Commit graph

127 commits

Author SHA1 Message Date
Linus Torvalds
df57721f9a Add x86 shadow stack support
Convert IBT selftest to asm to fix objtool warning
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTv1QQACgkQaDWVMHDJ
 krAUwhAAn6TOwHJK8BSkHeiQhON1nrlP3c5cv0AyZ2NP8RYDrZrSZvhpYBJ6wgKC
 Cx5CGq5nn9twYsYS3KsktLKDfR3lRdsQ7K9qtyFtYiaeaVKo+7gEKl/K+klwai8/
 gninQWHk0zmSCja8Vi77q52WOMkQKapT8+vaON9EVDO8dVEi+CvhAIfPwMafuiwO
 Rk4X86SzoZu9FP79LcCg9XyGC/XbM2OG9eNUTSCKT40qTTKm5y4gix687NvAlaHR
 ko5MTsdl0Wfp6Qk0ohT74LnoA2c1g/FluvZIM33ci/2rFpkf9Hw7ip3lUXqn6CPx
 rKiZ+pVRc0xikVWkraMfIGMJfUd2rhelp8OyoozD7DB7UZw40Q4RW4N5tgq9Fhe9
 MQs3p1v9N8xHdRKl365UcOczUxNAmv4u0nV5gY/4FMC6VjldCl2V9fmqYXyzFS4/
 Ogg4FSd7c2JyGFKPs+5uXyi+RY2qOX4+nzHOoKD7SY616IYqtgKoz5usxETLwZ6s
 VtJOmJL0h//z0A7tBliB0zd+SQ5UQQBDC2XouQH2fNX2isJMn0UDmWJGjaHgK6Hh
 8jVp6LNqf+CEQS387UxckOyj7fu438hDky1Ggaw4YqowEOhQeqLVO4++x+HITrbp
 AupXfbJw9h9cMN63Yc0gVxXQ9IMZ+M7UxLtZ3Cd8/PVztNy/clA=
 =3UUm
 -----END PGP SIGNATURE-----

Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 shadow stack support from Dave Hansen:
 "This is the long awaited x86 shadow stack support, part of Intel's
  Control-flow Enforcement Technology (CET).

  CET consists of two related security features: shadow stacks and
  indirect branch tracking. This series implements just the shadow stack
  part of this feature, and just for userspace.

  The main use case for shadow stack is providing protection against
  return oriented programming attacks. It works by maintaining a
  secondary (shadow) stack using a special memory type that has
  protections against modification. When executing a CALL instruction,
  the processor pushes the return address to both the normal stack and
  to the special permission shadow stack. Upon RET, the processor pops
  the shadow stack copy and compares it to the normal stack copy.

  For more information, refer to the links below for the earlier
  versions of this patch set"

Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/

* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
  x86/shstk: Change order of __user in type
  x86/ibt: Convert IBT selftest to asm
  x86/shstk: Don't retry vm_munmap() on -EINTR
  x86/kbuild: Fix Documentation/ reference
  x86/shstk: Move arch detail comment out of core mm
  x86/shstk: Add ARCH_SHSTK_STATUS
  x86/shstk: Add ARCH_SHSTK_UNLOCK
  x86: Add PTRACE interface for shadow stack
  selftests/x86: Add shadow stack test
  x86/cpufeatures: Enable CET CR4 bit for shadow stack
  x86/shstk: Wire in shadow stack interface
  x86: Expose thread features in /proc/$PID/status
  x86/shstk: Support WRSS for userspace
  x86/shstk: Introduce map_shadow_stack syscall
  x86/shstk: Check that signal frame is shadow stack mem
  x86/shstk: Check that SSP is aligned on sigreturn
  x86/shstk: Handle signals for shadow stack
  x86/shstk: Introduce routines modifying shstk
  x86/shstk: Handle thread shadow stack
  x86/shstk: Add user-mode shadow stack support
  ...
2023-08-31 12:20:12 -07:00
Alistair Popple
1af5a81099 mmu_notifiers: rename invalidate_range notifier
There are two main use cases for mmu notifiers.  One is by KVM which uses
mmu_notifier_invalidate_range_start()/end() to manage a software TLB.

The other is to manage hardware TLBs which need to use the
invalidate_range() callback because HW can establish new TLB entries at
any time.  Hence using start/end() can lead to memory corruption as these
callbacks happen too soon/late during page unmap.

mmu notifier users should therefore either use the start()/end() callbacks
or the invalidate_range() callbacks.  To make this usage clearer rename
the invalidate_range() callback to arch_invalidate_secondary_tlbs() and
update documention.

Link: https://lkml.kernel.org/r/6f77248cd25545c8020a54b4e567e8b72be4dca1.1690292440.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Andrew Donnellan <ajd@linux.ibm.com>
Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com>
Cc: Frederic Barrat <fbarrat@linux.ibm.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nicolin Chen <nicolinc@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:41 -07:00
Alistair Popple
6bbd42e2df mmu_notifiers: call invalidate_range() when invalidating TLBs
The invalidate_range() is going to become an architecture specific mmu
notifier used to keep the TLB of secondary MMUs such as an IOMMU in sync
with the CPU page tables.  Currently it is called from separate code paths
to the main CPU TLB invalidations.  This can lead to a secondary TLB not
getting invalidated when required and makes it hard to reason about when
exactly the secondary TLB is invalidated.

To fix this move the notifier call to the architecture specific TLB
maintenance functions for architectures that have secondary MMUs requiring
explicit software invalidations.

This fixes a SMMU bug on ARM64.  On ARM64 PTE permission upgrades require
a TLB invalidation.  This invalidation is done by the architecture
specific ptep_set_access_flags() which calls flush_tlb_page() if required.
However this doesn't call the notifier resulting in infinite faults being
generated by devices using the SMMU if it has previously cached a
read-only PTE in it's TLB.

Moving the invalidations into the TLB invalidation functions ensures all
invalidations happen at the same time as the CPU invalidation.  The
architecture specific flush_tlb_all() routines do not call the notifier as
none of the IOMMUs require this.

Link: https://lkml.kernel.org/r/0287ae32d91393a582897d6c4db6f7456b1001f2.1690292440.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@ziepe.ca>
Tested-by: SeongJae Park <sj@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Andrew Donnellan <ajd@linux.ibm.com>
Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com>
Cc: Frederic Barrat <fbarrat@linux.ibm.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nicolin Chen <nicolinc@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:41 -07:00
Yicong Yang
db6c1f6f23 mm/tlbbatch: introduce arch_flush_tlb_batched_pending()
Currently we'll flush the mm in flush_tlb_batched_pending() to avoid race
between reclaim unmaps pages by batched TLB flush and mprotect/munmap/etc.
Other architectures like arm64 may only need a synchronization
barrier(dsb) here rather than a full mm flush.  So add
arch_flush_tlb_batched_pending() to allow an arch-specific implementation
here.  This intends no functional changes on x86 since still a full mm
flush for x86.

Link: https://lkml.kernel.org/r/20230717131004.12662-4-yangyicong@huawei.com
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Barry Song <baohua@kernel.org>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Darren Hart <darren@os.amperecomputing.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: lipeifeng <lipeifeng@oppo.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <namit@vmware.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Punit Agrawal <punit.agrawal@bytedance.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Xin Hao <xhao@linux.alibaba.com>
Cc: Zeng Tao <prime.zeng@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:37 -07:00
Barry Song
f73419bb89 mm/tlbbatch: rename and extend some functions
This patch does some preparation works to extend batched TLB flush to
arm64. Including:
- Extend set_tlb_ubc_flush_pending() and arch_tlbbatch_add_mm()
  to accept an additional argument for address, architectures
  like arm64 may need this for tlbi.
- Rename arch_tlbbatch_add_mm() to arch_tlbbatch_add_pending()
  to match its current function since we don't need to handle
  mm on architectures like arm64 and add_mm is not proper,
  add_pending will make sense to both as on x86 we're pending the
  TLB flush operations while on arm64 we're pending the synchronize
  operations.

This intends no functional changes on x86.

Link: https://lkml.kernel.org/r/20230717131004.12662-3-yangyicong@huawei.com
Tested-by: Yicong Yang <yangyicong@hisilicon.com>
Tested-by: Xin Hao <xhao@linux.alibaba.com>
Tested-by: Punit Agrawal <punit.agrawal@bytedance.com>
Signed-off-by: Barry Song <v-songbaohua@oppo.com>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Nadav Amit <namit@vmware.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Barry Song <baohua@kernel.org>
Cc: Darren Hart <darren@os.amperecomputing.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: lipeifeng <lipeifeng@oppo.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zeng Tao <prime.zeng@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:36 -07:00
Anshuman Khandual
65c8d30e67 mm/tlbbatch: introduce arch_tlbbatch_should_defer()
Patch series "arm64: support batched/deferred tlb shootdown during page
reclamation/migration", v11.

Though ARM64 has the hardware to do tlb shootdown, the hardware
broadcasting is not free.  A simplest micro benchmark shows even on
snapdragon 888 with only 8 cores, the overhead for ptep_clear_flush is
huge even for paging out one page mapped by only one process: 5.36% a.out
[kernel.kallsyms] [k] ptep_clear_flush

While pages are mapped by multiple processes or HW has more CPUs, the cost
should become even higher due to the bad scalability of tlb shootdown. 
The same benchmark can result in 16.99% CPU consumption on ARM64 server
with around 100 cores according to the test on patch 4/4.

This patchset leverages the existing BATCHED_UNMAP_TLB_FLUSH by
1. only send tlbi instructions in the first stage -
	arch_tlbbatch_add_mm()
2. wait for the completion of tlbi by dsb while doing tlbbatch
	sync in arch_tlbbatch_flush()

Testing on snapdragon shows the overhead of ptep_clear_flush is removed by
the patchset.  The micro benchmark becomes 5% faster even for one page
mapped by single process on snapdragon 888.

Since BATCHED_UNMAP_TLB_FLUSH is implemented only on x86, the patchset
does some renaming/extension for the current implementation first (Patch
1-3), then add the support on arm64 (Patch 4).
		

This patch (of 4):

The entire scheme of deferred TLB flush in reclaim path rests on the fact
that the cost to refill TLB entries is less than flushing out individual
entries by sending IPI to remote CPUs.  But architecture can have
different ways to evaluate that.  Hence apart from checking
TTU_BATCH_FLUSH in the TTU flags, rest of the decision should be
architecture specific.

[yangyicong@hisilicon.com: rebase and fix incorrect return value type]
Link: https://lkml.kernel.org/r/20230717131004.12662-1-yangyicong@huawei.com
Link: https://lkml.kernel.org/r/20230717131004.12662-2-yangyicong@huawei.com
Signed-off-by: Anshuman Khandual <khandual@linux.vnet.ibm.com>
[https://lore.kernel.org/linuxppc-dev/20171101101735.2318-2-khandual@linux.vnet.ibm.com/]
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Barry Song <baohua@kernel.org>
Reviewed-by: Xin Hao <xhao@linux.alibaba.com>
Tested-by: Punit Agrawal <punit.agrawal@bytedance.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Darren Hart <darren@os.amperecomputing.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: lipeifeng <lipeifeng@oppo.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zeng Tao <prime.zeng@hisilicon.com>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nadav Amit <namit@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-18 10:12:36 -07:00
Rick Edgecombe
fca4d413c5 x86/mm: Introduce _PAGE_SAVED_DIRTY
Some OSes have a greater dependence on software available bits in PTEs than
Linux. That left the hardware architects looking for a way to represent a
new memory type (shadow stack) within the existing bits. They chose to
repurpose a lightly-used state: Write=0,Dirty=1. So in order to support
shadow stack memory, Linux should avoid creating memory with this PTE bit
combination unless it intends for it to be shadow stack.

The reason it's lightly used is that Dirty=1 is normally set by HW
_before_ a write. A write with a Write=0 PTE would typically only generate
a fault, not set Dirty=1. Hardware can (rarely) both set Dirty=1 *and*
generate the fault, resulting in a Write=0,Dirty=1 PTE. Hardware which
supports shadow stacks will no longer exhibit this oddity.

So that leaves Write=0,Dirty=1 PTEs created in software. To avoid
inadvertently created shadow stack memory, in places where Linux normally
creates Write=0,Dirty=1, it can use the software-defined _PAGE_SAVED_DIRTY
in place of the hardware _PAGE_DIRTY. In other words, whenever Linux needs
to create Write=0,Dirty=1, it instead creates Write=0,SavedDirty=1 except
for shadow stack, which is Write=0,Dirty=1.

There are six bits left available to software in the 64-bit PTE after
consuming a bit for _PAGE_SAVED_DIRTY. For 32 bit, the same bit as
_PAGE_BIT_UFFD_WP is used, since user fault fd is not supported on 32
bit. This leaves one unused software bit on 32 bit (_PAGE_BIT_SOFT_DIRTY,
as this is also not supported on 32 bit).

Implement only the infrastructure for _PAGE_SAVED_DIRTY. Changes to
actually begin creating _PAGE_SAVED_DIRTY PTEs will follow once other
pieces are in place.

Since this SavedDirty shifting is done for all x86 CPUs, this leaves
the possibility for the hardware oddity to still create Write=0,Dirty=1
PTEs in rare cases. Since these CPUs also don't support shadow stack, this
will be harmless as it was before the introduction of SavedDirty.

Implement the shifting logic to be branchless. Embed the logic of whether
to do the shifting (including checking the Write bits) so that it can be
called by future callers that would otherwise need additional branching
logic. This efficiency allows the logic of when to do the shifting to be
centralized, making the code easier to reason about.

Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-11-rick.p.edgecombe%40intel.com
2023-07-11 14:12:19 -07:00
Borislav Petkov (AMD)
013fdeb07a x86/mm: Remove unused current_untag_mask()
e0bddc19ba ("x86/mm: Reduce untagged_addr() overhead for systems without LAM")

removed its only usage site so drop it.

Move the tlbstate_untag_mask up in the header and drop the ugly
ifdeffery as the unused declaration should be properly discarded.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20230614174148.5439-1-bp@alien8.de
2023-06-16 10:50:16 +02:00
Kirill A. Shutemov
74c228d20a x86/uaccess: Provide untagged_addr() and remove tags before address check
untagged_addr() is a helper used by the core-mm to strip tag bits and
get the address to the canonical shape based on rules of the current
thread. It only handles userspace addresses.

The untagging mask is stored in per-CPU variable and set on context
switching to the task.

The tags must not be included into check whether it's okay to access the
userspace address. Strip tags in access_ok().

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/all/20230312112612.31869-7-kirill.shutemov%40linux.intel.com
2023-03-16 13:08:39 -07:00
Kirill A. Shutemov
82721d8b25 x86/mm: Handle LAM on context switch
Linear Address Masking mode for userspace pointers encoded in CR3 bits.
The mode is selected per-process and stored in mm_context_t.

switch_mm_irqs_off() now respects selected LAM mode and constructs CR3
accordingly.

The active LAM mode gets recorded in the tlb_state.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/all/20230312112612.31869-5-kirill.shutemov%40linux.intel.com
2023-03-16 13:08:39 -07:00
Linus Torvalds
92598ae22f - Rename a PKRU macro to make more sense when reading the code
- Update pkeys documentation
 
 - Avoid reading contended mm's TLB generation var if not absolutely
 necessary along with fixing a case where arch_tlbbatch_flush() doesn't
 adhere to the generation scheme and thus violates the conditions for the
 above avoidance.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLnmpYACgkQEsHwGGHe
 VUrINQ/9FGnQya6mTJitM3Ohdzu1lOrHm5+XAxCO3SVzPPQlx0mRZmszzDOIZpG/
 9iCEDhSi+kLdkTwIXk8Nmm1imNT2MSqswjQYr8KDtl69/j12W8Y0Pb5C5tnQnUyi
 FXPiVVCAk0iegNg+QvarQa8Ou6tGWDqFMLzdrq9XNokdBmFq7FCDsOjdwd8So3IY
 95755wDtCxgBXc2TVr08qSpD0Q/VlHKqb5shtzuoBe9a0YLEaRmWne9UzTOx5U6c
 //qk8lmy9ohL8dmN7SgcRITzfpU8ue+/J4oZ+GV9mc/UTW5Ah2WNX+3BFnmCqZrK
 gr7G5pukuuJxFj8yGzGbGIM28OHKYIE+So2Q5pA6Vrqst/oyDJS+pcoxyhAYGYCQ
 hDjp4yu5AUnsPky6h6VHaR8Er5Nvo7YwhdSazcGD+HC7smwbnVEzI5H7MUgcJ05F
 1CkAQSy2TVZe0hhilOu8dcHN23+2ISF8BzxKbn4qtZOsJTN6/U4MYFWl6VPh8P80
 vjZcIJYZ4i6Gz03m7ITk2bHwfOD8f/7UkbZEggO/GYm1BgmxaMB0IogoIkSUG9vN
 CLGZomRMfBcVVS1DTWJsUzRLbNx3x3pL41NrlxPbC/rTmvts5eJAvcDcffPfRGzx
 tCqcASRdV7tQBgMT5MLjmIY8cM1aphdGSdlKVD7QHZ11bJVFZE4=
 =aD0S
 -----END PGP SIGNATURE-----

Merge tag 'x86_mm_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 mm updates from Borislav Petkov:

 - Rename a PKRU macro to make more sense when reading the code

 - Update pkeys documentation

 - Avoid reading contended mm's TLB generation var if not absolutely
   necessary along with fixing a case where arch_tlbbatch_flush()
   doesn't adhere to the generation scheme and thus violates the
   conditions for the above avoidance.

* tag 'x86_mm_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm/tlb: Ignore f->new_tlb_gen when zero
  x86/pkeys: Clarify PKRU_AD_KEY macro
  Documentation/protection-keys: Clean up documentation for User Space pkeys
  x86/mm/tlb: Avoid reading mm_tlb_gen when possible
2022-08-01 09:34:39 -07:00
Nadav Amit
8f1d56f64f x86/mm/tlb: Ignore f->new_tlb_gen when zero
Commit aa44284960 ("x86/mm/tlb: Avoid reading mm_tlb_gen when
possible") introduced an optimization to skip superfluous TLB
flushes based on the generation provided in flush_tlb_info.

However, arch_tlbbatch_flush() does not provide any generation in
flush_tlb_info and populates the flush_tlb_info generation with
0.  This 0 is causes the flush_tlb_info to be interpreted as a
superfluous, old flush.  As a result, try_to_unmap_one() would
not perform any TLB flushes.

Fix it by checking whether f->new_tlb_gen is nonzero. Zero value
is anyhow is an invalid generation value. To avoid future
confusion, introduce TLB_GENERATION_INVALID constant and use it
properly. Add warnings to ensure no partial flushes are done with
TLB_GENERATION_INVALID or when f->mm is NULL, since this does not
make any sense.

In addition, add the missing unlikely().

[ dhansen: change VM_BUG_ON() -> VM_WARN_ON(), clarify changelog ]

Fixes: aa44284960 ("x86/mm/tlb: Avoid reading mm_tlb_gen when possible")
Reported-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Hugh Dickins <hughd@google.com>
Link: https://lkml.kernel.org/r/20220710232837.3618-1-namit@vmware.com
2022-07-19 09:04:52 -07:00
Nadav Amit
c9fe66560b mm/mprotect: do not flush when not required architecturally
Currently, using mprotect() to unprotect a memory region or uffd to
unprotect a memory region causes a TLB flush.  However, in such cases the
PTE is often not modified (i.e., remain RO) and therefore not TLB flush is
needed.

Add an arch-specific pte_needs_flush() which tells whether a TLB flush is
needed based on the old PTE and the new one.  Implement an x86
pte_needs_flush().

Always flush the TLB when it is architecturally needed even when skipping
a TLB flush might only result in a spurious page-faults by skipping the
flush.

Even with such conservative manner, we can in the future further refine
the checks to test whether a PTE is present by only considering the
architectural _PAGE_PRESENT flag instead of {pte|pmd}_preesnt().  For not
be careful and use the latter.

Link: https://lkml.kernel.org/r/20220401180821.1986781-3-namit@vmware.com
Signed-off-by: Nadav Amit <namit@vmware.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Cc: Nick Piggin <npiggin@gmail.com>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13 07:20:05 -07:00
Joerg Roedel
f154f29085 x86/mm/64: Flush global TLB on boot and AP bringup
The AP bringup code uses the trampoline_pgd page-table which
establishes global mappings in the user range of the address space.
Flush the global TLB entries after the indentity mappings are removed so
no stale entries remain in the TLB.

Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211202153226.22946-3-joro@8bytes.org
2021-12-06 09:38:48 +01:00
Balbir Singh
371b09c6fd x86/mm: Refactor cond_ibpb() to support other use cases
cond_ibpb() has the necessary bits required to track the previous mm in
switch_mm_irqs_off(). This can be reused for other use cases like L1D
flushing on context switch.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Balbir Singh <sblbir@amazon.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20210108121056.21940-3-sblbir@amazon.com
2021-07-28 11:42:24 +02:00
Nadav Amit
2f4305b19f x86/mm/tlb: Privatize cpu_tlbstate
cpu_tlbstate is mostly private and only the variable is_lazy is shared.
This causes some false-sharing when TLB flushes are performed.

Break cpu_tlbstate intro cpu_tlbstate and cpu_tlbstate_shared, and mark
each one accordingly.

Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20210220231712.2475218-6-namit@vmware.com
2021-03-06 12:59:10 +01:00
Nadav Amit
4ce94eabac x86/mm/tlb: Flush remote and local TLBs concurrently
To improve TLB shootdown performance, flush the remote and local TLBs
concurrently. Introduce flush_tlb_multi() that does so. Introduce
paravirtual versions of flush_tlb_multi() for KVM, Xen and hyper-v (Xen
and hyper-v are only compile-tested).

While the updated smp infrastructure is capable of running a function on
a single local core, it is not optimized for this case. The multiple
function calls and the indirect branch introduce some overhead, and
might make local TLB flushes slower than they were before the recent
changes.

Before calling the SMP infrastructure, check if only a local TLB flush
is needed to restore the lost performance in this common case. This
requires to check mm_cpumask() one more time, but unless this mask is
updated very frequently, this should impact performance negatively.

Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Michael Kelley <mikelley@microsoft.com> # Hyper-v parts
Reviewed-by: Juergen Gross <jgross@suse.com> # Xen and paravirt parts
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20210220231712.2475218-5-namit@vmware.com
2021-03-06 12:59:10 +01:00
Nadav Amit
4c1ba3923e x86/mm/tlb: Unify flush_tlb_func_local() and flush_tlb_func_remote()
The unification of these two functions allows to use them in the updated
SMP infrastrucutre.

To do so, remove the reason argument from flush_tlb_func_local(), add
a member to struct tlb_flush_info that says which CPU initiated the
flush and act accordingly. Optimize the size of flush_tlb_info while we
are at it.

Unfortunately, this prevents us from using a constant tlb_flush_info for
arch_tlbbatch_flush(), but in a later stage we may be able to inline
tlb_flush_info into the IPI data, so it should not have an impact
eventually.

Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20210220231712.2475218-3-namit@vmware.com
2021-03-06 12:59:09 +01:00
Thomas Gleixner
bfe3d8f631 x86/tlb: Restrict access to tlbstate
Hide tlbstate, flush_tlb_info and related helpers when tlbflush.h is
included from a module. Modules have absolutely no business with these
internals.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092600.328438734@linutronix.de
2020-04-26 18:52:33 +02:00
Thomas Gleixner
6c9b7d79a8 x86/tlb: Move PCID helpers where they are used
Aside of the fact that they are used only in the TLB code, especially
having the comment close to the actual implementation makes a lot of
sense.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092600.145772183@linutronix.de
2020-04-26 18:49:44 +02:00
Thomas Gleixner
af5c40c6ee x86/tlb: Uninline nmi_uaccess_okay()
cpu_tlbstate is exported because various TLB-related functions need
access to it, but cpu_tlbstate is sensitive information which should
only be accessed by well-contained kernel functions and not be directly
exposed to modules.

nmi_access_ok() is the last inline function which requires access to
cpu_tlbstate. Move it into the TLB code.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092600.052543007@linutronix.de
2020-04-26 18:47:05 +02:00
Thomas Gleixner
96f59fe291 x86/tlb: Move cr4_set_bits_and_update_boot() to the usage site
No point in having this exposed.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.940978251@linutronix.de
2020-04-26 18:39:48 +02:00
Thomas Gleixner
69de6c1a7f x86/tlb: Move paravirt_tlb_remove_table() to the usage site
Move it where the only user is.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.849801011@linutronix.de
2020-04-26 18:19:35 +02:00
Thomas Gleixner
4b04e6c236 x86/tlb: Move __flush_tlb_all() out of line
Reduce the number of required exports to one and make flush_tlb_global()
static to the TLB code.

flush_tlb_local() cannot be confined to the TLB code as the MTRR
handling requires a PGE-less flush.

Suggested-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200421092559.740388137@linutronix.de
2020-04-26 18:17:31 +02:00
Thomas Gleixner
29def599b3 x86/tlb: Move flush_tlb_others() out of line
cpu_tlbstate is exported because various TLB-related functions need
access to it, but cpu_tlbstate is sensitive information which should
only be accessed by well-contained kernel functions and not be directly
exposed to modules.

As a last step, move __flush_tlb_others() out of line and hide the
native function. The latter can be static when CONFIG_PARAVIRT is
disabled.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.641957686@linutronix.de
2020-04-26 11:10:25 +02:00
Thomas Gleixner
58430c5dba x86/tlb: Move __flush_tlb_one_kernel() out of line
cpu_tlbstate is exported because various TLB-related functions need
access to it, but cpu_tlbstate is sensitive information which should
only be accessed by well-contained kernel functions and not be directly
exposed to modules.

As a fourth step, move __flush_tlb_one_kernel() out of line and hide
the native function. The latter can be static when CONFIG_PARAVIRT is
disabled.

Consolidate the name space while at it and remove the pointless extra
wrapper in the paravirt code.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.535159540@linutronix.de
2020-04-26 11:01:22 +02:00
Thomas Gleixner
127ac915c8 x86/tlb: Move __flush_tlb_one_user() out of line
cpu_tlbstate is exported because various TLB-related functions need access
to it, but cpu_tlbstate is sensitive information which should only be
accessed by well-contained kernel functions and not be directly exposed to
modules.

As a third step, move _flush_tlb_one_user() out of line and hide the
native function. The latter can be static when CONFIG_PARAVIRT is
disabled.

Consolidate the name space while at it and remove the pointless extra
wrapper in the paravirt code.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.428213098@linutronix.de
2020-04-26 11:00:29 +02:00
Thomas Gleixner
cd30d26cf3 x86/tlb: Move __flush_tlb_global() out of line
cpu_tlbstate is exported because various TLB-related functions need
access to it, but cpu_tlbstate is sensitive information which should
only be accessed by well-contained kernel functions and not be directly
exposed to modules.

As a second step, move __flush_tlb_global() out of line and hide the
native function. The latter can be static when CONFIG_PARAVIRT is
disabled.

Consolidate the namespace while at it and remove the pointless extra
wrapper in the paravirt code.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.336916818@linutronix.de
2020-04-26 11:00:27 +02:00
Thomas Gleixner
2faf153bb7 x86/tlb: Move __flush_tlb() out of line
cpu_tlbstate is exported because various TLB-related functions need
access to it, but cpu_tlbstate is sensitive information which should
only be accessed by well-contained kernel functions and not be directly
exposed to modules.

As a first step, move __flush_tlb() out of line and hide the native
function. The latter can be static when CONFIG_PARAVIRT is disabled.

Consolidate the namespace while at it and remove the pointless extra
wrapper in the paravirt code.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092559.246130908@linutronix.de
2020-04-26 11:00:05 +02:00
Thomas Gleixner
d8f0b35331 x86/cpu: Uninline CR4 accessors
cpu_tlbstate is exported because various TLB-related functions need
access to it, but cpu_tlbstate is sensitive information which should
only be accessed by well-contained kernel functions and not be directly
exposed to modules.

The various CR4 accessors require cpu_tlbstate as the CR4 shadow cache
is located there.

In preparation for unexporting cpu_tlbstate, create a builtin function
for manipulating CR4 and rework the various helpers to use it.

No functional change.

 [ bp: push the export of native_write_cr4() only when CONFIG_LKTDM=m to
   the last patch in the series. ]

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200421092558.939985695@linutronix.de
2020-04-24 18:46:42 +02:00
Jan Kiszka
21e450d21c x86/mm: Avoid redundant interrupt disable in load_mm_cr4()
load_mm_cr4() is always called with interrupts disabled from:

 - switch_mm_irqs_off()
 - refresh_pce(), which is a on_each_cpu() callback

Thus, disabling interrupts in cr4_set/clear_bits() is redundant.

Implement cr4_set/clear_bits_irqsoff() helpers, rename load_mm_cr4() to
load_mm_cr4_irqsoff() and use the new helpers. The new helpers do not need
a lockdep assert as __cr4_set() has one already.

The renaming in combination with the checks in __cr4_set() ensure that any
changes in the boundary conditions at the call sites will be detected.

[ tglx: Massaged change log ]

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/0fbbcb64-5f26-4ffb-1bb9-4f5f48426893@siemens.com
2019-07-24 14:43:37 +02:00
Linus Torvalds
0bc40e549a Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Ingo Molnar:
 "The changes in here are:

   - text_poke() fixes and an extensive set of executability lockdowns,
     to (hopefully) eliminate the last residual circumstances under
     which we are using W|X mappings even temporarily on x86 kernels.
     This required a broad range of surgery in text patching facilities,
     module loading, trampoline handling and other bits.

   - tweak page fault messages to be more informative and more
     structured.

   - remove DISCONTIGMEM support on x86-32 and make SPARSEMEM the
     default.

   - reduce KASLR granularity on 5-level paging kernels from 512 GB to
     1 GB.

   - misc other changes and updates"

* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
  x86/mm: Initialize PGD cache during mm initialization
  x86/alternatives: Add comment about module removal races
  x86/kprobes: Use vmalloc special flag
  x86/ftrace: Use vmalloc special flag
  bpf: Use vmalloc special flag
  modules: Use vmalloc special flag
  mm/vmalloc: Add flag for freeing of special permsissions
  mm/hibernation: Make hibernation handle unmapped pages
  x86/mm/cpa: Add set_direct_map_*() functions
  x86/alternatives: Remove the return value of text_poke_*()
  x86/jump-label: Remove support for custom text poker
  x86/modules: Avoid breaking W^X while loading modules
  x86/kprobes: Set instruction page as executable
  x86/ftrace: Set trampoline pages as executable
  x86/kgdb: Avoid redundant comparison of patched code
  x86/alternatives: Use temporary mm for text poking
  x86/alternatives: Initialize temporary mm for patching
  fork: Provide a function for copying init_mm
  uprobes: Initialize uprobes earlier
  x86/mm: Save debug registers when loading a temporary mm
  ...
2019-05-06 16:13:31 -07:00
Nadav Amit
5932c9fd19 mm/tlb: Provide default nmi_uaccess_okay()
x86 has an nmi_uaccess_okay(), but other architectures do not.
Arch-independent code might need to know whether access to user
addresses is ok in an NMI context or in other code whose execution
context is unknown.  Specifically, this function is needed for
bpf_probe_write_user().

Add a default implementation of nmi_uaccess_okay() for architectures
that do not have such a function.

Signed-off-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: <akpm@linux-foundation.org>
Cc: <ard.biesheuvel@linaro.org>
Cc: <deneen.t.dock@intel.com>
Cc: <kernel-hardening@lists.openwall.com>
Cc: <kristen@linux.intel.com>
Cc: <linux_dti@icloud.com>
Cc: <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190426001143.4983-23-namit@vmware.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-04-30 12:37:48 +02:00
Jann Horn
a72a19327b x86/mm/tlb: Define LOADED_MM_SWITCHING with pointer-sized number
sparse complains that LOADED_MM_SWITCHING's definition casts an int to a
pointer:

  arch/x86/mm/tlb.c:409:17: warning: non size-preserving integer to pointer cast

Use a pointer-sized integer constant instead.

Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Mukesh Ojha <mojha@codeaurora.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Sai Praneeth <sai.praneeth.prakhya@intel.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190328230939.15711-1-jannh@google.com
2019-03-29 14:55:31 +01:00
Thomas Gleixner
4c71a2b6fd x86/speculation: Prepare for conditional IBPB in switch_mm()
The IBPB speculation barrier is issued from switch_mm() when the kernel
switches to a user space task with a different mm than the user space task
which ran last on the same CPU.

An additional optimization is to avoid IBPB when the incoming task can be
ptraced by the outgoing task. This optimization only works when switching
directly between two user space tasks. When switching from a kernel task to
a user space task the optimization fails because the previous task cannot
be accessed anymore. So for quite some scenarios the optimization is just
adding overhead.

The upcoming conditional IBPB support will issue IBPB only for user space
tasks which have the TIF_SPEC_IB bit set. This requires to handle the
following cases:

  1) Switch from a user space task (potential attacker) which has
     TIF_SPEC_IB set to a user space task (potential victim) which has
     TIF_SPEC_IB not set.

  2) Switch from a user space task (potential attacker) which has
     TIF_SPEC_IB not set to a user space task (potential victim) which has
     TIF_SPEC_IB set.

This needs to be optimized for the case where the IBPB can be avoided when
only kernel threads ran in between user space tasks which belong to the
same process.

The current check whether two tasks belong to the same context is using the
tasks context id. While correct, it's simpler to use the mm pointer because
it allows to mangle the TIF_SPEC_IB bit into it. The context id based
mechanism requires extra storage, which creates worse code.

When a task is scheduled out its TIF_SPEC_IB bit is mangled as bit 0 into
the per CPU storage which is used to track the last user space mm which was
running on a CPU. This bit can be used together with the TIF_SPEC_IB bit of
the incoming task to make the decision whether IBPB needs to be issued or
not to cover the two cases above.

As conditional IBPB is going to be the default, remove the dubious ptrace
check for the IBPB always case and simply issue IBPB always when the
process changes.

Move the storage to a different place in the struct as the original one
created a hole.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185005.466447057@linutronix.de
2018-11-28 11:57:11 +01:00
Sebastian Andrzej Siewior
f77084d963 x86/mm/pat: Disable preemption around __flush_tlb_all()
The WARN_ON_ONCE(__read_cr3() != build_cr3()) in switch_mm_irqs_off()
triggers every once in a while during a snapshotted system upgrade.

The warning triggers since commit decab0888e ("x86/mm: Remove
preempt_disable/enable() from __native_flush_tlb()"). The callchain is:

  get_page_from_freelist() -> post_alloc_hook() -> __kernel_map_pages()

with CONFIG_DEBUG_PAGEALLOC enabled.

Disable preemption during CR3 reset / __flush_tlb_all() and add a comment
why preemption has to be disabled so it won't be removed accidentaly.

Add another preemptible() check in __flush_tlb_all() to catch callers with
enabled preemption when PGE is enabled, because PGE enabled does not
trigger the warning in __native_flush_tlb(). Suggested by Andy Lutomirski.

Fixes: decab0888e ("x86/mm: Remove preempt_disable/enable() from __native_flush_tlb()")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181017103432.zgv46nlu3hc7k4rq@linutronix.de
2018-10-29 19:04:31 +01:00
Rik van Riel
97807813fe x86/mm/tlb: Add freed_tables element to flush_tlb_info
Pass the information on to native_flush_tlb_others.

No functional changes.

Cc: npiggin@gmail.com
Cc: mingo@kernel.org
Cc: will.deacon@arm.com
Cc: songliubraving@fb.com
Cc: kernel-team@fb.com
Cc: hpa@zytor.com
Cc: luto@kernel.org
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180926035844.1420-7-riel@surriel.com
2018-10-09 16:51:12 +02:00
Rik van Riel
016c4d92cd x86/mm/tlb: Add freed_tables argument to flush_tlb_mm_range
Add an argument to flush_tlb_mm_range to indicate whether page tables
are about to be freed after this TLB flush. This allows for an
optimization of flush_tlb_mm_range to skip CPUs in lazy TLB mode.

No functional changes.

Cc: npiggin@gmail.com
Cc: mingo@kernel.org
Cc: will.deacon@arm.com
Cc: songliubraving@fb.com
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Cc: hpa@zytor.com
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180926035844.1420-6-riel@surriel.com
2018-10-09 16:51:12 +02:00
Rik van Riel
5462bc3a9a x86/mm/tlb: Always use lazy TLB mode
On most workloads, the number of context switches far exceeds the
number of TLB flushes sent. Optimizing the context switches, by always
using lazy TLB mode, speeds up those workloads.

This patch results in about a 1% reduction in CPU use on a two socket
Broadwell system running a memcache like workload.

Cc: npiggin@gmail.com
Cc: efault@gmx.de
Cc: will.deacon@arm.com
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-team@fb.com
Cc: hpa@zytor.com
Cc: luto@kernel.org
Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
(cherry picked from commit 95b0e6357d)
Acked-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: http://lkml.kernel.org/r/20180716190337.26133-7-riel@surriel.com
2018-10-09 16:51:11 +02:00
Peter Zijlstra
a31acd3ee8 x86/mm: Page size aware flush_tlb_mm_range()
Use the new tlb_get_unmap_shift() to determine the stride of the
INVLPG loop.

Cc: Nick Piggin <npiggin@gmail.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2018-10-09 16:51:11 +02:00
Andy Lutomirski
4012e77a90 x86/nmi: Fix NMI uaccess race against CR3 switching
A NMI can hit in the middle of context switching or in the middle of
switch_mm_irqs_off().  In either case, CR3 might not match current->mm,
which could cause copy_from_user_nmi() and friends to read the wrong
memory.

Fix it by adding a new nmi_uaccess_okay() helper and checking it in
copy_from_user_nmi() and in __copy_from_user_nmi()'s callers.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rik van Riel <riel@surriel.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jann Horn <jannh@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/dd956eba16646fd0b15c3c0741269dfd84452dac.1535557289.git.luto@kernel.org
2018-08-31 17:08:22 +02:00
Peter Zijlstra
48a8b97cfd x86/mm: Only use tlb_remove_table() for paravirt
If we don't use paravirt; don't play unnecessary and complicated games
to free page-tables.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-23 11:56:31 -07:00
Peter Zijlstra
52a288c736 x86/mm/tlb: Revert the recent lazy TLB patches
Revert commits:

  95b0e6357d x86/mm/tlb: Always use lazy TLB mode
  64482aafe5 x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs
  ac03158969 x86/mm/tlb: Make lazy TLB mode lazier
  61d0beb579 x86/mm/tlb: Restructure switch_mm_irqs_off()
  2ff6ddf19c x86/mm/tlb: Leave lazy TLB mode at page table free time

In order to simplify the TLB invalidate fixes for x86 and unify the
parts that need backporting.  We'll try again later.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22 18:22:04 -07:00
Rik van Riel
95b0e6357d x86/mm/tlb: Always use lazy TLB mode
Now that CPUs in lazy TLB mode no longer receive TLB shootdown IPIs, except
at page table freeing time, and idle CPUs will no longer get shootdown IPIs
for things like mprotect and madvise, we can always use lazy TLB mode.

Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-7-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-17 09:35:34 +02:00
Rik van Riel
2ff6ddf19c x86/mm/tlb: Leave lazy TLB mode at page table free time
Andy discovered that speculative memory accesses while in lazy
TLB mode can crash a system, when a CPU tries to dereference a
speculative access using memory contents that used to be valid
page table memory, but have since been reused for something else
and point into la-la land.

The latter problem can be prevented in two ways. The first is to
always send a TLB shootdown IPI to CPUs in lazy TLB mode, while
the second one is to only send the TLB shootdown at page table
freeing time.

The second should result in fewer IPIs, since operationgs like
mprotect and madvise are very common with some workloads, but
do not involve page table freeing. Also, on munmap, batching
of page table freeing covers much larger ranges of virtual
memory than the batching of unmapped user pages.

Tested-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: efault@gmx.de
Cc: kernel-team@fb.com
Cc: luto@kernel.org
Link: http://lkml.kernel.org/r/20180716190337.26133-3-riel@surriel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-17 09:35:31 +02:00
Sai Praneeth
162ee5a8ab x86/mm: Fix bogus warning during EFI bootup, use boot_cpu_has() instead of this_cpu_has() in build_cr3_noflush()
Linus reported the following boot warning:

  WARNING: CPU: 0 PID: 0 at arch/x86/include/asm/tlbflush.h:134 load_new_mm_cr3+0x114/0x170
  [...]
  Call Trace:
  switch_mm_irqs_off+0x267/0x590
  switch_mm+0xe/0x20
  efi_switch_mm+0x3e/0x50
  efi_enter_virtual_mode+0x43f/0x4da
  start_kernel+0x3bf/0x458
  secondary_startup_64+0xa5/0xb0

... after merging:

  03781e4089: x86/efi: Use efi_switch_mm() rather than manually twiddling with %cr3

When the platform supports PCID and if CONFIG_DEBUG_VM=y is enabled,
build_cr3_noflush() (called via switch_mm()) does a sanity check to see
if X86_FEATURE_PCID is set.

Presently, build_cr3_noflush() uses "this_cpu_has(X86_FEATURE_PCID)" to
perform the check but this_cpu_has() works only after SMP is initialized
(i.e. per cpu cpu_info's should be populated) and this happens to be very
late in the boot process (during rest_init()).

As efi_runtime_services() are called during (early) kernel boot time
and run time, modify build_cr3_noflush() to use boot_cpu_has() all the
time. As suggested by Dave Hansen, this should be OK because all CPU's have
same capabilities on x86.

With this change the warning is fixed.

( Dave also suggested that we put a warning in this_cpu_has() if it's used
  early in the boot process. This is still work in progress as it affects
  MCE. )

Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Lee Chun-Yi <jlee@suse.com>
Cc: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Cc: Ricardo Neri <ricardo.neri@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1522870459-7432-1-git-send-email-sai.praneeth.prakhya@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-04-05 01:27:49 +02:00
Andy Lutomirski
1299ef1d88 x86/mm: Rename flush_tlb_single() and flush_tlb_one() to __flush_tlb_one_[user|kernel]()
flush_tlb_single() and flush_tlb_one() sound almost identical, but
they really mean "flush one user translation" and "flush one kernel
translation".  Rename them to flush_tlb_one_user() and
flush_tlb_one_kernel() to make the semantics more obvious.

[ I was looking at some PTI-related code, and the flush-one-address code
  is unnecessarily hard to understand because the names of the helpers are
  uninformative.  This came up during PTI review, but no one got around to
  doing it. ]

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Linux-MM <linux-mm@kvack.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will.deacon@arm.com>
Link: http://lkml.kernel.org/r/3303b02e3c3d049dc5235d5651e0ae6d29a34354.1517414378.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-02-15 01:15:52 +01:00
Tim Chen
18bf3c3ea8 x86/speculation: Use Indirect Branch Prediction Barrier in context switch
Flush indirect branches when switching into a process that marked itself
non dumpable. This protects high value processes like gpg better,
without having too high performance overhead.

If done naïvely, we could switch to a kernel idle thread and then back
to the original process, such as:

    process A -> idle -> process A

In such scenario, we do not have to do IBPB here even though the process
is non-dumpable, as we are switching back to the same process after a
hiatus.

To avoid the redundant IBPB, which is expensive, we track the last mm
user context ID. The cost is to have an extra u64 mm context id to track
the last mm we were using before switching to the init_mm used by idle.
Avoiding the extra IBPB is probably worth the extra memory for this
common scenario.

For those cases where tlb_defer_switch_to_init_mm() returns true (non
PCID), lazy tlb will defer switch to init_mm, so we will not be changing
the mm for the process A -> idle -> process A switch. So IBPB will be
skipped for this case.

Thanks to the reviewers and Andy Lutomirski for the suggestion of
using ctx_id which got rid of the problem of mm pointer recycling.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: ak@linux.intel.com
Cc: karahmed@amazon.de
Cc: arjan@linux.intel.com
Cc: torvalds@linux-foundation.org
Cc: linux@dominikbrodowski.net
Cc: peterz@infradead.org
Cc: bp@alien8.de
Cc: luto@kernel.org
Cc: pbonzini@redhat.com
Cc: gregkh@linux-foundation.org
Link: https://lkml.kernel.org/r/1517263487-3708-1-git-send-email-dwmw@amazon.co.uk
2018-01-30 23:09:21 +01:00
Linus Torvalds
40548c6b6c Merge branch 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 pti updates from Thomas Gleixner:
 "This contains:

   - a PTI bugfix to avoid setting reserved CR3 bits when PCID is
     disabled. This seems to cause issues on a virtual machine at least
     and is incorrect according to the AMD manual.

   - a PTI bugfix which disables the perf BTS facility if PTI is
     enabled. The BTS AUX buffer is not globally visible and causes the
     CPU to fault when the mapping disappears on switching CR3 to user
     space. A full fix which restores BTS on PTI is non trivial and will
     be worked on.

   - PTI bugfixes for EFI and trusted boot which make sure that the user
     space visible page table entries have the NX bit cleared

   - removal of dead code in the PTI pagetable setup functions

   - add PTI documentation

   - add a selftest for vsyscall to verify that the kernel actually
     implements what it advertises.

   - a sysfs interface to expose vulnerability and mitigation
     information so there is a coherent way for users to retrieve the
     status.

   - the initial spectre_v2 mitigations, aka retpoline:

      + The necessary ASM thunk and compiler support

      + The ASM variants of retpoline and the conversion of affected ASM
        code

      + Make LFENCE serializing on AMD so it can be used as speculation
        trap

      + The RSB fill after vmexit

   - initial objtool support for retpoline

  As I said in the status mail this is the most of the set of patches
  which should go into 4.15 except two straight forward patches still on
  hold:

   - the retpoline add on of LFENCE which waits for ACKs

   - the RSB fill after context switch

  Both should be ready to go early next week and with that we'll have
  covered the major holes of spectre_v2 and go back to normality"

* 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (28 commits)
  x86,perf: Disable intel_bts when PTI
  security/Kconfig: Correct the Documentation reference for PTI
  x86/pti: Fix !PCID and sanitize defines
  selftests/x86: Add test_vsyscall
  x86/retpoline: Fill return stack buffer on vmexit
  x86/retpoline/irq32: Convert assembler indirect jumps
  x86/retpoline/checksum32: Convert assembler indirect jumps
  x86/retpoline/xen: Convert Xen hypercall indirect jumps
  x86/retpoline/hyperv: Convert assembler indirect jumps
  x86/retpoline/ftrace: Convert ftrace assembler indirect jumps
  x86/retpoline/entry: Convert entry assembler indirect jumps
  x86/retpoline/crypto: Convert crypto assembler indirect jumps
  x86/spectre: Add boot time option to select Spectre v2 mitigation
  x86/retpoline: Add initial retpoline support
  objtool: Allow alternatives to be ignored
  objtool: Detect jumps to retpoline thunks
  x86/pti: Make unpoison of pgd for trusted boot work for real
  x86/alternatives: Fix optimize_nops() checking
  sysfs/cpu: Fix typos in vulnerability documentation
  x86/cpu/AMD: Use LFENCE_RDTSC in preference to MFENCE_RDTSC
  ...
2018-01-14 09:51:25 -08:00
Thomas Gleixner
f10ee3dcc9 x86/pti: Fix !PCID and sanitize defines
The switch to the user space page tables in the low level ASM code sets
unconditionally bit 12 and bit 11 of CR3. Bit 12 is switching the base
address of the page directory to the user part, bit 11 is switching the
PCID to the PCID associated with the user page tables.

This fails on a machine which lacks PCID support because bit 11 is set in
CR3. Bit 11 is reserved when PCID is inactive.

While the Intel SDM claims that the reserved bits are ignored when PCID is
disabled, the AMD APM states that they should be cleared.

This went unnoticed as the AMD APM was not checked when the code was
developed and reviewed and test systems with Intel CPUs never failed to
boot. The report is against a Centos 6 host where the guest fails to boot,
so it's not yet clear whether this is a virt issue or can happen on real
hardware too, but thats irrelevant as the AMD APM clearly ask for clearing
the reserved bits.

Make sure that on non PCID machines bit 11 is not set by the page table
switching code.

Andy suggested to rename the related bits and masks so they are clearly
describing what they should be used for, which is done as well for clarity.

That split could have been done with alternatives but the macro hell is
horrible and ugly. This can be done on top if someone cares to remove the
extra orq. For now it's a straight forward fix.

Fixes: 6fd166aae7 ("x86/mm: Use/Fix PCID to optimize user/kernel switches")
Reported-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: stable <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lkml.kernel.org/r/alpine.DEB.2.20.1801140009150.2371@nanos
2018-01-14 10:45:53 +01:00