Commit Graph

984256 Commits

Author SHA1 Message Date
Ping Cheng 40593c5898 HID: wacom: Don't register pad_input for touch switch
commit d6b675687a upstream.

Touch switch state is received through WACOM_PAD_FIELD. However, it
is reported by touch_input. Don't register pad_input if no other pad
events require the interface.

Cc: stable@vger.kernel.org
Signed-off-by: Ping Cheng <ping.cheng@wacom.com>
Reviewed-by: Jason Gerecke <jason.gerecke@wacom.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:19 +02:00
Ping Cheng 0ba645def7 HID: wacom: Only report rotation for art pen
commit 7ccced33a0 upstream.

The generic routine, wacom_wac_pen_event, turns rotation value 90
degree anti-clockwise before posting the events. This non-zero
event trggers a non-zero ABS_Z event for non art pen tools. However,
HID_DG_TWIST is only supported by art pen.

[jkosina@suse.cz: fix build: add missing brace]
Cc: stable@vger.kernel.org
Signed-off-by: Ping Cheng <ping.cheng@wacom.com>
Reviewed-by: Jason Gerecke <jason.gerecke@wacom.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:19 +02:00
Mikulas Patocka 57f2ee517d add barriers to buffer_uptodate and set_buffer_uptodate
commit d4252071b9 upstream.

Let's have a look at this piece of code in __bread_slow:

	get_bh(bh);
	bh->b_end_io = end_buffer_read_sync;
	submit_bh(REQ_OP_READ, 0, bh);
	wait_on_buffer(bh);
	if (buffer_uptodate(bh))
		return bh;

Neither wait_on_buffer nor buffer_uptodate contain any memory barrier.
Consequently, if someone calls sb_bread and then reads the buffer data,
the read of buffer data may be executed before wait_on_buffer(bh) on
architectures with weak memory ordering and it may return invalid data.

Fix this bug by adding a memory barrier to set_buffer_uptodate and an
acquire barrier to buffer_uptodate (in a similar way as
folio_test_uptodate and folio_mark_uptodate).

Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: stable@vger.kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:19 +02:00
Johannes Berg 6dece5ad6e wifi: mac80211_hwsim: use 32-bit skb cookie
commit cc5250cdb4 upstream.

We won't really have enough skbs to need a 64-bit cookie,
and on 32-bit platforms storing the 64-bit cookie into the
void *rate_driver_data doesn't work anyway. Switch back to
using just a 32-bit cookie and uintptr_t for the type to
avoid compiler warnings about all this.

Fixes: 4ee186fa7e ("wifi: mac80211_hwsim: fix race condition in pending packet")
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Cc: Jeongik Cha <jeongik@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:19 +02:00
Johannes Berg d400222f49 wifi: mac80211_hwsim: add back erroneously removed cast
commit 58b6259d82 upstream.

The robots report that we're now casting to a differently
sized integer, which is correct, and the previous patch
had erroneously removed it.

Reported-by: kernel test robot <lkp@intel.com>
Fixes: 4ee186fa7e ("wifi: mac80211_hwsim: fix race condition in pending packet")
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Cc: Jeongik Cha <jeongik@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:19 +02:00
Jeongik Cha eb8fc4277b wifi: mac80211_hwsim: fix race condition in pending packet
commit 4ee186fa7e upstream.

A pending packet uses a cookie as an unique key, but it can be duplicated
because it didn't use atomic operators.

And also, a pending packet can be null in hwsim_tx_info_frame_received_nl
due to race condition with mac80211_hwsim_stop.

For this,
 * Use an atomic type and operator for a cookie
 * Add a lock around the loop for pending packets

Signed-off-by: Jeongik Cha <jeongik@google.com>
Link: https://lore.kernel.org/r/20220704084354.3556326-1-jeongik@google.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:19 +02:00
Ivan Hasenkampf 9a22b1f7da ALSA: hda/realtek: Add quirk for HP Spectre x360 15-eb0xxx
commit 24df5428ef upstream.

Fixes speaker output on HP Spectre x360 15-eb0xxx

[ re-sorted in SSID order by tiwai ]

Signed-off-by: Ivan Hasenkampf <ivan.hasenkampf@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220803164001.290394-1-ivan.hasenkampf@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:19 +02:00
Tim Crawford d909d9bdc8 ALSA: hda/realtek: Add quirk for Clevo NV45PZ
commit be561ffad7 upstream.

Fixes headset detection on Clevo NV45PZ.

Signed-off-by: Tim Crawford <tcrawford@system76.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220731032243.4300-1-tcrawford@system76.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:19 +02:00
Zheyu Ma 348620464a ALSA: bcd2000: Fix a UAF bug on the error path of probing
commit ffb2759df7 upstream.

When the driver fails in snd_card_register() at probe time, it will free
the 'bcd2k->midi_out_urb' before killing it, which may cause a UAF bug.

The following log can reveal it:

[   50.727020] BUG: KASAN: use-after-free in bcd2000_input_complete+0x1f1/0x2e0 [snd_bcd2000]
[   50.727623] Read of size 8 at addr ffff88810fab0e88 by task swapper/4/0
[   50.729530] Call Trace:
[   50.732899]  bcd2000_input_complete+0x1f1/0x2e0 [snd_bcd2000]

Fix this by adding usb_kill_urb() before usb_free_urb().

Fixes: b47a22290d ("ALSA: MIDI driver for Behringer BCD2000 USB device")
Signed-off-by: Zheyu Ma <zheyuma97@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220715010515.2087925-1-zheyuma97@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:18 +02:00
Nilesh Javali 101e0c052d scsi: Revert "scsi: qla2xxx: Fix disk failure to rediscover"
commit 5bc7b01c51 upstream.

This fixes the regression of NVMe discovery failure during driver load
time.

This reverts commit 6a45c8e137.

Link: https://lore.kernel.org/r/20220713052045.10683-2-njavali@marvell.com
Cc: stable@vger.kernel.org
Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com>
Signed-off-by: Nilesh Javali <njavali@marvell.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:18 +02:00
Trond Myklebust 14eb40fd79 Revert "pNFS: nfs3_set_ds_client should set NFS_CS_NOPING"
commit 9597152d98 upstream.

This reverts commit c6eb58435b.
If a transport is down, then we want to fail over to other transports if
they are listed in the GETDEVICEINFO reply.

Fixes: c6eb58435b ("pNFS: nfs3_set_ds_client should set NFS_CS_NOPING")
Cc: stable@vger.kernel.org # 5.11.x
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:18 +02:00
Nick Desaulniers 4ad6a94c68 x86: link vdso and boot with -z noexecstack --no-warn-rwx-segments
commit ffcf9c5700 upstream.

Users of GNU ld (BFD) from binutils 2.39+ will observe multiple
instances of a new warning when linking kernels in the form:

  ld: warning: arch/x86/boot/pmjump.o: missing .note.GNU-stack section implies executable stack
  ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
  ld: warning: arch/x86/boot/compressed/vmlinux has a LOAD segment with RWX permissions

Generally, we would like to avoid the stack being executable.  Because
there could be a need for the stack to be executable, assembler sources
have to opt-in to this security feature via explicit creation of the
.note.GNU-stack feature (which compilers create by default) or command
line flag --noexecstack.  Or we can simply tell the linker the
production of such sections is irrelevant and to link the stack as
--noexecstack.

LLVM's LLD linker defaults to -z noexecstack, so this flag isn't
strictly necessary when linking with LLD, only BFD, but it doesn't hurt
to be explicit here for all linkers IMO.  --no-warn-rwx-segments is
currently BFD specific and only available in the current latest release,
so it's wrapped in an ld-option check.

While the kernel makes extensive usage of ELF sections, it doesn't use
permissions from ELF segments.

Link: https://lore.kernel.org/linux-block/3af4127a-f453-4cf7-f133-a181cce06f73@kernel.dk/
Link: https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=ba951afb99912da01a6e8434126b8fac7aa75107
Link: https://github.com/llvm/llvm-project/issues/57009
Reported-and-tested-by: Jens Axboe <axboe@kernel.dk>
Suggested-by: Fangrui Song <maskray@google.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:18 +02:00
Nick Desaulniers 8f4f2c9b98 Makefile: link with -z noexecstack --no-warn-rwx-segments
commit 0d362be5b1 upstream.

Users of GNU ld (BFD) from binutils 2.39+ will observe multiple
instances of a new warning when linking kernels in the form:

  ld: warning: vmlinux: missing .note.GNU-stack section implies executable stack
  ld: NOTE: This behaviour is deprecated and will be removed in a future version of the linker
  ld: warning: vmlinux has a LOAD segment with RWX permissions

Generally, we would like to avoid the stack being executable.  Because
there could be a need for the stack to be executable, assembler sources
have to opt-in to this security feature via explicit creation of the
.note.GNU-stack feature (which compilers create by default) or command
line flag --noexecstack.  Or we can simply tell the linker the
production of such sections is irrelevant and to link the stack as
--noexecstack.

LLVM's LLD linker defaults to -z noexecstack, so this flag isn't
strictly necessary when linking with LLD, only BFD, but it doesn't hurt
to be explicit here for all linkers IMO.  --no-warn-rwx-segments is
currently BFD specific and only available in the current latest release,
so it's wrapped in an ld-option check.

While the kernel makes extensive usage of ELF sections, it doesn't use
permissions from ELF segments.

Link: https://lore.kernel.org/linux-block/3af4127a-f453-4cf7-f133-a181cce06f73@kernel.dk/
Link: https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=ba951afb99912da01a6e8434126b8fac7aa75107
Link: https://github.com/llvm/llvm-project/issues/57009
Reported-and-tested-by: Jens Axboe <axboe@kernel.dk>
Suggested-by: Fangrui Song <maskray@google.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-21 15:15:18 +02:00
Greg Kroah-Hartman 6eae1503dd Linux 5.10.136
Link: https://lore.kernel.org/r/20220809175512.853274191@linuxfoundation.org
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Pavel Machek (CIP) <pavel@denx.de>
Tested-by: Rudi Heitbaum <rudi@heitbaum.com>
Tested-by: Salvatore Bonaccorso <carnil@debian.org>
Tested-by: Sudip Mukherjee <sudip.mukherjee@codethink.co.uk>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Shuah Khan <skhan@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:47 +02:00
Pawan Gupta 1bea03b44e x86/speculation: Add LFENCE to RSB fill sequence
commit ba6e31af2b upstream.

RSB fill sequence does not have any protection for miss-prediction of
conditional branch at the end of the sequence. CPU can speculatively
execute code immediately after the sequence, while RSB filling hasn't
completed yet.

  #define __FILL_RETURN_BUFFER(reg, nr, sp)       \
          mov     $(nr/2), reg;                   \
  771:                                            \
          ANNOTATE_INTRA_FUNCTION_CALL;           \
          call    772f;                           \
  773:    /* speculation trap */                  \
          UNWIND_HINT_EMPTY;                      \
          pause;                                  \
          lfence;                                 \
          jmp     773b;                           \
  772:                                            \
          ANNOTATE_INTRA_FUNCTION_CALL;           \
          call    774f;                           \
  775:    /* speculation trap */                  \
          UNWIND_HINT_EMPTY;                      \
          pause;                                  \
          lfence;                                 \
          jmp     775b;                           \
  774:                                            \
          add     $(BITS_PER_LONG/8) * 2, sp;     \
          dec     reg;                            \
          jnz     771b;        <----- CPU can miss-predict here.

Before RSB is filled, RETs that come in program order after this macro
can be executed speculatively, making them vulnerable to RSB-based
attacks.

Mitigate it by adding an LFENCE after the conditional branch to prevent
speculation while RSB is being filled.

Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:47 +02:00
Daniel Sneddon 509c2c9fe7 x86/speculation: Add RSB VM Exit protections
commit 2b12993220 upstream.

tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.

== Background ==

Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.

To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced.  eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.

== Problem ==

Here's a simplification of how guests are run on Linux' KVM:

void run_kvm_guest(void)
{
	// Prepare to run guest
	VMRESUME();
	// Clean up after guest runs
}

The execution flow for that would look something like this to the
processor:

1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()

Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:

* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.

* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".

IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.

However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.

Balanced CALL/RET instruction pairs such as in step #5 are not affected.

== Solution ==

The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.

However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.

Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.

The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.

In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.

There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.

  [ bp: Massage, incorporate review comments from Andy Cooper. ]

Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:47 +02:00
Ning Qiang e5b556a7b2 macintosh/adb: fix oob read in do_adb_query() function
commit fd97e4ad6d upstream.

In do_adb_query() function of drivers/macintosh/adb.c, req->data is copied
form userland. The parameter "req->data[2]" is missing check, the array
size of adb_handler[] is 16, so adb_handler[req->data[2]].original_address and
adb_handler[req->data[2]].handler_id will lead to oob read.

Cc: stable <stable@kernel.org>
Signed-off-by: Ning Qiang <sohu0106@126.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220713153734.2248-1-sohu0106@126.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:47 +02:00
Hilda Wu 75742ffc36 Bluetooth: btusb: Add Realtek RTL8852C support ID 0x13D3:0x3586
commit 6ad353dfc8 upstream.

Add the support ID(0x13D3, 0x3586) to usb_device_id table for
Realtek RTL8852C.

The device info from /sys/kernel/debug/usb/devices as below.

T:  Bus=03 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#=  2 Spd=12   MxCh= 0
D:  Ver= 1.00 Cls=e0(wlcon) Sub=01 Prot=01 MxPS=64 #Cfgs=  1
P:  Vendor=13d3 ProdID=3586 Rev= 0.00
S:  Manufacturer=Realtek
S:  Product=Bluetooth Radio
S:  SerialNumber=00e04c000001
C:* #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=500mA
I:* If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=81(I) Atr=03(Int.) MxPS=  16 Ivl=1ms
E:  Ad=02(O) Atr=02(Bulk) MxPS=  64 Ivl=0ms
E:  Ad=82(I) Atr=02(Bulk) MxPS=  64 Ivl=0ms
I:* If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   0 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   0 Ivl=1ms
I:  If#= 1 Alt= 1 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   9 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   9 Ivl=1ms
I:  If#= 1 Alt= 2 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  17 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  17 Ivl=1ms
I:  If#= 1 Alt= 3 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  25 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  25 Ivl=1ms
I:  If#= 1 Alt= 4 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  33 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  33 Ivl=1ms
I:  If#= 1 Alt= 5 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  49 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  49 Ivl=1ms

Signed-off-by: Hilda Wu <hildawu@realtek.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:46 +02:00
Hilda Wu 40e2e7f1bf Bluetooth: btusb: Add Realtek RTL8852C support ID 0x13D3:0x3587
commit 8f0054dd29 upstream.

Add the support ID(0x13D3, 0x3587) to usb_device_id table for
Realtek RTL8852C.

The device info from /sys/kernel/debug/usb/devices as below.

T:  Bus=03 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#=  2 Spd=12   MxCh= 0
D:  Ver= 1.00 Cls=e0(wlcon) Sub=01 Prot=01 MxPS=64 #Cfgs=  1
P:  Vendor=13d3 ProdID=3587 Rev= 0.00
S:  Manufacturer=Realtek
S:  Product=Bluetooth Radio
S:  SerialNumber=00e04c000001
C:* #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=500mA
I:* If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=81(I) Atr=03(Int.) MxPS=  16 Ivl=1ms
E:  Ad=02(O) Atr=02(Bulk) MxPS=  64 Ivl=0ms
E:  Ad=82(I) Atr=02(Bulk) MxPS=  64 Ivl=0ms
I:* If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   0 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   0 Ivl=1ms
I:  If#= 1 Alt= 1 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   9 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   9 Ivl=1ms
I:  If#= 1 Alt= 2 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  17 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  17 Ivl=1ms
I:  If#= 1 Alt= 3 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  25 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  25 Ivl=1ms
I:  If#= 1 Alt= 4 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  33 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  33 Ivl=1ms
I:  If#= 1 Alt= 5 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  49 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  49 Ivl=1ms

Signed-off-by: Hilda Wu <hildawu@realtek.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:46 +02:00
Hilda Wu 9c45bb363e Bluetooth: btusb: Add Realtek RTL8852C support ID 0x0CB8:0xC558
commit 5b75ee37eb upstream.

Add the support ID(0x0CB8, 0xC558) to usb_device_id table for
Realtek RTL8852C.

The device info from /sys/kernel/debug/usb/devices as below.

T:  Bus=03 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#=  2 Spd=12   MxCh= 0
D:  Ver= 1.00 Cls=e0(wlcon) Sub=01 Prot=01 MxPS=64 #Cfgs=  1
P:  Vendor=0cb8 ProdID=c558 Rev= 0.00
S:  Manufacturer=Realtek
S:  Product=Bluetooth Radio
S:  SerialNumber=00e04c000001
C:* #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=500mA
I:* If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=81(I) Atr=03(Int.) MxPS=  16 Ivl=1ms
E:  Ad=02(O) Atr=02(Bulk) MxPS=  64 Ivl=0ms
E:  Ad=82(I) Atr=02(Bulk) MxPS=  64 Ivl=0ms
I:* If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   0 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   0 Ivl=1ms
I:  If#= 1 Alt= 1 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   9 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   9 Ivl=1ms
I:  If#= 1 Alt= 2 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  17 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  17 Ivl=1ms
I:  If#= 1 Alt= 3 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  25 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  25 Ivl=1ms
I:  If#= 1 Alt= 4 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  33 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  33 Ivl=1ms
I:  If#= 1 Alt= 5 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  49 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  49 Ivl=1ms

Signed-off-by: Hilda Wu <hildawu@realtek.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:46 +02:00
Hilda Wu 3a292cb181 Bluetooth: btusb: Add Realtek RTL8852C support ID 0x04C5:0x1675
commit 893fa8bc99 upstream.

Add the support ID(0x04c5, 0x1675) to usb_device_id table for
Realtek RTL8852C.

The device info from /sys/kernel/debug/usb/devices as below.

T:  Bus=03 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#=  2 Spd=12   MxCh= 0
D:  Ver= 1.00 Cls=e0(wlcon) Sub=01 Prot=01 MxPS=64 #Cfgs=  1
P:  Vendor=04c5 ProdID=1675 Rev= 0.00
S:  Manufacturer=Realtek
S:  Product=Bluetooth Radio
S:  SerialNumber=00e04c000001
C:* #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=500mA
I:* If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=81(I) Atr=03(Int.) MxPS=  16 Ivl=1ms
E:  Ad=02(O) Atr=02(Bulk) MxPS=  64 Ivl=0ms
E:  Ad=82(I) Atr=02(Bulk) MxPS=  64 Ivl=0ms
I:* If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   0 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   0 Ivl=1ms
I:  If#= 1 Alt= 1 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   9 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   9 Ivl=1ms
I:  If#= 1 Alt= 2 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  17 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  17 Ivl=1ms
I:  If#= 1 Alt= 3 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  25 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  25 Ivl=1ms
I:  If#= 1 Alt= 4 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  33 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  33 Ivl=1ms
I:  If#= 1 Alt= 5 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  49 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  49 Ivl=1ms

Signed-off-by: Hilda Wu <hildawu@realtek.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:46 +02:00
Hilda Wu 1a2a2e3456 Bluetooth: btusb: Add Realtek RTL8852C support ID 0x04CA:0x4007
commit c379c96cc2 upstream.

Add the support ID(0x04CA, 0x4007) to usb_device_id table for
Realtek RTL8852C.

The device info from /sys/kernel/debug/usb/devices as below.

T:  Bus=03 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#=  2 Spd=12   MxCh= 0
D:  Ver= 1.00 Cls=e0(wlcon) Sub=01 Prot=01 MxPS=64 #Cfgs=  1
P:  Vendor=04ca ProdID=4007 Rev= 0.00
S:  Manufacturer=Realtek
S:  Product=Bluetooth Radio
S:  SerialNumber=00e04c000001
C:* #Ifs= 2 Cfg#= 1 Atr=e0 MxPwr=500mA
I:* If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=81(I) Atr=03(Int.) MxPS=  16 Ivl=1ms
E:  Ad=02(O) Atr=02(Bulk) MxPS=  64 Ivl=0ms
E:  Ad=82(I) Atr=02(Bulk) MxPS=  64 Ivl=0ms
I:* If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   0 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   0 Ivl=1ms
I:  If#= 1 Alt= 1 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   9 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   9 Ivl=1ms
I:  If#= 1 Alt= 2 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  17 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  17 Ivl=1ms
I:  If#= 1 Alt= 3 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  25 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  25 Ivl=1ms
I:  If#= 1 Alt= 4 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  33 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  33 Ivl=1ms
I:  If#= 1 Alt= 5 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=  49 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=  49 Ivl=1ms

Signed-off-by: Hilda Wu <hildawu@realtek.com>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:46 +02:00
Aaron Ma e81f95d030 Bluetooth: btusb: Add support of IMC Networks PID 0x3568
commit c69ecb0ea4 upstream.

It is 13d3:3568 for MediaTek MT7922 USB Bluetooth chip.

T:  Bus=03 Lev=01 Prnt=01 Port=02 Cnt=01 Dev#=  2 Spd=480 MxCh= 0
D:  Ver= 2.10 Cls=ef(misc ) Sub=02 Prot=01 MxPS=64 #Cfgs=  1
P:  Vendor=13d3 ProdID=3568 Rev=01.00
S:  Manufacturer=MediaTek Inc.
S:  Product=Wireless_Device
S:  SerialNumber=...
C:  #Ifs= 3 Cfg#= 1 Atr=e0 MxPwr=100mA
I:  If#= 0 Alt= 0 #EPs= 3 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms
E:  Ad=81(I) Atr=03(Int.) MxPS=  16 Ivl=125us
E:  Ad=82(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
I:  If#= 1 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=btusb
E:  Ad=03(O) Atr=01(Isoc) MxPS=   0 Ivl=1ms
E:  Ad=83(I) Atr=01(Isoc) MxPS=   0 Ivl=1ms
I:  If#= 2 Alt= 0 #EPs= 2 Cls=e0(wlcon) Sub=01 Prot=01 Driver=(none)
E:  Ad=0a(O) Atr=03(Int.) MxPS=  64 Ivl=125us
E:  Ad=8a(I) Atr=03(Int.) MxPS=  64 Ivl=125us

Signed-off-by: Aaron Ma <aaron.ma@canonical.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:46 +02:00
Hakan Jansson 918ce738e2 Bluetooth: hci_bcm: Add DT compatible for CYW55572
commit f8cad62002 upstream.

CYW55572 is a Wi-Fi + Bluetooth combo device from Infineon.

Signed-off-by: Hakan Jansson <hakan.jansson@infineon.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:46 +02:00
Ahmad Fatoum 033a4455d9 Bluetooth: hci_bcm: Add BCM4349B1 variant
commit 4f17c2b669 upstream.

The BCM4349B1, aka CYW/BCM89359, is a WiFi+BT chip and its Bluetooth
portion can be controlled over serial.

Two subversions are added for the chip, because ROM firmware reports
002.002.013 (at least for the chips I have here), while depending on
patchram firmware revision, either 002.002.013 or 002.002.014 is
reported.

Signed-off-by: Ahmad Fatoum <a.fatoum@pengutronix.de>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:45 +02:00
Raghavendra Rao Ananta 50763f0ac0 selftests: KVM: Handle compiler optimizations in ucall
[ Upstream commit 9e2f6498ef ]

The selftests, when built with newer versions of clang, is found
to have over optimized guests' ucall() function, and eliminating
the stores for uc.cmd (perhaps due to no immediate readers). This
resulted in the userspace side always reading a value of '0', and
causing multiple test failures.

As a result, prevent the compiler from optimizing the stores in
ucall() with WRITE_ONCE().

Suggested-by: Ricardo Koller <ricarkol@google.com>
Suggested-by: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Raghavendra Rao Ananta <rananta@google.com>
Message-Id: <20220615185706.1099208-1-rananta@google.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-11 13:06:45 +02:00
Dmitry Klochkov a56e1ccdb7 tools/kvm_stat: fix display of error when multiple processes are found
[ Upstream commit 933b5f9f98 ]

Instead of printing an error message, kvm_stat script fails when we
restrict statistics to a guest by its name and there are multiple guests
with such name:

  # kvm_stat -g my_vm
  Traceback (most recent call last):
    File "/usr/bin/kvm_stat", line 1819, in <module>
      main()
    File "/usr/bin/kvm_stat", line 1779, in main
      options = get_options()
    File "/usr/bin/kvm_stat", line 1718, in get_options
      options = argparser.parse_args()
    File "/usr/lib64/python3.10/argparse.py", line 1825, in parse_args
      args, argv = self.parse_known_args(args, namespace)
    File "/usr/lib64/python3.10/argparse.py", line 1858, in parse_known_args
      namespace, args = self._parse_known_args(args, namespace)
    File "/usr/lib64/python3.10/argparse.py", line 2067, in _parse_known_args
      start_index = consume_optional(start_index)
    File "/usr/lib64/python3.10/argparse.py", line 2007, in consume_optional
      take_action(action, args, option_string)
    File "/usr/lib64/python3.10/argparse.py", line 1935, in take_action
      action(self, namespace, argument_values, option_string)
    File "/usr/bin/kvm_stat", line 1649, in __call__
      ' to specify the desired pid'.format(" ".join(pids)))
  TypeError: sequence item 0: expected str instance, int found

To avoid this, it's needed to convert pids int values to strings before
pass them to join().

Signed-off-by: Dmitry Klochkov <kdmitry556@gmail.com>
Message-Id: <20220614121141.160689-1-kdmitry556@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2022-08-11 13:06:45 +02:00
GUO Zihua 3c77292d52 crypto: arm64/poly1305 - fix a read out-of-bound
commit 7ae19d422c upstream.

A kasan error was reported during fuzzing:

BUG: KASAN: slab-out-of-bounds in neon_poly1305_blocks.constprop.0+0x1b4/0x250 [poly1305_neon]
Read of size 4 at addr ffff0010e293f010 by task syz-executor.5/1646715
CPU: 4 PID: 1646715 Comm: syz-executor.5 Kdump: loaded Not tainted 5.10.0.aarch64 #1
Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.59 01/31/2019
Call trace:
 dump_backtrace+0x0/0x394
 show_stack+0x34/0x4c arch/arm64/kernel/stacktrace.c:196
 __dump_stack lib/dump_stack.c:77 [inline]
 dump_stack+0x158/0x1e4 lib/dump_stack.c:118
 print_address_description.constprop.0+0x68/0x204 mm/kasan/report.c:387
 __kasan_report+0xe0/0x140 mm/kasan/report.c:547
 kasan_report+0x44/0xe0 mm/kasan/report.c:564
 check_memory_region_inline mm/kasan/generic.c:187 [inline]
 __asan_load4+0x94/0xd0 mm/kasan/generic.c:252
 neon_poly1305_blocks.constprop.0+0x1b4/0x250 [poly1305_neon]
 neon_poly1305_do_update+0x6c/0x15c [poly1305_neon]
 neon_poly1305_update+0x9c/0x1c4 [poly1305_neon]
 crypto_shash_update crypto/shash.c:131 [inline]
 shash_finup_unaligned+0x84/0x15c crypto/shash.c:179
 crypto_shash_finup+0x8c/0x140 crypto/shash.c:193
 shash_digest_unaligned+0xb8/0xe4 crypto/shash.c:201
 crypto_shash_digest+0xa4/0xfc crypto/shash.c:217
 crypto_shash_tfm_digest+0xb4/0x150 crypto/shash.c:229
 essiv_skcipher_setkey+0x164/0x200 [essiv]
 crypto_skcipher_setkey+0xb0/0x160 crypto/skcipher.c:612
 skcipher_setkey+0x3c/0x50 crypto/algif_skcipher.c:305
 alg_setkey+0x114/0x2a0 crypto/af_alg.c:220
 alg_setsockopt+0x19c/0x210 crypto/af_alg.c:253
 __sys_setsockopt+0x190/0x2e0 net/socket.c:2123
 __do_sys_setsockopt net/socket.c:2134 [inline]
 __se_sys_setsockopt net/socket.c:2131 [inline]
 __arm64_sys_setsockopt+0x78/0x94 net/socket.c:2131
 __invoke_syscall arch/arm64/kernel/syscall.c:36 [inline]
 invoke_syscall+0x64/0x100 arch/arm64/kernel/syscall.c:48
 el0_svc_common.constprop.0+0x220/0x230 arch/arm64/kernel/syscall.c:155
 do_el0_svc+0xb4/0xd4 arch/arm64/kernel/syscall.c:217
 el0_svc+0x24/0x3c arch/arm64/kernel/entry-common.c:353
 el0_sync_handler+0x160/0x164 arch/arm64/kernel/entry-common.c:369
 el0_sync+0x160/0x180 arch/arm64/kernel/entry.S:683

This error can be reproduced by the following code compiled as ko on a
system with kasan enabled:

#include <linux/module.h>
#include <linux/crypto.h>
#include <crypto/hash.h>
#include <crypto/poly1305.h>

char test_data[] = "\x00\x01\x02\x03\x04\x05\x06\x07"
                   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
                   "\x10\x11\x12\x13\x14\x15\x16\x17"
                   "\x18\x19\x1a\x1b\x1c\x1d\x1e";

int init(void)
{
        struct crypto_shash *tfm = NULL;
        char *data = NULL, *out = NULL;

        tfm = crypto_alloc_shash("poly1305", 0, 0);
        data = kmalloc(POLY1305_KEY_SIZE - 1, GFP_KERNEL);
        out = kmalloc(POLY1305_DIGEST_SIZE, GFP_KERNEL);
        memcpy(data, test_data, POLY1305_KEY_SIZE - 1);
        crypto_shash_tfm_digest(tfm, data, POLY1305_KEY_SIZE - 1, out);

        kfree(data);
        kfree(out);
        return 0;
}

void deinit(void)
{
}

module_init(init)
module_exit(deinit)
MODULE_LICENSE("GPL");

The root cause of the bug sits in neon_poly1305_blocks. The logic
neon_poly1305_blocks() performed is that if it was called with both s[]
and r[] uninitialized, it will first try to initialize them with the
data from the first "block" that it believed to be 32 bytes in length.
First 16 bytes are used as the key and the next 16 bytes for s[]. This
would lead to the aforementioned read out-of-bound. However, after
calling poly1305_init_arch(), only 16 bytes were deducted from the input
and s[] is initialized yet again with the following 16 bytes. The second
initialization of s[] is certainly redundent which indicates that the
first initialization should be for r[] only.

This patch fixes the issue by calling poly1305_init_arm64() instead of
poly1305_init_arch(). This is also the implementation for the same
algorithm on arm platform.

Fixes: f569ca1647 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Cc: stable@vger.kernel.org
Signed-off-by: GUO Zihua <guozihua@huawei.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:45 +02:00
Tony Luck e2c63e1afd ACPI: APEI: Better fix to avoid spamming the console with old error logs
commit c3481b6b75 upstream.

The fix in commit 3f8dec1162 ("ACPI/APEI: Limit printable size of BERT
table data") does not work as intended on systems where the BIOS has a
fixed size block of memory for the BERT table, relying on s/w to quit
when it finds a record with estatus->block_status == 0. On these systems
all errors are suppressed because the check:

	if (region_len < ACPI_BERT_PRINT_MAX_LEN)

always fails.

New scheme skips individual CPER records that are too large, and also
limits the total number of records that will be printed to 5.

Fixes: 3f8dec1162 ("ACPI/APEI: Limit printable size of BERT table data")
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:45 +02:00
Werner Sembach 6ccff35588 ACPI: video: Shortening quirk list by identifying Clevo by board_name only
commit f0341e67b3 upstream.

Taking a recent change in the i8042 quirklist to this one: Clevo
board_names are somewhat unique, and if not: The generic Board_-/Sys_Vendor
string "Notebook" doesn't help much anyway. So identifying the devices just
by the board_name helps keeping the list significantly shorter and might
even hit more devices requiring the fix.

Signed-off-by: Werner Sembach <wse@tuxedocomputers.com>
Fixes: c844d22fe0 ("ACPI: video: Force backlight native for Clevo NL5xRU and NL5xNU")
Cc: All applicable <stable@vger.kernel.org>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:45 +02:00
Werner Sembach a2b472b152 ACPI: video: Force backlight native for some TongFang devices
commit c752089f7c upstream.

The TongFang PF5PU1G, PF4NU1F, PF5NU1G, and PF5LUXG/TUXEDO BA15 Gen10,
Pulse 14/15 Gen1, and Pulse 15 Gen2 have the same problem as the Clevo
NL5xRU and NL5xNU/TUXEDO Aura 15 Gen1 and Gen2:
They have a working native and video interface. However the default
detection mechanism first registers the video interface before
unregistering it again and switching to the native interface during boot.
This results in a dangling SBIOS request for backlight change for some
reason, causing the backlight to switch to ~2% once per boot on the first
power cord connect or disconnect event. Setting the native interface
explicitly circumvents this buggy behaviour by avoiding the unregistering
process.

Signed-off-by: Werner Sembach <wse@tuxedocomputers.com>
Cc: All applicable <stable@vger.kernel.org>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:45 +02:00
George Kennedy a01a4e9f5d tun: avoid double free in tun_free_netdev
commit 158b515f70 upstream.

Avoid double free in tun_free_netdev() by moving the
dev->tstats and tun->security allocs to a new ndo_init routine
(tun_net_init()) that will be called by register_netdevice().
ndo_init is paired with the desctructor (tun_free_netdev()),
so if there's an error in register_netdevice() the destructor
will handle the frees.

BUG: KASAN: double-free or invalid-free in selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605

CPU: 0 PID: 25750 Comm: syz-executor416 Not tainted 5.16.0-rc2-syzk #1
Hardware name: Red Hat KVM, BIOS
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x89/0xb5 lib/dump_stack.c:106
print_address_description.constprop.9+0x28/0x160 mm/kasan/report.c:247
kasan_report_invalid_free+0x55/0x80 mm/kasan/report.c:372
____kasan_slab_free mm/kasan/common.c:346 [inline]
__kasan_slab_free+0x107/0x120 mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:235 [inline]
slab_free_hook mm/slub.c:1723 [inline]
slab_free_freelist_hook mm/slub.c:1749 [inline]
slab_free mm/slub.c:3513 [inline]
kfree+0xac/0x2d0 mm/slub.c:4561
selinux_tun_dev_free_security+0x1a/0x20 security/selinux/hooks.c:5605
security_tun_dev_free_security+0x4f/0x90 security/security.c:2342
tun_free_netdev+0xe6/0x150 drivers/net/tun.c:2215
netdev_run_todo+0x4df/0x840 net/core/dev.c:10627
rtnl_unlock+0x13/0x20 net/core/rtnetlink.c:112
__tun_chr_ioctl+0x80c/0x2870 drivers/net/tun.c:3302
tun_chr_ioctl+0x2f/0x40 drivers/net/tun.c:3311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x19d/0x220 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae

Reported-by: syzkaller <syzkaller@googlegroups.com>
Signed-off-by: George Kennedy <george.kennedy@oracle.com>
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Link: https://lore.kernel.org/r/1639679132-19884-1-git-send-email-george.kennedy@oracle.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:44 +02:00
Jakub Sitnicki 1069087e2f selftests/bpf: Check dst_port only on the client socket
commit 2d2202ba85 upstream.

cgroup_skb/egress programs which sock_fields test installs process packets
flying in both directions, from the client to the server, and in reverse
direction.

Recently added dst_port check relies on the fact that destination
port (remote peer port) of the socket which sends the packet is known ahead
of time. This holds true only for the client socket, which connects to the
known server port.

Filter out any traffic that is not egressing from the client socket in the
BPF program that tests reading the dst_port.

Fixes: 8f50f16ff3 ("selftests/bpf: Extend verifier and bpf_sock tests for dst_port loads")
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Link: https://lore.kernel.org/bpf/20220317113920.1068535-3-jakub@cloudflare.com
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:44 +02:00
Jakub Sitnicki 042fb1c281 selftests/bpf: Extend verifier and bpf_sock tests for dst_port loads
commit 8f50f16ff3 upstream.

Add coverage to the verifier tests and tests for reading bpf_sock fields to
ensure that 32-bit, 16-bit, and 8-bit loads from dst_port field are allowed
only at intended offsets and produce expected values.

While 16-bit and 8-bit access to dst_port field is straight-forward, 32-bit
wide loads need be allowed and produce a zero-padded 16-bit value for
backward compatibility.

Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/r/20220130115518.213259-3-jakub@cloudflare.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
[OP: backport to 5.10: adjusted context in sock_fields.c]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:44 +02:00
Tetsuo Handa 78c8397132 ath9k_htc: fix NULL pointer dereference at ath9k_htc_tx_get_packet()
commit 8b3046abc9 upstream.

syzbot is reporting lockdep warning at ath9k_wmi_event_tasklet() followed
by kernel panic at get_htc_epid_queue() from ath9k_htc_tx_get_packet() from
ath9k_htc_txstatus() [1], for ath9k_wmi_event_tasklet(WMI_TXSTATUS_EVENTID)
depends on spin_lock_init() from ath9k_init_priv() being already completed.

Since ath9k_wmi_event_tasklet() is set by ath9k_init_wmi() from
ath9k_htc_probe_device(), it is possible that ath9k_wmi_event_tasklet() is
called via tasklet interrupt before spin_lock_init() from ath9k_init_priv()
 from ath9k_init_device() from ath9k_htc_probe_device() is called.

Let's hold ath9k_wmi_event_tasklet(WMI_TXSTATUS_EVENTID) no-op until
ath9k_tx_init() completes.

Link: https://syzkaller.appspot.com/bug?extid=31d54c60c5b254d6f75b [1]
Reported-by: syzbot <syzbot+31d54c60c5b254d6f75b@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Tested-by: syzbot <syzbot+31d54c60c5b254d6f75b@syzkaller.appspotmail.com>
Signed-off-by: Kalle Valo <quic_kvalo@quicinc.com>
Link: https://lore.kernel.org/r/77b76ac8-2bee-6444-d26c-8c30858b8daa@i-love.sakura.ne.jp
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:44 +02:00
Tetsuo Handa 4f3b852336 ath9k_htc: fix NULL pointer dereference at ath9k_htc_rxep()
commit b0ec7e55fc upstream.

syzbot is reporting lockdep warning followed by kernel panic at
ath9k_htc_rxep() [1], for ath9k_htc_rxep() depends on ath9k_rx_init()
being already completed.

Since ath9k_htc_rxep() is set by ath9k_htc_connect_svc(WMI_BEACON_SVC)
 from ath9k_init_htc_services(), it is possible that ath9k_htc_rxep() is
called via timer interrupt before ath9k_rx_init() from ath9k_init_device()
is called.

Since we can't call ath9k_init_device() before ath9k_init_htc_services(),
let's hold ath9k_htc_rxep() no-op until ath9k_rx_init() completes.

Link: https://syzkaller.appspot.com/bug?extid=4d2d56175b934b9a7bf9 [1]
Reported-by: syzbot <syzbot+4d2d56175b934b9a7bf9@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Tested-by: syzbot <syzbot+4d2d56175b934b9a7bf9@syzkaller.appspotmail.com>
Signed-off-by: Kalle Valo <quic_kvalo@quicinc.com>
Link: https://lore.kernel.org/r/2b88f416-b2cb-7a18-d688-951e6dc3fe92@i-love.sakura.ne.jp
Signed-off-by: Fedor Pchelkin <pchelkin@ispras.ru>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:44 +02:00
Ben Hutchings 45b69848a2 x86/speculation: Make all RETbleed mitigations 64-bit only
commit b648ab487f upstream.

The mitigations for RETBleed are currently ineffective on x86_32 since
entry_32.S does not use the required macros.  However, for an x86_32
target, the kconfig symbols for them are still enabled by default and
/sys/devices/system/cpu/vulnerabilities/retbleed will wrongly report
that mitigations are in place.

Make all of these symbols depend on X86_64, and only enable RETHUNK by
default on X86_64.

Fixes: f43b9876e8 ("x86/retbleed: Add fine grained Kconfig knobs")
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/YtwSR3NNsWp1ohfV@decadent.org.uk
[bwh: Backported to 5.10/5.15/5.18: adjust context]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-11 13:06:44 +02:00
Greg Kroah-Hartman 4fd9cb57a3 Linux 5.10.135
Link: https://lore.kernel.org/r/20220801114133.641770326@linuxfoundation.org
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Florian Fainelli <f.fainelli@gmail.com>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Shuah Khan <skhan@linuxfoundation.org>
Tested-by: Guenter Roeck <linux@roeck-us.net>
Tested-by: Rudi Heitbaum <rudi@heitbaum.com>
Tested-by: Pavel Machek (CIP) <pavel@denx.de>
Tested-by: Sudip Mukherjee <sudip.mukherjee@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:52 +02:00
Lorenz Bauer 4bfc9dc608 selftests: bpf: Don't run sk_lookup in verifier tests
commit b4f894633f upstream.

sk_lookup doesn't allow setting data_in for bpf_prog_run. This doesn't
play well with the verifier tests, since they always set a 64 byte
input buffer. Allow not running verifier tests by setting
bpf_test.runs to a negative value and don't run the ctx access case
for sk_lookup. We have dedicated ctx access tests so skipping here
doesn't reduce coverage.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210303101816.36774-6-lmb@cloudflare.com
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:52 +02:00
Lorenz Bauer 6d3fad2b44 bpf: Add PROG_TEST_RUN support for sk_lookup programs
commit 7c32e8f8bc upstream.

Allow to pass sk_lookup programs to PROG_TEST_RUN. User space
provides the full bpf_sk_lookup struct as context. Since the
context includes a socket pointer that can't be exposed
to user space we define that PROG_TEST_RUN returns the cookie
of the selected socket or zero in place of the socket pointer.

We don't support testing programs that select a reuseport socket,
since this would mean running another (unrelated) BPF program
from the sk_lookup test handler.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20210303101816.36774-3-lmb@cloudflare.com
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:52 +02:00
Lorenz Bauer 6aad811b37 bpf: Consolidate shared test timing code
commit 607b9cc92b upstream.

Share the timing / signal interruption logic between different
implementations of PROG_TEST_RUN. There is a change in behaviour
as well. We check the loop exit condition before checking for
pending signals. This resolves an edge case where a signal
arrives during the last iteration. Instead of aborting with
EINTR we return the successful result to user space.

Signed-off-by: Lorenz Bauer <lmb@cloudflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20210303101816.36774-2-lmb@cloudflare.com
[dtcccc: fix conflicts in bpf_test_run()]
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:52 +02:00
Thadeu Lima de Souza Cascardo 545fc3524c x86/bugs: Do not enable IBPB at firmware entry when IBPB is not available
commit 571c30b1a8 upstream.

Some cloud hypervisors do not provide IBPB on very recent CPU processors,
including AMD processors affected by Retbleed.

Using IBPB before firmware calls on such systems would cause a GPF at boot
like the one below. Do not enable such calls when IBPB support is not
present.

  EFI Variables Facility v0.08 2004-May-17
  general protection fault, maybe for address 0x1: 0000 [#1] PREEMPT SMP NOPTI
  CPU: 0 PID: 24 Comm: kworker/u2:1 Not tainted 5.19.0-rc8+ #7
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 0.0.0 02/06/2015
  Workqueue: efi_rts_wq efi_call_rts
  RIP: 0010:efi_call_rts
  Code: e8 37 33 58 ff 41 bf 48 00 00 00 49 89 c0 44 89 f9 48 83 c8 01 4c 89 c2 48 c1 ea 20 66 90 b9 49 00 00 00 b8 01 00 00 00 31 d2 <0f> 30 e8 7b 9f 5d ff e8 f6 f8 ff ff 4c 89 f1 4c 89 ea 4c 89 e6 48
  RSP: 0018:ffffb373800d7e38 EFLAGS: 00010246
  RAX: 0000000000000001 RBX: 0000000000000006 RCX: 0000000000000049
  RDX: 0000000000000000 RSI: ffff94fbc19d8fe0 RDI: ffff94fbc1b2b300
  RBP: ffffb373800d7e70 R08: 0000000000000000 R09: 0000000000000000
  R10: 000000000000000b R11: 000000000000000b R12: ffffb3738001fd78
  R13: ffff94fbc2fcfc00 R14: ffffb3738001fd80 R15: 0000000000000048
  FS:  0000000000000000(0000) GS:ffff94fc3da00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: ffff94fc30201000 CR3: 000000006f610000 CR4: 00000000000406f0
  Call Trace:
   <TASK>
   ? __wake_up
   process_one_work
   worker_thread
   ? rescuer_thread
   kthread
   ? kthread_complete_and_exit
   ret_from_fork
   </TASK>
  Modules linked in:

Fixes: 28a99e95f5 ("x86/amd: Use IBPB for firmware calls")
Reported-by: Dimitri John Ledkov <dimitri.ledkov@canonical.com>
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/20220728122602.2500509-1-cascardo@canonical.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:51 +02:00
Dave Chinner 14b494b7aa xfs: Enforce attr3 buffer recovery order
commit d8f4c2d039 upstream.

>From the department of "WTAF? How did we miss that!?"...

When we are recovering a buffer, the first thing we do is check the
buffer magic number and extract the LSN from the buffer. If the LSN
is older than the current LSN, we replay the modification to it. If
the metadata on disk is newer than the transaction in the log, we
skip it. This is a fundamental v5 filesystem metadata recovery
behaviour.

generic/482 failed with an attribute writeback failure during log
recovery. The write verifier caught the corruption before it got
written to disk, and the attr buffer dump looked like:

XFS (dm-3): Metadata corruption detected at xfs_attr3_leaf_verify+0x275/0x2e0, xfs_attr3_leaf block 0x19be8
XFS (dm-3): Unmount and run xfs_repair
XFS (dm-3): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 3b ee 00 00 4d 2a 01 e1  ........;...M*..
00000010: 00 00 00 00 00 01 9b e8 00 00 00 01 00 00 05 38  ...............8
                                  ^^^^^^^^^^^^^^^^^^^^^^^
00000020: df 39 5e 51 58 ac 44 b6 8d c5 e7 10 44 09 bc 17  .9^QX.D.....D...
00000030: 00 00 00 00 00 02 00 83 00 03 00 cc 0f 24 01 00  .............$..
00000040: 00 68 0e bc 0f c8 00 10 00 00 00 00 00 00 00 00  .h..............
00000050: 00 00 3c 31 0f 24 01 00 00 00 3c 32 0f 88 01 00  ..<1.$....<2....
00000060: 00 00 3c 33 0f d8 01 00 00 00 00 00 00 00 00 00  ..<3............
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
.....

The highlighted bytes are the LSN that was replayed into the
buffer: 0x100000538. This is cycle 1, block 0x538. Prior to replay,
that block on disk looks like this:

$ sudo xfs_db -c "fsb 0x417d" -c "type attr3" -c p /dev/mapper/thin-vol
hdr.info.hdr.forw = 0
hdr.info.hdr.back = 0
hdr.info.hdr.magic = 0x3bee
hdr.info.crc = 0xb5af0bc6 (correct)
hdr.info.bno = 105448
hdr.info.lsn = 0x100000900
               ^^^^^^^^^^^
hdr.info.uuid = df395e51-58ac-44b6-8dc5-e7104409bc17
hdr.info.owner = 131203
hdr.count = 2
hdr.usedbytes = 120
hdr.firstused = 3796
hdr.holes = 1
hdr.freemap[0-2] = [base,size]

Note the LSN stamped into the buffer on disk: 1/0x900. The version
on disk is much newer than the log transaction that was being
replayed. That's a bug, and should -never- happen.

So I immediately went to look at xlog_recover_get_buf_lsn() to check
that we handled the LSN correctly. I was wondering if there was a
similar "two commits with the same start LSN skips the second
replay" problem with buffers. I didn't get that far, because I found
a much more basic, rudimentary bug: xlog_recover_get_buf_lsn()
doesn't recognise buffers with XFS_ATTR3_LEAF_MAGIC set in them!!!

IOWs, attr3 leaf buffers fall through the magic number checks
unrecognised, so trigger the "recover immediately" behaviour instead
of undergoing an LSN check. IOWs, we incorrectly replay ATTR3 leaf
buffers and that causes silent on disk corruption of inode attribute
forks and potentially other things....

Git history shows this is *another* zero day bug, this time
introduced in commit 50d5c8d8e9 ("xfs: check LSN ordering for v5
superblocks during recovery") which failed to handle the attr3 leaf
buffers in recovery. And we've failed to handle them ever since...

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:51 +02:00
Dave Chinner e5f9d4e0f8 xfs: logging the on disk inode LSN can make it go backwards
commit 32baa63d82 upstream.

When we log an inode, we format the "log inode" core and set an LSN
in that inode core. We do that via xfs_inode_item_format_core(),
which calls:

	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);

to format the log inode. It writes the LSN from the inode item into
the log inode, and if recovery decides the inode item needs to be
replayed, it recovers the log inode LSN field and writes it into the
on disk inode LSN field.

Now this might seem like a reasonable thing to do, but it is wrong
on multiple levels. Firstly, if the item is not yet in the AIL,
item->li_lsn is zero. i.e. the first time the inode it is logged and
formatted, the LSN we write into the log inode will be zero. If we
only log it once, recovery will run and can write this zero LSN into
the inode.

This means that the next time the inode is logged and log recovery
runs, it will *always* replay changes to the inode regardless of
whether the inode is newer on disk than the version in the log and
that violates the entire purpose of recording the LSN in the inode
at writeback time (i.e. to stop it going backwards in time on disk
during recovery).

Secondly, if we commit the CIL to the journal so the inode item
moves to the AIL, and then relog the inode, the LSN that gets
stamped into the log inode will be the LSN of the inode's current
location in the AIL, not it's age on disk. And it's not the LSN that
will be associated with the current change. That means when log
recovery replays this inode item, the LSN that ends up on disk is
the LSN for the previous changes in the log, not the current
changes being replayed. IOWs, after recovery the LSN on disk is not
in sync with the LSN of the modifications that were replayed into
the inode. This, again, violates the recovery ordering semantics
that on-disk writeback LSNs provide.

Hence the inode LSN in the log dinode is -always- invalid.

Thirdly, recovery actually has the LSN of the log transaction it is
replaying right at hand - it uses it to determine if it should
replay the inode by comparing it to the on-disk inode's LSN. But it
doesn't use that LSN to stamp the LSN into the inode which will be
written back when the transaction is fully replayed. It uses the one
in the log dinode, which we know is always going to be incorrect.

Looking back at the change history, the inode logging was broken by
commit 93f958f9c4 ("xfs: cull unnecessary icdinode fields") way
back in 2016 by a stupid idiot who thought he knew how this code
worked. i.e. me. That commit replaced an in memory di_lsn field that
was updated only at inode writeback time from the inode item.li_lsn
value - and hence always contained the same LSN that appeared in the
on-disk inode - with a read of the inode item LSN at inode format
time. CLearly these are not the same thing.

Before 93f958f9c4, the log recovery behaviour was irrelevant,
because the LSN in the log inode always matched the on-disk LSN at
the time the inode was logged, hence recovery of the transaction
would never make the on-disk LSN in the inode go backwards or get
out of sync.

A symptom of the problem is this, caught from a failure of
generic/482. Before log recovery, the inode has been allocated but
never used:

xfs_db> inode 393388
xfs_db> p
core.magic = 0x494e
core.mode = 0
....
v3.crc = 0x99126961 (correct)
v3.change_count = 0
v3.lsn = 0
v3.flags2 = 0
v3.cowextsize = 0
v3.crtime.sec = Thu Jan  1 10:00:00 1970
v3.crtime.nsec = 0

After log recovery:

xfs_db> p
core.magic = 0x494e
core.mode = 020444
....
v3.crc = 0x23e68f23 (correct)
v3.change_count = 2
v3.lsn = 0
v3.flags2 = 0
v3.cowextsize = 0
v3.crtime.sec = Thu Jul 22 17:03:03 2021
v3.crtime.nsec = 751000000
...

You can see that the LSN of the on-disk inode is 0, even though it
clearly has been written to disk. I point out this inode, because
the generic/482 failure occurred because several adjacent inodes in
this specific inode cluster were not replayed correctly and still
appeared to be zero on disk when all the other metadata (inobt,
finobt, directories, etc) indicated they should be allocated and
written back.

The fix for this is two-fold. The first is that we need to either
revert the LSN changes in 93f958f9c4 or stop logging the inode LSN
altogether. If we do the former, log recovery does not need to
change but we add 8 bytes of memory per inode to store what is
largely a write-only inode field. If we do the latter, log recovery
needs to stamp the on-disk inode in the same manner that inode
writeback does.

I prefer the latter, because we shouldn't really be trying to log
and replay changes to the on disk LSN as the on-disk value is the
canonical source of the on-disk version of the inode. It also
matches the way we recover buffer items - we create a buf_log_item
that carries the current recovery transaction LSN that gets stamped
into the buffer by the write verifier when it gets written back
when the transaction is fully recovered.

However, this might break log recovery on older kernels even more,
so I'm going to simply ignore the logged value in recovery and stamp
the on-disk inode with the LSN of the transaction being recovered
that will trigger writeback on transaction recovery completion. This
will ensure that the on-disk inode LSN always reflects the LSN of
the last change that was written to disk, regardless of whether it
comes from log recovery or runtime writeback.

Fixes: 93f958f9c4 ("xfs: cull unnecessary icdinode fields")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:51 +02:00
Brian Foster c1268acaa0 xfs: remove dead stale buf unpin handling code
commit e53d3aa0b6 upstream.

This code goes back to a time when transaction commits wrote
directly to iclogs. The associated log items were pinned, written to
the log, and then "uncommitted" if some part of the log write had
failed. This uncommit sequence called an ->iop_unpin_remove()
handler that was eventually folded into ->iop_unpin() via the remove
parameter. The log subsystem has since changed significantly in that
transactions commit to the CIL instead of direct to iclogs, though
log items must still be aborted in the event of an eventual log I/O
error. However, the context for a log item abort is now asynchronous
from transaction commit, which means the committing transaction has
been freed by this point in time and the transaction uncommit
sequence of events is no longer relevant.

Further, since stale buffers remain locked at transaction commit
through unpin, we can be certain that the buffer is not associated
with any transaction when the unpin callback executes. Remove this
unused hunk of code and replace it with an assertion that the buffer
is disassociated from transaction context.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:51 +02:00
Brian Foster c85cbb0b21 xfs: hold buffer across unpin and potential shutdown processing
commit 84d8949e77 upstream.

The special processing used to simulate a buffer I/O failure on fs
shutdown has a difficult to reproduce race that can result in a use
after free of the associated buffer. Consider a buffer that has been
committed to the on-disk log and thus is AIL resident. The buffer
lands on the writeback delwri queue, but is subsequently locked,
committed and pinned by another transaction before submitted for
I/O. At this point, the buffer is stuck on the delwri queue as it
cannot be submitted for I/O until it is unpinned. A log checkpoint
I/O failure occurs sometime later, which aborts the bli. The unpin
handler is called with the aborted log item, drops the bli reference
count, the pin count, and falls into the I/O failure simulation
path.

The potential problem here is that once the pin count falls to zero
in ->iop_unpin(), xfsaild is free to retry delwri submission of the
buffer at any time, before the unpin handler even completes. If
delwri queue submission wins the race to the buffer lock, it
observes the shutdown state and simulates the I/O failure itself.
This releases both the bli and delwri queue holds and frees the
buffer while xfs_buf_item_unpin() sits on xfs_buf_lock() waiting to
run through the same failure sequence. This problem is rare and
requires many iterations of fstest generic/019 (which simulates disk
I/O failures) to reproduce.

To avoid this problem, grab a hold on the buffer before the log item
is unpinned if the associated item has been aborted and will require
a simulated I/O failure. The hold is already required for the
simulated I/O failure, so the ordering simply guarantees the unpin
handler access to the buffer before it is unpinned and thus
processed by the AIL. This particular ordering is required so long
as the AIL does not acquire a reference on the bli, which is the
long term solution to this problem.

Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:51 +02:00
Darrick J. Wong d8f5bb0a09 xfs: force the log offline when log intent item recovery fails
commit 4e6b8270c8 upstream.

If any part of log intent item recovery fails, we should shut down the
log immediately to stop the log from writing a clean unmount record to
disk, because the metadata is not consistent.  The inability to cancel a
dirty transaction catches most of these cases, but there are a few
things that have slipped through the cracks, such as ENOSPC from a
transaction allocation, or runtime errors that result in cancellation of
a non-dirty transaction.

This solves some weird behaviors reported by customers where a system
goes down, the first mount fails, the second succeeds, but then the fs
goes down later because of inconsistent metadata.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:51 +02:00
Darrick J. Wong eccacbcbfd xfs: fix log intent recovery ENOSPC shutdowns when inactivating inodes
commit 81ed94751b upstream.

During regular operation, the xfs_inactive operations create
transactions with zero block reservation because in general we're
freeing space, not asking for more.  The per-AG space reservations
created at mount time enable us to handle expansions of the refcount
btree without needing to reserve blocks to the transaction.

Unfortunately, log recovery doesn't create the per-AG space reservations
when intent items are being recovered.  This isn't an issue for intent
item recovery itself because they explicitly request blocks, but any
inode inactivation that can happen during log recovery uses the same
xfs_inactive paths as regular runtime.  If a refcount btree expansion
happens, the transaction will fail due to blk_res_used > blk_res, and we
shut down the filesystem unnecessarily.

Fix this problem by making per-AG reservations temporarily so that we
can handle the inactivations, and releasing them at the end.  This
brings the recovery environment closer to the runtime environment.

Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:51 +02:00
Darrick J. Wong 17c8097fb0 xfs: prevent UAF in xfs_log_item_in_current_chkpt
commit f8d92a66e8 upstream.

While I was running with KASAN and lockdep enabled, I stumbled upon an
KASAN report about a UAF to a freed CIL checkpoint.  Looking at the
comment for xfs_log_item_in_current_chkpt, it seems pretty obvious to me
that the original patch to xfs_defer_finish_noroll should have done
something to lock the CIL to prevent it from switching the CIL contexts
while the predicate runs.

For upper level code that needs to know if a given log item is new
enough not to need relogging, add a new wrapper that takes the CIL
context lock long enough to sample the current CIL context.  This is
kind of racy in that the CIL can switch the contexts immediately after
sampling, but that's ok because the consequence is that the defer ops
code is a little slow to relog items.

 ==================================================================
 BUG: KASAN: use-after-free in xfs_log_item_in_current_chkpt+0x139/0x160 [xfs]
 Read of size 8 at addr ffff88804ea5f608 by task fsstress/527999

 CPU: 1 PID: 527999 Comm: fsstress Tainted: G      D      5.16.0-rc4-xfsx #rc4
 Call Trace:
  <TASK>
  dump_stack_lvl+0x45/0x59
  print_address_description.constprop.0+0x1f/0x140
  kasan_report.cold+0x83/0xdf
  xfs_log_item_in_current_chkpt+0x139/0x160
  xfs_defer_finish_noroll+0x3bb/0x1e30
  __xfs_trans_commit+0x6c8/0xcf0
  xfs_reflink_remap_extent+0x66f/0x10e0
  xfs_reflink_remap_blocks+0x2dd/0xa90
  xfs_file_remap_range+0x27b/0xc30
  vfs_dedupe_file_range_one+0x368/0x420
  vfs_dedupe_file_range+0x37c/0x5d0
  do_vfs_ioctl+0x308/0x1260
  __x64_sys_ioctl+0xa1/0x170
  do_syscall_64+0x35/0x80
  entry_SYSCALL_64_after_hwframe+0x44/0xae
 RIP: 0033:0x7f2c71a2950b
 Code: 0f 1e fa 48 8b 05 85 39 0d 00 64 c7 00 26 00 00 00 48 c7 c0 ff ff
ff ff c3 66 0f 1f 44 00 00 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01
f0 ff ff 73 01 c3 48 8b 0d 55 39 0d 00 f7 d8 64 89 01 48
 RSP: 002b:00007ffe8c0e03c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
 RAX: ffffffffffffffda RBX: 00005600862a8740 RCX: 00007f2c71a2950b
 RDX: 00005600862a7be0 RSI: 00000000c0189436 RDI: 0000000000000004
 RBP: 000000000000000b R08: 0000000000000027 R09: 0000000000000003
 R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000005a
 R13: 00005600862804a8 R14: 0000000000016000 R15: 00005600862a8a20
  </TASK>

 Allocated by task 464064:
  kasan_save_stack+0x1e/0x50
  __kasan_kmalloc+0x81/0xa0
  kmem_alloc+0xcd/0x2c0 [xfs]
  xlog_cil_ctx_alloc+0x17/0x1e0 [xfs]
  xlog_cil_push_work+0x141/0x13d0 [xfs]
  process_one_work+0x7f6/0x1380
  worker_thread+0x59d/0x1040
  kthread+0x3b0/0x490
  ret_from_fork+0x1f/0x30

 Freed by task 51:
  kasan_save_stack+0x1e/0x50
  kasan_set_track+0x21/0x30
  kasan_set_free_info+0x20/0x30
  __kasan_slab_free+0xed/0x130
  slab_free_freelist_hook+0x7f/0x160
  kfree+0xde/0x340
  xlog_cil_committed+0xbfd/0xfe0 [xfs]
  xlog_cil_process_committed+0x103/0x1c0 [xfs]
  xlog_state_do_callback+0x45d/0xbd0 [xfs]
  xlog_ioend_work+0x116/0x1c0 [xfs]
  process_one_work+0x7f6/0x1380
  worker_thread+0x59d/0x1040
  kthread+0x3b0/0x490
  ret_from_fork+0x1f/0x30

 Last potentially related work creation:
  kasan_save_stack+0x1e/0x50
  __kasan_record_aux_stack+0xb7/0xc0
  insert_work+0x48/0x2e0
  __queue_work+0x4e7/0xda0
  queue_work_on+0x69/0x80
  xlog_cil_push_now.isra.0+0x16b/0x210 [xfs]
  xlog_cil_force_seq+0x1b7/0x850 [xfs]
  xfs_log_force_seq+0x1c7/0x670 [xfs]
  xfs_file_fsync+0x7c1/0xa60 [xfs]
  __x64_sys_fsync+0x52/0x80
  do_syscall_64+0x35/0x80
  entry_SYSCALL_64_after_hwframe+0x44/0xae

 The buggy address belongs to the object at ffff88804ea5f600
  which belongs to the cache kmalloc-256 of size 256
 The buggy address is located 8 bytes inside of
  256-byte region [ffff88804ea5f600, ffff88804ea5f700)
 The buggy address belongs to the page:
 page:ffffea00013a9780 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff88804ea5ea00 pfn:0x4ea5e
 head:ffffea00013a9780 order:1 compound_mapcount:0
 flags: 0x4fff80000010200(slab|head|node=1|zone=1|lastcpupid=0xfff)
 raw: 04fff80000010200 ffffea0001245908 ffffea00011bd388 ffff888004c42b40
 raw: ffff88804ea5ea00 0000000000100009 00000001ffffffff 0000000000000000
 page dumped because: kasan: bad access detected

 Memory state around the buggy address:
  ffff88804ea5f500: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
  ffff88804ea5f580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 >ffff88804ea5f600: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                       ^
  ffff88804ea5f680: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  ffff88804ea5f700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
 ==================================================================

Fixes: 4e919af782 ("xfs: periodically relog deferred intent items")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:51 +02:00
Dave Chinner 6d3605f84e xfs: xfs_log_force_lsn isn't passed a LSN
commit 5f9b4b0de8 upstream.

[backported from CIL scalability series for dependency]

In doing an investigation into AIL push stalls, I was looking at the
log force code to see if an async CIL push could be done instead.
This lead me to xfs_log_force_lsn() and looking at how it works.

xfs_log_force_lsn() is only called from inode synchronisation
contexts such as fsync(), and it takes the ip->i_itemp->ili_last_lsn
value as the LSN to sync the log to. This gets passed to
xlog_cil_force_lsn() via xfs_log_force_lsn() to flush the CIL to the
journal, and then used by xfs_log_force_lsn() to flush the iclogs to
the journal.

The problem is that ip->i_itemp->ili_last_lsn does not store a
log sequence number. What it stores is passed to it from the
->iop_committing method, which is called by xfs_log_commit_cil().
The value this passes to the iop_committing method is the CIL
context sequence number that the item was committed to.

As it turns out, xlog_cil_force_lsn() converts the sequence to an
actual commit LSN for the related context and returns that to
xfs_log_force_lsn(). xfs_log_force_lsn() overwrites it's "lsn"
variable that contained a sequence with an actual LSN and then uses
that to sync the iclogs.

This caused me some confusion for a while, even though I originally
wrote all this code a decade ago. ->iop_committing is only used by
a couple of log item types, and only inode items use the sequence
number it is passed.

Let's clean up the API, CIL structures and inode log item to call it
a sequence number, and make it clear that the high level code is
using CIL sequence numbers and not on-disk LSNs for integrity
synchronisation purposes.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-08-03 12:00:50 +02:00