178607] btrfs_kill_super+0x12/0xa0 [btrfs] [ 8502.179602] deactivate_locked_super+0x29/0x60 [ 8502.180595] cleanup_mnt+0x3b/0x70 [ 8502.181406] task_work_run+0x98/0xc0 [ 8502.182255] exit_to_usermode_loop+0x83/0x90 [ 8502.183113] do_syscall_64+0x15b/0x180 [ 8502.183919] entry_SYSCALL_64_after_hwframe+0x49/0xbe Corresponding to release_global_block_rsv() { ... WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); CC: stable@vger.kernel.org Signed-off-by: Josef Bacik <josef@toxicpanda.com> [ add log dump ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-21 19:05:41 +00:00
btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
btrfs_put_delayed_ref_head(head);
cond_resched();
spin_lock(&delayed_refs->lock);
}
btrfs_qgroup_destroy_extent_records(trans);
spin_unlock(&delayed_refs->lock);
}
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
{
struct btrfs_inode *btrfs_inode;
LIST_HEAD(splice);
spin_lock(&root->delalloc_lock);
list_splice_init(&root->delalloc_inodes, &splice);
while (!list_empty(&splice)) {
btrfs: Fix delalloc inodes invalidation during transaction abort When a transaction is aborted btrfs_cleanup_transaction is called to cleanup all the various in-flight bits and pieces which migth be active. One of those is delalloc inodes - inodes which have dirty pages which haven't been persisted yet. Currently the process of freeing such delalloc inodes in exceptional circumstances such as transaction abort boiled down to calling btrfs_invalidate_inodes whose sole job is to invalidate the dentries for all inodes related to a root. This is in fact wrong and insufficient since such delalloc inodes will likely have pending pages or ordered-extents and will be linked to the sb->s_inode_list. This means that unmounting a btrfs instance with an aborted transaction could potentially lead inodes/their pages visible to the system long after their superblock has been freed. This in turn leads to a "use-after-free" situation once page shrink is triggered. This situation could be simulated by running generic/019 which would cause such inodes to be left hanging, followed by generic/176 which causes memory pressure and page eviction which lead to touching the freed super block instance. This situation is additionally detected by the unmount code of VFS with the following message: "VFS: Busy inodes after unmount of Self-destruct in 5 seconds. Have a nice day..." Additionally btrfs hits WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); in free_fs_root for the same reason. This patch aims to rectify the sitaution by doing the following: 1. Change btrfs_destroy_delalloc_inodes so that it calls invalidate_inode_pages2 for every inode on the delalloc list, this ensures that all the pages of the inode are released. This function boils down to calling btrfs_releasepage. During test I observed cases where inodes on the delalloc list were having an i_count of 0, so this necessitates using igrab to be sure we are working on a non-freed inode. 2. Since calling btrfs_releasepage might queue delayed iputs move the call out to btrfs_cleanup_transaction in btrfs_error_commit_super before calling run_delayed_iputs for the last time. This is necessary to ensure that delayed iputs are run. Note: this patch is tagged for 4.14 stable but the fix applies to older versions too but needs to be backported manually due to conflicts. CC: stable@vger.kernel.org # 4.14.x: 2b8773313494: btrfs: Split btrfs_del_delalloc_inode into 2 functions CC: stable@vger.kernel.org # 4.14.x Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment to igrab ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-27 09:21:53 +00:00
struct inode *inode = NULL;
btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
delalloc_inodes);
btrfs_del_delalloc_inode(btrfs_inode);
spin_unlock(&root->delalloc_lock);
btrfs: Fix delalloc inodes invalidation during transaction abort When a transaction is aborted btrfs_cleanup_transaction is called to cleanup all the various in-flight bits and pieces which migth be active. One of those is delalloc inodes - inodes which have dirty pages which haven't been persisted yet. Currently the process of freeing such delalloc inodes in exceptional circumstances such as transaction abort boiled down to calling btrfs_invalidate_inodes whose sole job is to invalidate the dentries for all inodes related to a root. This is in fact wrong and insufficient since such delalloc inodes will likely have pending pages or ordered-extents and will be linked to the sb->s_inode_list. This means that unmounting a btrfs instance with an aborted transaction could potentially lead inodes/their pages visible to the system long after their superblock has been freed. This in turn leads to a "use-after-free" situation once page shrink is triggered. This situation could be simulated by running generic/019 which would cause such inodes to be left hanging, followed by generic/176 which causes memory pressure and page eviction which lead to touching the freed super block instance. This situation is additionally detected by the unmount code of VFS with the following message: "VFS: Busy inodes after unmount of Self-destruct in 5 seconds. Have a nice day..." Additionally btrfs hits WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); in free_fs_root for the same reason. This patch aims to rectify the sitaution by doing the following: 1. Change btrfs_destroy_delalloc_inodes so that it calls invalidate_inode_pages2 for every inode on the delalloc list, this ensures that all the pages of the inode are released. This function boils down to calling btrfs_releasepage. During test I observed cases where inodes on the delalloc list were having an i_count of 0, so this necessitates using igrab to be sure we are working on a non-freed inode. 2. Since calling btrfs_releasepage might queue delayed iputs move the call out to btrfs_cleanup_transaction in btrfs_error_commit_super before calling run_delayed_iputs for the last time. This is necessary to ensure that delayed iputs are run. Note: this patch is tagged for 4.14 stable but the fix applies to older versions too but needs to be backported manually due to conflicts. CC: stable@vger.kernel.org # 4.14.x: 2b8773313494: btrfs: Split btrfs_del_delalloc_inode into 2 functions CC: stable@vger.kernel.org # 4.14.x Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment to igrab ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-27 09:21:53 +00:00
/*
* Make sure we get a live inode and that it'll not disappear
* meanwhile.
*/
inode = igrab(&btrfs_inode->vfs_inode);
if (inode) {
btrfs: use nofs when cleaning up aborted transactions Our CI system caught a lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 6.3.0-rc7+ #1167 Not tainted ------------------------------------------------------ kswapd0/46 is trying to acquire lock: ffff8c6543abd650 (sb_internal#2){++++}-{0:0}, at: btrfs_commit_inode_delayed_inode+0x5f/0x120 but task is already holding lock: ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0xa5/0xe0 kmem_cache_alloc+0x31/0x2c0 alloc_extent_state+0x1d/0xd0 __clear_extent_bit+0x2e0/0x4f0 try_release_extent_mapping+0x216/0x280 btrfs_release_folio+0x2e/0x90 invalidate_inode_pages2_range+0x397/0x470 btrfs_cleanup_dirty_bgs+0x9e/0x210 btrfs_cleanup_one_transaction+0x22/0x760 btrfs_commit_transaction+0x3b7/0x13a0 create_subvol+0x59b/0x970 btrfs_mksubvol+0x435/0x4f0 __btrfs_ioctl_snap_create+0x11e/0x1b0 btrfs_ioctl_snap_create_v2+0xbf/0x140 btrfs_ioctl+0xa45/0x28f0 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc -> #0 (sb_internal#2){++++}-{0:0}: __lock_acquire+0x1435/0x21a0 lock_acquire+0xc2/0x2b0 start_transaction+0x401/0x730 btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_evict_inode+0x292/0x3d0 evict+0xcc/0x1d0 inode_lru_isolate+0x14d/0x1e0 __list_lru_walk_one+0xbe/0x1c0 list_lru_walk_one+0x58/0x80 prune_icache_sb+0x39/0x60 super_cache_scan+0x161/0x1f0 do_shrink_slab+0x163/0x340 shrink_slab+0x1d3/0x290 shrink_node+0x300/0x720 balance_pgdat+0x35c/0x7a0 kswapd+0x205/0x410 kthread+0xf0/0x120 ret_from_fork+0x29/0x50 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(sb_internal#2); lock(fs_reclaim); lock(sb_internal#2); *** DEADLOCK *** 3 locks held by kswapd0/46: #0: ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0 #1: ffffffffabe50270 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x113/0x290 #2: ffff8c6543abd0e0 (&type->s_umount_key#44){++++}-{3:3}, at: super_cache_scan+0x38/0x1f0 stack backtrace: CPU: 0 PID: 46 Comm: kswapd0 Not tainted 6.3.0-rc7+ #1167 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x58/0x90 check_noncircular+0xd6/0x100 ? save_trace+0x3f/0x310 ? add_lock_to_list+0x97/0x120 __lock_acquire+0x1435/0x21a0 lock_acquire+0xc2/0x2b0 ? btrfs_commit_inode_delayed_inode+0x5f/0x120 start_transaction+0x401/0x730 ? btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_evict_inode+0x292/0x3d0 ? lock_release+0x134/0x270 ? __pfx_wake_bit_function+0x10/0x10 evict+0xcc/0x1d0 inode_lru_isolate+0x14d/0x1e0 __list_lru_walk_one+0xbe/0x1c0 ? __pfx_inode_lru_isolate+0x10/0x10 ? __pfx_inode_lru_isolate+0x10/0x10 list_lru_walk_one+0x58/0x80 prune_icache_sb+0x39/0x60 super_cache_scan+0x161/0x1f0 do_shrink_slab+0x163/0x340 shrink_slab+0x1d3/0x290 shrink_node+0x300/0x720 balance_pgdat+0x35c/0x7a0 kswapd+0x205/0x410 ? __pfx_autoremove_wake_function+0x10/0x10 ? __pfx_kswapd+0x10/0x10 kthread+0xf0/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50 </TASK> This happens because when we abort the transaction in the transaction commit path we call invalidate_inode_pages2_range on our block group cache inodes (if we have space cache v1) and any delalloc inodes we may have. The plain invalidate_inode_pages2_range() call passes through GFP_KERNEL, which makes sense in most cases, but not here. Wrap these two invalidate callees with memalloc_nofs_save/memalloc_nofs_restore to make sure we don't end up with the fs reclaim dependency under the transaction dependency. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-11 16:45:59 +00:00
unsigned int nofs_flag;
nofs_flag = memalloc_nofs_save();
btrfs: Fix delalloc inodes invalidation during transaction abort When a transaction is aborted btrfs_cleanup_transaction is called to cleanup all the various in-flight bits and pieces which migth be active. One of those is delalloc inodes - inodes which have dirty pages which haven't been persisted yet. Currently the process of freeing such delalloc inodes in exceptional circumstances such as transaction abort boiled down to calling btrfs_invalidate_inodes whose sole job is to invalidate the dentries for all inodes related to a root. This is in fact wrong and insufficient since such delalloc inodes will likely have pending pages or ordered-extents and will be linked to the sb->s_inode_list. This means that unmounting a btrfs instance with an aborted transaction could potentially lead inodes/their pages visible to the system long after their superblock has been freed. This in turn leads to a "use-after-free" situation once page shrink is triggered. This situation could be simulated by running generic/019 which would cause such inodes to be left hanging, followed by generic/176 which causes memory pressure and page eviction which lead to touching the freed super block instance. This situation is additionally detected by the unmount code of VFS with the following message: "VFS: Busy inodes after unmount of Self-destruct in 5 seconds. Have a nice day..." Additionally btrfs hits WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); in free_fs_root for the same reason. This patch aims to rectify the sitaution by doing the following: 1. Change btrfs_destroy_delalloc_inodes so that it calls invalidate_inode_pages2 for every inode on the delalloc list, this ensures that all the pages of the inode are released. This function boils down to calling btrfs_releasepage. During test I observed cases where inodes on the delalloc list were having an i_count of 0, so this necessitates using igrab to be sure we are working on a non-freed inode. 2. Since calling btrfs_releasepage might queue delayed iputs move the call out to btrfs_cleanup_transaction in btrfs_error_commit_super before calling run_delayed_iputs for the last time. This is necessary to ensure that delayed iputs are run. Note: this patch is tagged for 4.14 stable but the fix applies to older versions too but needs to be backported manually due to conflicts. CC: stable@vger.kernel.org # 4.14.x: 2b8773313494: btrfs: Split btrfs_del_delalloc_inode into 2 functions CC: stable@vger.kernel.org # 4.14.x Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment to igrab ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-27 09:21:53 +00:00
invalidate_inode_pages2(inode->i_mapping);
btrfs: use nofs when cleaning up aborted transactions Our CI system caught a lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 6.3.0-rc7+ #1167 Not tainted ------------------------------------------------------ kswapd0/46 is trying to acquire lock: ffff8c6543abd650 (sb_internal#2){++++}-{0:0}, at: btrfs_commit_inode_delayed_inode+0x5f/0x120 but task is already holding lock: ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0xa5/0xe0 kmem_cache_alloc+0x31/0x2c0 alloc_extent_state+0x1d/0xd0 __clear_extent_bit+0x2e0/0x4f0 try_release_extent_mapping+0x216/0x280 btrfs_release_folio+0x2e/0x90 invalidate_inode_pages2_range+0x397/0x470 btrfs_cleanup_dirty_bgs+0x9e/0x210 btrfs_cleanup_one_transaction+0x22/0x760 btrfs_commit_transaction+0x3b7/0x13a0 create_subvol+0x59b/0x970 btrfs_mksubvol+0x435/0x4f0 __btrfs_ioctl_snap_create+0x11e/0x1b0 btrfs_ioctl_snap_create_v2+0xbf/0x140 btrfs_ioctl+0xa45/0x28f0 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc -> #0 (sb_internal#2){++++}-{0:0}: __lock_acquire+0x1435/0x21a0 lock_acquire+0xc2/0x2b0 start_transaction+0x401/0x730 btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_evict_inode+0x292/0x3d0 evict+0xcc/0x1d0 inode_lru_isolate+0x14d/0x1e0 __list_lru_walk_one+0xbe/0x1c0 list_lru_walk_one+0x58/0x80 prune_icache_sb+0x39/0x60 super_cache_scan+0x161/0x1f0 do_shrink_slab+0x163/0x340 shrink_slab+0x1d3/0x290 shrink_node+0x300/0x720 balance_pgdat+0x35c/0x7a0 kswapd+0x205/0x410 kthread+0xf0/0x120 ret_from_fork+0x29/0x50 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(sb_internal#2); lock(fs_reclaim); lock(sb_internal#2); *** DEADLOCK *** 3 locks held by kswapd0/46: #0: ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0 #1: ffffffffabe50270 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x113/0x290 #2: ffff8c6543abd0e0 (&type->s_umount_key#44){++++}-{3:3}, at: super_cache_scan+0x38/0x1f0 stack backtrace: CPU: 0 PID: 46 Comm: kswapd0 Not tainted 6.3.0-rc7+ #1167 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x58/0x90 check_noncircular+0xd6/0x100 ? save_trace+0x3f/0x310 ? add_lock_to_list+0x97/0x120 __lock_acquire+0x1435/0x21a0 lock_acquire+0xc2/0x2b0 ? btrfs_commit_inode_delayed_inode+0x5f/0x120 start_transaction+0x401/0x730 ? btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_evict_inode+0x292/0x3d0 ? lock_release+0x134/0x270 ? __pfx_wake_bit_function+0x10/0x10 evict+0xcc/0x1d0 inode_lru_isolate+0x14d/0x1e0 __list_lru_walk_one+0xbe/0x1c0 ? __pfx_inode_lru_isolate+0x10/0x10 ? __pfx_inode_lru_isolate+0x10/0x10 list_lru_walk_one+0x58/0x80 prune_icache_sb+0x39/0x60 super_cache_scan+0x161/0x1f0 do_shrink_slab+0x163/0x340 shrink_slab+0x1d3/0x290 shrink_node+0x300/0x720 balance_pgdat+0x35c/0x7a0 kswapd+0x205/0x410 ? __pfx_autoremove_wake_function+0x10/0x10 ? __pfx_kswapd+0x10/0x10 kthread+0xf0/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50 </TASK> This happens because when we abort the transaction in the transaction commit path we call invalidate_inode_pages2_range on our block group cache inodes (if we have space cache v1) and any delalloc inodes we may have. The plain invalidate_inode_pages2_range() call passes through GFP_KERNEL, which makes sense in most cases, but not here. Wrap these two invalidate callees with memalloc_nofs_save/memalloc_nofs_restore to make sure we don't end up with the fs reclaim dependency under the transaction dependency. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-11 16:45:59 +00:00
memalloc_nofs_restore(nofs_flag);
btrfs: Fix delalloc inodes invalidation during transaction abort When a transaction is aborted btrfs_cleanup_transaction is called to cleanup all the various in-flight bits and pieces which migth be active. One of those is delalloc inodes - inodes which have dirty pages which haven't been persisted yet. Currently the process of freeing such delalloc inodes in exceptional circumstances such as transaction abort boiled down to calling btrfs_invalidate_inodes whose sole job is to invalidate the dentries for all inodes related to a root. This is in fact wrong and insufficient since such delalloc inodes will likely have pending pages or ordered-extents and will be linked to the sb->s_inode_list. This means that unmounting a btrfs instance with an aborted transaction could potentially lead inodes/their pages visible to the system long after their superblock has been freed. This in turn leads to a "use-after-free" situation once page shrink is triggered. This situation could be simulated by running generic/019 which would cause such inodes to be left hanging, followed by generic/176 which causes memory pressure and page eviction which lead to touching the freed super block instance. This situation is additionally detected by the unmount code of VFS with the following message: "VFS: Busy inodes after unmount of Self-destruct in 5 seconds. Have a nice day..." Additionally btrfs hits WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree)); in free_fs_root for the same reason. This patch aims to rectify the sitaution by doing the following: 1. Change btrfs_destroy_delalloc_inodes so that it calls invalidate_inode_pages2 for every inode on the delalloc list, this ensures that all the pages of the inode are released. This function boils down to calling btrfs_releasepage. During test I observed cases where inodes on the delalloc list were having an i_count of 0, so this necessitates using igrab to be sure we are working on a non-freed inode. 2. Since calling btrfs_releasepage might queue delayed iputs move the call out to btrfs_cleanup_transaction in btrfs_error_commit_super before calling run_delayed_iputs for the last time. This is necessary to ensure that delayed iputs are run. Note: this patch is tagged for 4.14 stable but the fix applies to older versions too but needs to be backported manually due to conflicts. CC: stable@vger.kernel.org # 4.14.x: 2b8773313494: btrfs: Split btrfs_del_delalloc_inode into 2 functions CC: stable@vger.kernel.org # 4.14.x Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ add comment to igrab ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-04-27 09:21:53 +00:00
iput(inode);
}
spin_lock(&root->delalloc_lock);
}
spin_unlock(&root->delalloc_lock);
}
static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
LIST_HEAD(splice);
spin_lock(&fs_info->delalloc_root_lock);
list_splice_init(&fs_info->delalloc_roots, &splice);
while (!list_empty(&splice)) {
root = list_first_entry(&splice, struct btrfs_root,
delalloc_root);
root = btrfs_grab_root(root);
BUG_ON(!root);
spin_unlock(&fs_info->delalloc_root_lock);
btrfs_destroy_delalloc_inodes(root);
btrfs_put_root(root);
spin_lock(&fs_info->delalloc_root_lock);
}
spin_unlock(&fs_info->delalloc_root_lock);
}
static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
struct extent_io_tree *dirty_pages,
int mark)
{
struct extent_buffer *eb;
u64 start = 0;
u64 end;
while (find_first_extent_bit(dirty_pages, start, &start, &end,
mark, NULL)) {
clear_extent_bits(dirty_pages, start, end, mark);
while (start <= end) {
eb = find_extent_buffer(fs_info, start);
start += fs_info->nodesize;
if (!eb)
continue;
btrfs_tree_lock(eb);
wait_on_extent_buffer_writeback(eb);
btrfs_clear_buffer_dirty(NULL, eb);
btrfs_tree_unlock(eb);
free_extent_buffer_stale(eb);
}
}
}
static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
struct extent_io_tree *unpin)
{
u64 start;
u64 end;
while (1) {
struct extent_state *cached_state = NULL;
btrfs: fix pinned underflow after transaction aborted When running generic/475, we may get the following warning in dmesg: [ 6902.102154] WARNING: CPU: 3 PID: 18013 at fs/btrfs/extent-tree.c:9776 btrfs_free_block_groups+0x2af/0x3b0 [btrfs] [ 6902.109160] CPU: 3 PID: 18013 Comm: umount Tainted: G W O 4.19.0-rc8+ #8 [ 6902.110971] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 [ 6902.112857] RIP: 0010:btrfs_free_block_groups+0x2af/0x3b0 [btrfs] [ 6902.118921] RSP: 0018:ffffc9000459bdb0 EFLAGS: 00010286 [ 6902.120315] RAX: ffff880175050bb0 RBX: ffff8801124a8000 RCX: 0000000000170007 [ 6902.121969] RDX: 0000000000000002 RSI: 0000000000170007 RDI: ffffffff8125fb74 [ 6902.123716] RBP: ffff880175055d10 R08: 0000000000000000 R09: 0000000000000000 [ 6902.125417] R10: 0000000000000000 R11: 0000000000000000 R12: ffff880175055d88 [ 6902.127129] R13: ffff880175050bb0 R14: 0000000000000000 R15: dead000000000100 [ 6902.129060] FS: 00007f4507223780(0000) GS:ffff88017ba00000(0000) knlGS:0000000000000000 [ 6902.130996] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6902.132558] CR2: 00005623599cac78 CR3: 000000014b700001 CR4: 00000000003606e0 [ 6902.134270] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 6902.135981] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 6902.137836] Call Trace: [ 6902.138939] close_ctree+0x171/0x330 [btrfs] [ 6902.140181] ? kthread_stop+0x146/0x1f0 [ 6902.141277] generic_shutdown_super+0x6c/0x100 [ 6902.142517] kill_anon_super+0x14/0x30 [ 6902.143554] btrfs_kill_super+0x13/0x100 [btrfs] [ 6902.144790] deactivate_locked_super+0x2f/0x70 [ 6902.146014] cleanup_mnt+0x3b/0x70 [ 6902.147020] task_work_run+0x9e/0xd0 [ 6902.148036] do_syscall_64+0x470/0x600 [ 6902.149142] ? trace_hardirqs_off_thunk+0x1a/0x1c [ 6902.150375] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 6902.151640] RIP: 0033:0x7f45077a6a7b [ 6902.157324] RSP: 002b:00007ffd589f3e68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [ 6902.159187] RAX: 0000000000000000 RBX: 000055e8eec732b0 RCX: 00007f45077a6a7b [ 6902.160834] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055e8eec73490 [ 6902.162526] RBP: 0000000000000000 R08: 000055e8eec734b0 R09: 00007ffd589f26c0 [ 6902.164141] R10: 0000000000000000 R11: 0000000000000246 R12: 000055e8eec73490 [ 6902.165815] R13: 00007f4507ac61a4 R14: 0000000000000000 R15: 00007ffd589f40d8 [ 6902.167553] irq event stamp: 0 [ 6902.168998] hardirqs last enabled at (0): [<0000000000000000>] (null) [ 6902.170731] hardirqs last disabled at (0): [<ffffffff810cd810>] copy_process.part.55+0x3b0/0x1f00 [ 6902.172773] softirqs last enabled at (0): [<ffffffff810cd810>] copy_process.part.55+0x3b0/0x1f00 [ 6902.174671] softirqs last disabled at (0): [<0000000000000000>] (null) [ 6902.176407] ---[ end trace 463138c2986b275c ]--- [ 6902.177636] BTRFS info (device dm-3): space_info 4 has 273465344 free, is not full [ 6902.179453] BTRFS info (device dm-3): space_info total=276824064, used=4685824, pinned=18446744073708158976, reserved=0, may_use=0, readonly=65536 In the above line there's "pinned=18446744073708158976" which is an unsigned u64 value of -1392640, an obvious underflow. When transaction_kthread is running cleanup_transaction(), another fsstress is running btrfs_commit_transaction(). The btrfs_finish_extent_commit() may get the same range as btrfs_destroy_pinned_extent() got, which causes the pinned underflow. Fixes: d4b450cd4b33 ("Btrfs: fix race between transaction commit and empty block group removal") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-24 12:24:03 +00:00
/*
* The btrfs_finish_extent_commit() may get the same range as
* ours between find_first_extent_bit and clear_extent_dirty.
* Hence, hold the unused_bg_unpin_mutex to avoid double unpin
* the same extent range.
*/
mutex_lock(&fs_info->unused_bg_unpin_mutex);
if (!find_first_extent_bit(unpin, 0, &start, &end,
EXTENT_DIRTY, &cached_state)) {
btrfs: fix pinned underflow after transaction aborted When running generic/475, we may get the following warning in dmesg: [ 6902.102154] WARNING: CPU: 3 PID: 18013 at fs/btrfs/extent-tree.c:9776 btrfs_free_block_groups+0x2af/0x3b0 [btrfs] [ 6902.109160] CPU: 3 PID: 18013 Comm: umount Tainted: G W O 4.19.0-rc8+ #8 [ 6902.110971] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 [ 6902.112857] RIP: 0010:btrfs_free_block_groups+0x2af/0x3b0 [btrfs] [ 6902.118921] RSP: 0018:ffffc9000459bdb0 EFLAGS: 00010286 [ 6902.120315] RAX: ffff880175050bb0 RBX: ffff8801124a8000 RCX: 0000000000170007 [ 6902.121969] RDX: 0000000000000002 RSI: 0000000000170007 RDI: ffffffff8125fb74 [ 6902.123716] RBP: ffff880175055d10 R08: 0000000000000000 R09: 0000000000000000 [ 6902.125417] R10: 0000000000000000 R11: 0000000000000000 R12: ffff880175055d88 [ 6902.127129] R13: ffff880175050bb0 R14: 0000000000000000 R15: dead000000000100 [ 6902.129060] FS: 00007f4507223780(0000) GS:ffff88017ba00000(0000) knlGS:0000000000000000 [ 6902.130996] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6902.132558] CR2: 00005623599cac78 CR3: 000000014b700001 CR4: 00000000003606e0 [ 6902.134270] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 6902.135981] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 6902.137836] Call Trace: [ 6902.138939] close_ctree+0x171/0x330 [btrfs] [ 6902.140181] ? kthread_stop+0x146/0x1f0 [ 6902.141277] generic_shutdown_super+0x6c/0x100 [ 6902.142517] kill_anon_super+0x14/0x30 [ 6902.143554] btrfs_kill_super+0x13/0x100 [btrfs] [ 6902.144790] deactivate_locked_super+0x2f/0x70 [ 6902.146014] cleanup_mnt+0x3b/0x70 [ 6902.147020] task_work_run+0x9e/0xd0 [ 6902.148036] do_syscall_64+0x470/0x600 [ 6902.149142] ? trace_hardirqs_off_thunk+0x1a/0x1c [ 6902.150375] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 6902.151640] RIP: 0033:0x7f45077a6a7b [ 6902.157324] RSP: 002b:00007ffd589f3e68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [ 6902.159187] RAX: 0000000000000000 RBX: 000055e8eec732b0 RCX: 00007f45077a6a7b [ 6902.160834] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055e8eec73490 [ 6902.162526] RBP: 0000000000000000 R08: 000055e8eec734b0 R09: 00007ffd589f26c0 [ 6902.164141] R10: 0000000000000000 R11: 0000000000000246 R12: 000055e8eec73490 [ 6902.165815] R13: 00007f4507ac61a4 R14: 0000000000000000 R15: 00007ffd589f40d8 [ 6902.167553] irq event stamp: 0 [ 6902.168998] hardirqs last enabled at (0): [<0000000000000000>] (null) [ 6902.170731] hardirqs last disabled at (0): [<ffffffff810cd810>] copy_process.part.55+0x3b0/0x1f00 [ 6902.172773] softirqs last enabled at (0): [<ffffffff810cd810>] copy_process.part.55+0x3b0/0x1f00 [ 6902.174671] softirqs last disabled at (0): [<0000000000000000>] (null) [ 6902.176407] ---[ end trace 463138c2986b275c ]--- [ 6902.177636] BTRFS info (device dm-3): space_info 4 has 273465344 free, is not full [ 6902.179453] BTRFS info (device dm-3): space_info total=276824064, used=4685824, pinned=18446744073708158976, reserved=0, may_use=0, readonly=65536 In the above line there's "pinned=18446744073708158976" which is an unsigned u64 value of -1392640, an obvious underflow. When transaction_kthread is running cleanup_transaction(), another fsstress is running btrfs_commit_transaction(). The btrfs_finish_extent_commit() may get the same range as btrfs_destroy_pinned_extent() got, which causes the pinned underflow. Fixes: d4b450cd4b33 ("Btrfs: fix race between transaction commit and empty block group removal") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-24 12:24:03 +00:00
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
break;
btrfs: fix pinned underflow after transaction aborted When running generic/475, we may get the following warning in dmesg: [ 6902.102154] WARNING: CPU: 3 PID: 18013 at fs/btrfs/extent-tree.c:9776 btrfs_free_block_groups+0x2af/0x3b0 [btrfs] [ 6902.109160] CPU: 3 PID: 18013 Comm: umount Tainted: G W O 4.19.0-rc8+ #8 [ 6902.110971] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 [ 6902.112857] RIP: 0010:btrfs_free_block_groups+0x2af/0x3b0 [btrfs] [ 6902.118921] RSP: 0018:ffffc9000459bdb0 EFLAGS: 00010286 [ 6902.120315] RAX: ffff880175050bb0 RBX: ffff8801124a8000 RCX: 0000000000170007 [ 6902.121969] RDX: 0000000000000002 RSI: 0000000000170007 RDI: ffffffff8125fb74 [ 6902.123716] RBP: ffff880175055d10 R08: 0000000000000000 R09: 0000000000000000 [ 6902.125417] R10: 0000000000000000 R11: 0000000000000000 R12: ffff880175055d88 [ 6902.127129] R13: ffff880175050bb0 R14: 0000000000000000 R15: dead000000000100 [ 6902.129060] FS: 00007f4507223780(0000) GS:ffff88017ba00000(0000) knlGS:0000000000000000 [ 6902.130996] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6902.132558] CR2: 00005623599cac78 CR3: 000000014b700001 CR4: 00000000003606e0 [ 6902.134270] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 6902.135981] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 6902.137836] Call Trace: [ 6902.138939] close_ctree+0x171/0x330 [btrfs] [ 6902.140181] ? kthread_stop+0x146/0x1f0 [ 6902.141277] generic_shutdown_super+0x6c/0x100 [ 6902.142517] kill_anon_super+0x14/0x30 [ 6902.143554] btrfs_kill_super+0x13/0x100 [btrfs] [ 6902.144790] deactivate_locked_super+0x2f/0x70 [ 6902.146014] cleanup_mnt+0x3b/0x70 [ 6902.147020] task_work_run+0x9e/0xd0 [ 6902.148036] do_syscall_64+0x470/0x600 [ 6902.149142] ? trace_hardirqs_off_thunk+0x1a/0x1c [ 6902.150375] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 6902.151640] RIP: 0033:0x7f45077a6a7b [ 6902.157324] RSP: 002b:00007ffd589f3e68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [ 6902.159187] RAX: 0000000000000000 RBX: 000055e8eec732b0 RCX: 00007f45077a6a7b [ 6902.160834] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055e8eec73490 [ 6902.162526] RBP: 0000000000000000 R08: 000055e8eec734b0 R09: 00007ffd589f26c0 [ 6902.164141] R10: 0000000000000000 R11: 0000000000000246 R12: 000055e8eec73490 [ 6902.165815] R13: 00007f4507ac61a4 R14: 0000000000000000 R15: 00007ffd589f40d8 [ 6902.167553] irq event stamp: 0 [ 6902.168998] hardirqs last enabled at (0): [<0000000000000000>] (null) [ 6902.170731] hardirqs last disabled at (0): [<ffffffff810cd810>] copy_process.part.55+0x3b0/0x1f00 [ 6902.172773] softirqs last enabled at (0): [<ffffffff810cd810>] copy_process.part.55+0x3b0/0x1f00 [ 6902.174671] softirqs last disabled at (0): [<0000000000000000>] (null) [ 6902.176407] ---[ end trace 463138c2986b275c ]--- [ 6902.177636] BTRFS info (device dm-3): space_info 4 has 273465344 free, is not full [ 6902.179453] BTRFS info (device dm-3): space_info total=276824064, used=4685824, pinned=18446744073708158976, reserved=0, may_use=0, readonly=65536 In the above line there's "pinned=18446744073708158976" which is an unsigned u64 value of -1392640, an obvious underflow. When transaction_kthread is running cleanup_transaction(), another fsstress is running btrfs_commit_transaction(). The btrfs_finish_extent_commit() may get the same range as btrfs_destroy_pinned_extent() got, which causes the pinned underflow. Fixes: d4b450cd4b33 ("Btrfs: fix race between transaction commit and empty block group removal") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-24 12:24:03 +00:00
}
clear_extent_dirty(unpin, start, end, &cached_state);
free_extent_state(cached_state);
btrfs_error_unpin_extent_range(fs_info, start, end);
btrfs: fix pinned underflow after transaction aborted When running generic/475, we may get the following warning in dmesg: [ 6902.102154] WARNING: CPU: 3 PID: 18013 at fs/btrfs/extent-tree.c:9776 btrfs_free_block_groups+0x2af/0x3b0 [btrfs] [ 6902.109160] CPU: 3 PID: 18013 Comm: umount Tainted: G W O 4.19.0-rc8+ #8 [ 6902.110971] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015 [ 6902.112857] RIP: 0010:btrfs_free_block_groups+0x2af/0x3b0 [btrfs] [ 6902.118921] RSP: 0018:ffffc9000459bdb0 EFLAGS: 00010286 [ 6902.120315] RAX: ffff880175050bb0 RBX: ffff8801124a8000 RCX: 0000000000170007 [ 6902.121969] RDX: 0000000000000002 RSI: 0000000000170007 RDI: ffffffff8125fb74 [ 6902.123716] RBP: ffff880175055d10 R08: 0000000000000000 R09: 0000000000000000 [ 6902.125417] R10: 0000000000000000 R11: 0000000000000000 R12: ffff880175055d88 [ 6902.127129] R13: ffff880175050bb0 R14: 0000000000000000 R15: dead000000000100 [ 6902.129060] FS: 00007f4507223780(0000) GS:ffff88017ba00000(0000) knlGS:0000000000000000 [ 6902.130996] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6902.132558] CR2: 00005623599cac78 CR3: 000000014b700001 CR4: 00000000003606e0 [ 6902.134270] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 6902.135981] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 6902.137836] Call Trace: [ 6902.138939] close_ctree+0x171/0x330 [btrfs] [ 6902.140181] ? kthread_stop+0x146/0x1f0 [ 6902.141277] generic_shutdown_super+0x6c/0x100 [ 6902.142517] kill_anon_super+0x14/0x30 [ 6902.143554] btrfs_kill_super+0x13/0x100 [btrfs] [ 6902.144790] deactivate_locked_super+0x2f/0x70 [ 6902.146014] cleanup_mnt+0x3b/0x70 [ 6902.147020] task_work_run+0x9e/0xd0 [ 6902.148036] do_syscall_64+0x470/0x600 [ 6902.149142] ? trace_hardirqs_off_thunk+0x1a/0x1c [ 6902.150375] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 6902.151640] RIP: 0033:0x7f45077a6a7b [ 6902.157324] RSP: 002b:00007ffd589f3e68 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [ 6902.159187] RAX: 0000000000000000 RBX: 000055e8eec732b0 RCX: 00007f45077a6a7b [ 6902.160834] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055e8eec73490 [ 6902.162526] RBP: 0000000000000000 R08: 000055e8eec734b0 R09: 00007ffd589f26c0 [ 6902.164141] R10: 0000000000000000 R11: 0000000000000246 R12: 000055e8eec73490 [ 6902.165815] R13: 00007f4507ac61a4 R14: 0000000000000000 R15: 00007ffd589f40d8 [ 6902.167553] irq event stamp: 0 [ 6902.168998] hardirqs last enabled at (0): [<0000000000000000>] (null) [ 6902.170731] hardirqs last disabled at (0): [<ffffffff810cd810>] copy_process.part.55+0x3b0/0x1f00 [ 6902.172773] softirqs last enabled at (0): [<ffffffff810cd810>] copy_process.part.55+0x3b0/0x1f00 [ 6902.174671] softirqs last disabled at (0): [<0000000000000000>] (null) [ 6902.176407] ---[ end trace 463138c2986b275c ]--- [ 6902.177636] BTRFS info (device dm-3): space_info 4 has 273465344 free, is not full [ 6902.179453] BTRFS info (device dm-3): space_info total=276824064, used=4685824, pinned=18446744073708158976, reserved=0, may_use=0, readonly=65536 In the above line there's "pinned=18446744073708158976" which is an unsigned u64 value of -1392640, an obvious underflow. When transaction_kthread is running cleanup_transaction(), another fsstress is running btrfs_commit_transaction(). The btrfs_finish_extent_commit() may get the same range as btrfs_destroy_pinned_extent() got, which causes the pinned underflow. Fixes: d4b450cd4b33 ("Btrfs: fix race between transaction commit and empty block group removal") CC: stable@vger.kernel.org # 4.4+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-24 12:24:03 +00:00
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
cond_resched();
}
}
static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
{
struct inode *inode;
inode = cache->io_ctl.inode;
if (inode) {
btrfs: use nofs when cleaning up aborted transactions Our CI system caught a lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 6.3.0-rc7+ #1167 Not tainted ------------------------------------------------------ kswapd0/46 is trying to acquire lock: ffff8c6543abd650 (sb_internal#2){++++}-{0:0}, at: btrfs_commit_inode_delayed_inode+0x5f/0x120 but task is already holding lock: ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0xa5/0xe0 kmem_cache_alloc+0x31/0x2c0 alloc_extent_state+0x1d/0xd0 __clear_extent_bit+0x2e0/0x4f0 try_release_extent_mapping+0x216/0x280 btrfs_release_folio+0x2e/0x90 invalidate_inode_pages2_range+0x397/0x470 btrfs_cleanup_dirty_bgs+0x9e/0x210 btrfs_cleanup_one_transaction+0x22/0x760 btrfs_commit_transaction+0x3b7/0x13a0 create_subvol+0x59b/0x970 btrfs_mksubvol+0x435/0x4f0 __btrfs_ioctl_snap_create+0x11e/0x1b0 btrfs_ioctl_snap_create_v2+0xbf/0x140 btrfs_ioctl+0xa45/0x28f0 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc -> #0 (sb_internal#2){++++}-{0:0}: __lock_acquire+0x1435/0x21a0 lock_acquire+0xc2/0x2b0 start_transaction+0x401/0x730 btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_evict_inode+0x292/0x3d0 evict+0xcc/0x1d0 inode_lru_isolate+0x14d/0x1e0 __list_lru_walk_one+0xbe/0x1c0 list_lru_walk_one+0x58/0x80 prune_icache_sb+0x39/0x60 super_cache_scan+0x161/0x1f0 do_shrink_slab+0x163/0x340 shrink_slab+0x1d3/0x290 shrink_node+0x300/0x720 balance_pgdat+0x35c/0x7a0 kswapd+0x205/0x410 kthread+0xf0/0x120 ret_from_fork+0x29/0x50 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(sb_internal#2); lock(fs_reclaim); lock(sb_internal#2); *** DEADLOCK *** 3 locks held by kswapd0/46: #0: ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0 #1: ffffffffabe50270 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x113/0x290 #2: ffff8c6543abd0e0 (&type->s_umount_key#44){++++}-{3:3}, at: super_cache_scan+0x38/0x1f0 stack backtrace: CPU: 0 PID: 46 Comm: kswapd0 Not tainted 6.3.0-rc7+ #1167 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x58/0x90 check_noncircular+0xd6/0x100 ? save_trace+0x3f/0x310 ? add_lock_to_list+0x97/0x120 __lock_acquire+0x1435/0x21a0 lock_acquire+0xc2/0x2b0 ? btrfs_commit_inode_delayed_inode+0x5f/0x120 start_transaction+0x401/0x730 ? btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_evict_inode+0x292/0x3d0 ? lock_release+0x134/0x270 ? __pfx_wake_bit_function+0x10/0x10 evict+0xcc/0x1d0 inode_lru_isolate+0x14d/0x1e0 __list_lru_walk_one+0xbe/0x1c0 ? __pfx_inode_lru_isolate+0x10/0x10 ? __pfx_inode_lru_isolate+0x10/0x10 list_lru_walk_one+0x58/0x80 prune_icache_sb+0x39/0x60 super_cache_scan+0x161/0x1f0 do_shrink_slab+0x163/0x340 shrink_slab+0x1d3/0x290 shrink_node+0x300/0x720 balance_pgdat+0x35c/0x7a0 kswapd+0x205/0x410 ? __pfx_autoremove_wake_function+0x10/0x10 ? __pfx_kswapd+0x10/0x10 kthread+0xf0/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50 </TASK> This happens because when we abort the transaction in the transaction commit path we call invalidate_inode_pages2_range on our block group cache inodes (if we have space cache v1) and any delalloc inodes we may have. The plain invalidate_inode_pages2_range() call passes through GFP_KERNEL, which makes sense in most cases, but not here. Wrap these two invalidate callees with memalloc_nofs_save/memalloc_nofs_restore to make sure we don't end up with the fs reclaim dependency under the transaction dependency. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-11 16:45:59 +00:00
unsigned int nofs_flag;
nofs_flag = memalloc_nofs_save();
invalidate_inode_pages2(inode->i_mapping);
btrfs: use nofs when cleaning up aborted transactions Our CI system caught a lockdep splat: ====================================================== WARNING: possible circular locking dependency detected 6.3.0-rc7+ #1167 Not tainted ------------------------------------------------------ kswapd0/46 is trying to acquire lock: ffff8c6543abd650 (sb_internal#2){++++}-{0:0}, at: btrfs_commit_inode_delayed_inode+0x5f/0x120 but task is already holding lock: ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (fs_reclaim){+.+.}-{0:0}: fs_reclaim_acquire+0xa5/0xe0 kmem_cache_alloc+0x31/0x2c0 alloc_extent_state+0x1d/0xd0 __clear_extent_bit+0x2e0/0x4f0 try_release_extent_mapping+0x216/0x280 btrfs_release_folio+0x2e/0x90 invalidate_inode_pages2_range+0x397/0x470 btrfs_cleanup_dirty_bgs+0x9e/0x210 btrfs_cleanup_one_transaction+0x22/0x760 btrfs_commit_transaction+0x3b7/0x13a0 create_subvol+0x59b/0x970 btrfs_mksubvol+0x435/0x4f0 __btrfs_ioctl_snap_create+0x11e/0x1b0 btrfs_ioctl_snap_create_v2+0xbf/0x140 btrfs_ioctl+0xa45/0x28f0 __x64_sys_ioctl+0x88/0xc0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc -> #0 (sb_internal#2){++++}-{0:0}: __lock_acquire+0x1435/0x21a0 lock_acquire+0xc2/0x2b0 start_transaction+0x401/0x730 btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_evict_inode+0x292/0x3d0 evict+0xcc/0x1d0 inode_lru_isolate+0x14d/0x1e0 __list_lru_walk_one+0xbe/0x1c0 list_lru_walk_one+0x58/0x80 prune_icache_sb+0x39/0x60 super_cache_scan+0x161/0x1f0 do_shrink_slab+0x163/0x340 shrink_slab+0x1d3/0x290 shrink_node+0x300/0x720 balance_pgdat+0x35c/0x7a0 kswapd+0x205/0x410 kthread+0xf0/0x120 ret_from_fork+0x29/0x50 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); lock(sb_internal#2); lock(fs_reclaim); lock(sb_internal#2); *** DEADLOCK *** 3 locks held by kswapd0/46: #0: ffffffffabe61b40 (fs_reclaim){+.+.}-{0:0}, at: balance_pgdat+0x4aa/0x7a0 #1: ffffffffabe50270 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x113/0x290 #2: ffff8c6543abd0e0 (&type->s_umount_key#44){++++}-{3:3}, at: super_cache_scan+0x38/0x1f0 stack backtrace: CPU: 0 PID: 46 Comm: kswapd0 Not tainted 6.3.0-rc7+ #1167 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x58/0x90 check_noncircular+0xd6/0x100 ? save_trace+0x3f/0x310 ? add_lock_to_list+0x97/0x120 __lock_acquire+0x1435/0x21a0 lock_acquire+0xc2/0x2b0 ? btrfs_commit_inode_delayed_inode+0x5f/0x120 start_transaction+0x401/0x730 ? btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_commit_inode_delayed_inode+0x5f/0x120 btrfs_evict_inode+0x292/0x3d0 ? lock_release+0x134/0x270 ? __pfx_wake_bit_function+0x10/0x10 evict+0xcc/0x1d0 inode_lru_isolate+0x14d/0x1e0 __list_lru_walk_one+0xbe/0x1c0 ? __pfx_inode_lru_isolate+0x10/0x10 ? __pfx_inode_lru_isolate+0x10/0x10 list_lru_walk_one+0x58/0x80 prune_icache_sb+0x39/0x60 super_cache_scan+0x161/0x1f0 do_shrink_slab+0x163/0x340 shrink_slab+0x1d3/0x290 shrink_node+0x300/0x720 balance_pgdat+0x35c/0x7a0 kswapd+0x205/0x410 ? __pfx_autoremove_wake_function+0x10/0x10 ? __pfx_kswapd+0x10/0x10 kthread+0xf0/0x120 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50 </TASK> This happens because when we abort the transaction in the transaction commit path we call invalidate_inode_pages2_range on our block group cache inodes (if we have space cache v1) and any delalloc inodes we may have. The plain invalidate_inode_pages2_range() call passes through GFP_KERNEL, which makes sense in most cases, but not here. Wrap these two invalidate callees with memalloc_nofs_save/memalloc_nofs_restore to make sure we don't end up with the fs reclaim dependency under the transaction dependency. CC: stable@vger.kernel.org # 4.14+ Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-05-11 16:45:59 +00:00
memalloc_nofs_restore(nofs_flag);
BTRFS_I(inode)->generation = 0;
cache->io_ctl.inode = NULL;
iput(inode);
}
btrfs: fix space cache memory leak after transaction abort If a transaction aborts it can cause a memory leak of the pages array of a block group's io_ctl structure. The following steps explain how that can happen: 1) Transaction N is committing, currently in state TRANS_STATE_UNBLOCKED and it's about to start writing out dirty extent buffers; 2) Transaction N + 1 already started and another task, task A, just called btrfs_commit_transaction() on it; 3) Block group B was dirtied (extents allocated from it) by transaction N + 1, so when task A calls btrfs_start_dirty_block_groups(), at the very beginning of the transaction commit, it starts writeback for the block group's space cache by calling btrfs_write_out_cache(), which allocates the pages array for the block group's io_ctl with a call to io_ctl_init(). Block group A is added to the io_list of transaction N + 1 by btrfs_start_dirty_block_groups(); 4) While transaction N's commit is writing out the extent buffers, it gets an IO error and aborts transaction N, also setting the file system to RO mode; 5) Task A has already returned from btrfs_start_dirty_block_groups(), is at btrfs_commit_transaction() and has set transaction N + 1 state to TRANS_STATE_COMMIT_START. Immediately after that it checks that the filesystem was turned to RO mode, due to transaction N's abort, and jumps to the "cleanup_transaction" label. After that we end up at btrfs_cleanup_one_transaction() which calls btrfs_cleanup_dirty_bgs(). That helper finds block group B in the transaction's io_list but it never releases the pages array of the block group's io_ctl, resulting in a memory leak. In fact at the point when we are at btrfs_cleanup_dirty_bgs(), the pages array points to pages that were already released by us at __btrfs_write_out_cache() through the call to io_ctl_drop_pages(). We end up freeing the pages array only after waiting for the ordered extent to complete through btrfs_wait_cache_io(), which calls io_ctl_free() to do that. But in the transaction abort case we don't wait for the space cache's ordered extent to complete through a call to btrfs_wait_cache_io(), so that's why we end up with a memory leak - we wait for the ordered extent to complete indirectly by shutting down the work queues and waiting for any jobs in them to complete before returning from close_ctree(). We can solve the leak simply by freeing the pages array right after releasing the pages (with the call to io_ctl_drop_pages()) at __btrfs_write_out_cache(), since we will never use it anymore after that and the pages array points to already released pages at that point, which is currently not a problem since no one will use it after that, but not a good practice anyway since it can easily lead to use-after-free issues. So fix this by freeing the pages array right after releasing the pages at __btrfs_write_out_cache(). This issue can often be reproduced with test case generic/475 from fstests and kmemleak can detect it and reports it with the following trace: unreferenced object 0xffff9bbf009fa600 (size 512): comm "fsstress", pid 38807, jiffies 4298504428 (age 22.028s) hex dump (first 32 bytes): 00 a0 7c 4d 3d ed ff ff 40 a0 7c 4d 3d ed ff ff ..|M=...@.|M=... 80 a0 7c 4d 3d ed ff ff c0 a0 7c 4d 3d ed ff ff ..|M=.....|M=... backtrace: [<00000000f4b5cfe2>] __kmalloc+0x1a8/0x3e0 [<0000000028665e7f>] io_ctl_init+0xa7/0x120 [btrfs] [<00000000a1f95b2d>] __btrfs_write_out_cache+0x86/0x4a0 [btrfs] [<00000000207ea1b0>] btrfs_write_out_cache+0x7f/0xf0 [btrfs] [<00000000af21f534>] btrfs_start_dirty_block_groups+0x27b/0x580 [btrfs] [<00000000c3c23d44>] btrfs_commit_transaction+0xa6f/0xe70 [btrfs] [<000000009588930c>] create_subvol+0x581/0x9a0 [btrfs] [<000000009ef2fd7f>] btrfs_mksubvol+0x3fb/0x4a0 [btrfs] [<00000000474e5187>] __btrfs_ioctl_snap_create+0x119/0x1a0 [btrfs] [<00000000708ee349>] btrfs_ioctl_snap_create_v2+0xb0/0xf0 [btrfs] [<00000000ea60106f>] btrfs_ioctl+0x12c/0x3130 [btrfs] [<000000005c923d6d>] __x64_sys_ioctl+0x83/0xb0 [<0000000043ace2c9>] do_syscall_64+0x33/0x80 [<00000000904efbce>] entry_SYSCALL_64_after_hwframe+0x44/0xa9 CC: stable@vger.kernel.org # 4.9+ Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-08-14 10:04:09 +00:00
ASSERT(cache->io_ctl.pages == NULL);
btrfs_put_block_group(cache);
}
void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_block_group *cache;
spin_lock(&cur_trans->dirty_bgs_lock);
while (!list_empty(&cur_trans->dirty_bgs)) {
cache = list_first_entry(&cur_trans->dirty_bgs,
struct btrfs_block_group,
dirty_list);
if (!list_empty(&cache->io_list)) {
spin_unlock(&cur_trans->dirty_bgs_lock);
list_del_init(&cache->io_list);
btrfs_cleanup_bg_io(cache);
spin_lock(&cur_trans->dirty_bgs_lock);
}
list_del_init(&cache->dirty_list);
spin_lock(&cache->lock);
cache->disk_cache_state = BTRFS_DC_ERROR;
spin_unlock(&cache->lock);
spin_unlock(&cur_trans->dirty_bgs_lock);
btrfs_put_block_group(cache);
btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
spin_lock(&cur_trans->dirty_bgs_lock);
}
spin_unlock(&cur_trans->dirty_bgs_lock);
/*
* Refer to the definition of io_bgs member for details why it's safe
* to use it without any locking
*/
while (!list_empty(&cur_trans->io_bgs)) {
cache = list_first_entry(&cur_trans->io_bgs,
struct btrfs_block_group,
io_list);
list_del_init(&cache->io_list);
spin_lock(&cache->lock);
cache->disk_cache_state = BTRFS_DC_ERROR;
spin_unlock(&cache->lock);
btrfs_cleanup_bg_io(cache);
}
}
static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *gang[8];
int i;
int ret;
spin_lock(&fs_info->fs_roots_radix_lock);
while (1) {
ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
(void **)gang, 0,
ARRAY_SIZE(gang),
BTRFS_ROOT_TRANS_TAG);
if (ret == 0)
break;
for (i = 0; i < ret; i++) {
struct btrfs_root *root = gang[i];
btrfs_qgroup_free_meta_all_pertrans(root);
radix_tree_tag_clear(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid,
BTRFS_ROOT_TRANS_TAG);
}
}
spin_unlock(&fs_info->fs_roots_radix_lock);
}
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_device *dev, *tmp;
btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
ASSERT(list_empty(&cur_trans->dirty_bgs));
ASSERT(list_empty(&cur_trans->io_bgs));
list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
post_commit_list) {
list_del_init(&dev->post_commit_list);
}
btrfs_destroy_delayed_refs(cur_trans, fs_info);
Btrfs: make the state of the transaction more readable We used 3 variants to track the state of the transaction, it was complex and wasted the memory space. Besides that, it was hard to understand that which types of the transaction handles should be blocked in each transaction state, so the developers often made mistakes. This patch improved the above problem. In this patch, we define 6 states for the transaction, enum btrfs_trans_state { TRANS_STATE_RUNNING = 0, TRANS_STATE_BLOCKED = 1, TRANS_STATE_COMMIT_START = 2, TRANS_STATE_COMMIT_DOING = 3, TRANS_STATE_UNBLOCKED = 4, TRANS_STATE_COMPLETED = 5, TRANS_STATE_MAX = 6, } and just use 1 variant to track those state. In order to make the blocked handle types for each state more clear, we introduce a array: unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { [TRANS_STATE_RUNNING] = 0U, [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | __TRANS_START), [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH), [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN), [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN | __TRANS_JOIN_NOLOCK), [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN | __TRANS_JOIN_NOLOCK), } it is very intuitionistic. Besides that, because we remove ->in_commit in transaction structure, so the lock ->commit_lock which was used to protect it is unnecessary, remove ->commit_lock. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-17 03:53:43 +00:00
cur_trans->state = TRANS_STATE_COMMIT_START;
wake_up(&fs_info->transaction_blocked_wait);
Btrfs: make the state of the transaction more readable We used 3 variants to track the state of the transaction, it was complex and wasted the memory space. Besides that, it was hard to understand that which types of the transaction handles should be blocked in each transaction state, so the developers often made mistakes. This patch improved the above problem. In this patch, we define 6 states for the transaction, enum btrfs_trans_state { TRANS_STATE_RUNNING = 0, TRANS_STATE_BLOCKED = 1, TRANS_STATE_COMMIT_START = 2, TRANS_STATE_COMMIT_DOING = 3, TRANS_STATE_UNBLOCKED = 4, TRANS_STATE_COMPLETED = 5, TRANS_STATE_MAX = 6, } and just use 1 variant to track those state. In order to make the blocked handle types for each state more clear, we introduce a array: unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { [TRANS_STATE_RUNNING] = 0U, [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | __TRANS_START), [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH), [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN), [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN | __TRANS_JOIN_NOLOCK), [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN | __TRANS_JOIN_NOLOCK), } it is very intuitionistic. Besides that, because we remove ->in_commit in transaction structure, so the lock ->commit_lock which was used to protect it is unnecessary, remove ->commit_lock. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-17 03:53:43 +00:00
cur_trans->state = TRANS_STATE_UNBLOCKED;
wake_up(&fs_info->transaction_wait);
btrfs_destroy_delayed_inodes(fs_info);
btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
EXTENT_DIRTY);
btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
btrfs_free_all_qgroup_pertrans(fs_info);
Btrfs: make the state of the transaction more readable We used 3 variants to track the state of the transaction, it was complex and wasted the memory space. Besides that, it was hard to understand that which types of the transaction handles should be blocked in each transaction state, so the developers often made mistakes. This patch improved the above problem. In this patch, we define 6 states for the transaction, enum btrfs_trans_state { TRANS_STATE_RUNNING = 0, TRANS_STATE_BLOCKED = 1, TRANS_STATE_COMMIT_START = 2, TRANS_STATE_COMMIT_DOING = 3, TRANS_STATE_UNBLOCKED = 4, TRANS_STATE_COMPLETED = 5, TRANS_STATE_MAX = 6, } and just use 1 variant to track those state. In order to make the blocked handle types for each state more clear, we introduce a array: unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { [TRANS_STATE_RUNNING] = 0U, [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | __TRANS_START), [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH), [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN), [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN | __TRANS_JOIN_NOLOCK), [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN | __TRANS_JOIN_NOLOCK), } it is very intuitionistic. Besides that, because we remove ->in_commit in transaction structure, so the lock ->commit_lock which was used to protect it is unnecessary, remove ->commit_lock. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-17 03:53:43 +00:00
cur_trans->state =TRANS_STATE_COMPLETED;
wake_up(&cur_trans->commit_wait);
}
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
{
struct btrfs_transaction *t;
mutex_lock(&fs_info->transaction_kthread_mutex);
spin_lock(&fs_info->trans_lock);
while (!list_empty(&fs_info->trans_list)) {
t = list_first_entry(&fs_info->trans_list,
struct btrfs_transaction, list);
btrfs: do not block starts waiting on previous transaction commit Internally I got a report of very long stalls on normal operations like creating a new file when auto relocation was running. The reporter used the 'bpf offcputime' tracer to show that we would get stuck in start_transaction for 5 to 30 seconds, and were always being woken up by the transaction commit. Using my timing-everything script, which times how long a function takes and what percentage of that total time is taken up by its children, I saw several traces like this 1083 took 32812902424 ns 29929002926 ns 91.2110% wait_for_commit_duration 25568 ns 7.7920e-05% commit_fs_roots_duration 1007751 ns 0.00307% commit_cowonly_roots_duration 446855602 ns 1.36182% btrfs_run_delayed_refs_duration 271980 ns 0.00082% btrfs_run_delayed_items_duration 2008 ns 6.1195e-06% btrfs_apply_pending_changes_duration 9656 ns 2.9427e-05% switch_commit_roots_duration 1598 ns 4.8700e-06% btrfs_commit_device_sizes_duration 4314 ns 1.3147e-05% btrfs_free_log_root_tree_duration Here I was only tracing functions that happen where we are between START_COMMIT and UNBLOCKED in order to see what would be keeping us blocked for so long. The wait_for_commit() we do is where we wait for a previous transaction that hasn't completed it's commit. This can include all of the unpin work and other cleanups, which tends to be the longest part of our transaction commit. There is no reason we should be blocking new things from entering the transaction at this point, it just adds to random latency spikes for no reason. Fix this by adding a PREP stage. This allows us to properly deal with multiple committers coming in at the same time, we retain the behavior that the winner waits on the previous transaction and the losers all wait for this transaction commit to occur. Nothing else is blocked during the PREP stage, and then once the wait is complete we switch to COMMIT_START and all of the same behavior as before is maintained. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2023-08-24 20:59:22 +00:00
if (t->state >= TRANS_STATE_COMMIT_PREP) {
refcount_inc(&t->use_count);
spin_unlock(&fs_info->trans_lock);
btrfs_wait_for_commit(fs_info, t->transid);
btrfs_put_transaction(t);
spin_lock(&fs_info->trans_lock);
continue;
}
if (t == fs_info->running_transaction) {
t->state = TRANS_STATE_COMMIT_DOING;
spin_unlock(&fs_info->trans_lock);
/*
* We wait for 0 num_writers since we don't hold a trans
* handle open currently for this transaction.
*/
wait_event(t->writer_wait,
atomic_read(&t->num_writers) == 0);
} else {
spin_unlock(&fs_info->trans_lock);
}
btrfs_cleanup_one_transaction(t, fs_info);
Btrfs: make the state of the transaction more readable We used 3 variants to track the state of the transaction, it was complex and wasted the memory space. Besides that, it was hard to understand that which types of the transaction handles should be blocked in each transaction state, so the developers often made mistakes. This patch improved the above problem. In this patch, we define 6 states for the transaction, enum btrfs_trans_state { TRANS_STATE_RUNNING = 0, TRANS_STATE_BLOCKED = 1, TRANS_STATE_COMMIT_START = 2, TRANS_STATE_COMMIT_DOING = 3, TRANS_STATE_UNBLOCKED = 4, TRANS_STATE_COMPLETED = 5, TRANS_STATE_MAX = 6, } and just use 1 variant to track those state. In order to make the blocked handle types for each state more clear, we introduce a array: unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { [TRANS_STATE_RUNNING] = 0U, [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | __TRANS_START), [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH), [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN), [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN | __TRANS_JOIN_NOLOCK), [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | __TRANS_START | __TRANS_ATTACH | __TRANS_JOIN | __TRANS_JOIN_NOLOCK), } it is very intuitionistic. Besides that, because we remove ->in_commit in transaction structure, so the lock ->commit_lock which was used to protect it is unnecessary, remove ->commit_lock. Signed-off-by: Miao Xie <miaox@cn.fujitsu.com> Signed-off-by: Josef Bacik <jbacik@fusionio.com>
2013-05-17 03:53:43 +00:00
spin_lock(&fs_info->trans_lock);
if (t == fs_info->running_transaction)
fs_info->running_transaction = NULL;
list_del_init(&t->list);
spin_unlock(&fs_info->trans_lock);
btrfs_put_transaction(t);
trace_btrfs_transaction_commit(fs_info);
spin_lock(&fs_info->trans_lock);
}
spin_unlock(&fs_info->trans_lock);
btrfs_destroy_all_ordered_extents(fs_info);
btrfs_destroy_delayed_inodes(fs_info);
btrfs_assert_delayed_root_empty(fs_info);
btrfs_destroy_all_delalloc_inodes(fs_info);
btrfs: drop logs when we've aborted a transaction Dave reported a problem where we were panicing with generic/475 with misc-5.7. This is because we were doing IO after we had stopped all of the worker threads, because we do the log tree cleanup on roots at drop time. Cleaning up the log tree will always need to do reads if we happened to have evicted the blocks from memory. Because of this simply add a helper to btrfs_cleanup_transaction() that will go through and drop all of the log roots. This gets run before we do the close_ctree() work, and thus we are allowed to do any reads that we would need. I ran this through many iterations of generic/475 with constrained memory and I did not see the issue. general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6b6b: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI CPU: 2 PID: 12359 Comm: umount Tainted: G W 5.6.0-rc7-btrfs-next-58 #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 RIP: 0010:btrfs_queue_work+0x33/0x1c0 [btrfs] RSP: 0018:ffff9cfb015937d8 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff8eb5e339ed80 RCX: 0000000000000000 RDX: 0000000000000001 RSI: ffff8eb5eb33b770 RDI: ffff8eb5e37a0460 RBP: ffff8eb5eb33b770 R08: 000000000000020c R09: ffffffff9fc09ac0 R10: 0000000000000007 R11: 0000000000000000 R12: 6b6b6b6b6b6b6b6b R13: ffff9cfb00229040 R14: 0000000000000008 R15: ffff8eb5d3868000 FS: 00007f167ea022c0(0000) GS:ffff8eb5fae00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f167e5e0cb1 CR3: 0000000138c18004 CR4: 00000000003606e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: btrfs_end_bio+0x81/0x130 [btrfs] __split_and_process_bio+0xaf/0x4e0 [dm_mod] ? percpu_counter_add_batch+0xa3/0x120 dm_process_bio+0x98/0x290 [dm_mod] ? generic_make_request+0xfb/0x410 dm_make_request+0x4d/0x120 [dm_mod] ? generic_make_request+0xfb/0x410 generic_make_request+0x12a/0x410 ? submit_bio+0x38/0x160 submit_bio+0x38/0x160 ? percpu_counter_add_batch+0xa3/0x120 btrfs_map_bio+0x289/0x570 [btrfs] ? kmem_cache_alloc+0x24d/0x300 btree_submit_bio_hook+0x79/0xc0 [btrfs] submit_one_bio+0x31/0x50 [btrfs] read_extent_buffer_pages+0x2fe/0x450 [btrfs] btree_read_extent_buffer_pages+0x7e/0x170 [btrfs] walk_down_log_tree+0x343/0x690 [btrfs] ? walk_log_tree+0x3d/0x380 [btrfs] walk_log_tree+0xf7/0x380 [btrfs] ? plist_requeue+0xf0/0xf0 ? delete_node+0x4b/0x230 free_log_tree+0x4c/0x130 [btrfs] ? wait_log_commit+0x140/0x140 [btrfs] btrfs_free_log+0x17/0x30 [btrfs] btrfs_drop_and_free_fs_root+0xb0/0xd0 [btrfs] btrfs_free_fs_roots+0x10c/0x190 [btrfs] ? do_raw_spin_unlock+0x49/0xc0 ? _raw_spin_unlock+0x29/0x40 ? release_extent_buffer+0x121/0x170 [btrfs] close_ctree+0x289/0x2e6 [btrfs] generic_shutdown_super+0x6c/0x110 kill_anon_super+0xe/0x30 btrfs_kill_super+0x12/0x20 [btrfs] deactivate_locked_super+0x3a/0x70 Reported-by: David Sterba <dsterba@suse.com> Fixes: 8c38938c7bb096 ("btrfs: move the root freeing stuff into btrfs_put_root") Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
2020-03-24 14:47:52 +00:00
btrfs_drop_all_logs(fs_info);
mutex_unlock(&fs_info->transaction_kthread_mutex);
return 0;
}
int btrfs_init_root_free_objectid(struct btrfs_root *root)
{
struct btrfs_path *path;
int ret;
struct extent_buffer *l;
struct btrfs_key search_key;
struct btrfs_key found_key;
int slot;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
search_key.type = -1;
search_key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
if (ret < 0)
goto error;
if (ret == 0) {
/*
* Key with offset -1 found, there would have to exist a root
* with such id, but this is out of valid range.
*/
ret = -EUCLEAN;
goto error;
}
if (path->slots[0] > 0) {
slot = path->slots[0] - 1;
l = path->nodes[0];
btrfs_item_key_to_cpu(l, &found_key, slot);
root->free_objectid = max_t(u64, found_key.objectid + 1,
BTRFS_FIRST_FREE_OBJECTID);
} else {
root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
}
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
{
int ret;
mutex_lock(&root->objectid_mutex);
if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
btrfs_warn(root->fs_info,
"the objectid of root %llu reaches its highest value",
root->root_key.objectid);
ret = -ENOSPC;
goto out;
}
*objectid = root->free_objectid++;
ret = 0;
out:
mutex_unlock(&root->objectid_mutex);
return ret;
}