Ordered work functions aren't guaranteed to be handled by the same thread
which executed the normal work functions. The only way execution between
normal/ordered functions is synchronized is via the WORK_DONE_BIT,
unfortunately the used bitops don't guarantee any ordering whatsoever.
This manifested as seemingly inexplicable crashes on ARM64, where
async_chunk::inode is seen as non-null in async_cow_submit which causes
submit_compressed_extents to be called and crash occurs because
async_chunk::inode suddenly became NULL. The call trace was similar to:
pc : submit_compressed_extents+0x38/0x3d0
lr : async_cow_submit+0x50/0xd0
sp : ffff800015d4bc20
<registers omitted for brevity>
Call trace:
submit_compressed_extents+0x38/0x3d0
async_cow_submit+0x50/0xd0
run_ordered_work+0xc8/0x280
btrfs_work_helper+0x98/0x250
process_one_work+0x1f0/0x4ac
worker_thread+0x188/0x504
kthread+0x110/0x114
ret_from_fork+0x10/0x18
Fix this by adding respective barrier calls which ensure that all
accesses preceding setting of WORK_DONE_BIT are strictly ordered before
setting the flag. At the same time add a read barrier after reading of
WORK_DONE_BIT in run_ordered_work which ensures all subsequent loads
would be strictly ordered after reading the bit. This in turn ensures
are all accesses before WORK_DONE_BIT are going to be strictly ordered
before any access that can occur in ordered_func.
Reported-by: Chris Murphy <lists@colorremedies.com>
Fixes: 08a9ff3264 ("btrfs: Added btrfs_workqueue_struct implemented ordered execution based on kernel workqueue")
CC: stable@vger.kernel.org # 4.4+
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2011928
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Chris Murphy <chris@colorremedies.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
The following script can cause btrfs to crash:
$ mount -o compress-force=lzo $DEV /mnt
$ dd if=/dev/urandom of=/mnt/foo bs=4k count=1
$ sync
The call trace looks like this:
general protection fault, probably for non-canonical address 0xe04b37fccce3b000: 0000 [#1] PREEMPT SMP NOPTI
CPU: 5 PID: 164 Comm: kworker/u20:3 Not tainted 5.15.0-rc7-custom+ #4
Workqueue: btrfs-delalloc btrfs_work_helper [btrfs]
RIP: 0010:__memcpy+0x12/0x20
Call Trace:
lzo_compress_pages+0x236/0x540 [btrfs]
btrfs_compress_pages+0xaa/0xf0 [btrfs]
compress_file_range+0x431/0x8e0 [btrfs]
async_cow_start+0x12/0x30 [btrfs]
btrfs_work_helper+0xf6/0x3e0 [btrfs]
process_one_work+0x294/0x5d0
worker_thread+0x55/0x3c0
kthread+0x140/0x170
ret_from_fork+0x22/0x30
---[ end trace 63c3c0f131e61982 ]---
[CAUSE]
In lzo_compress_pages(), parameter @out_pages is not only an output
parameter (for the number of compressed pages), but also an input
parameter, as the upper limit of compressed pages we can utilize.
In commit d4088803f5 ("btrfs: subpage: make lzo_compress_pages()
compatible"), the refactoring doesn't take @out_pages as an input, thus
completely ignoring the limit.
And for compress-force case, we could hit incompressible data that
compressed size would go beyond the page limit, and cause the above
crash.
[FIX]
Save @out_pages as @max_nr_page, and pass it to lzo_compress_pages(),
and check if we're beyond the limit before accessing the pages.
Note: this also fixes crash on 32bit architectures that was suspected to
be caused by merge of btrfs patches to 5.16-rc1. Reported in
https://lore.kernel.org/all/20211104115001.GU20319@twin.jikos.cz/ .
Reported-by: Omar Sandoval <osandov@fb.com>
Fixes: d4088803f5 ("btrfs: subpage: make lzo_compress_pages() compatible")
Reviewed-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument passed to check_item_in_log() always matches the root
of the given directory, so it can be eliminated.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument for tree-log.c:add_link() always matches the root of the
given directory and the given inode, so it can eliminated.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument passed to btrfs_unlink_inode() and its callee,
__btrfs_unlink_inode(), always matches the root of the given directory and
the given inode. So remove the argument and make __btrfs_unlink_inode()
use the root of the directory.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root argument for drop_one_dir_item() always matches the root of the
given directory inode, since each log tree is associated to one and only
one subvolume/root, so remove the argument.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reported bug: https://github.com/kdave/btrfs-progs/issues/389
There's a problem with scrub reporting aborted status but returning
error code 0, on a filesystem with missing and readded device.
Roughly these steps:
- mkfs -d raid1 dev1 dev2
- fill with data
- unmount
- make dev1 disappear
- mount -o degraded
- copy more data
- make dev1 appear again
Running scrub afterwards reports that the command was aborted, but the
system log message says the exit code was 0.
It seems that the cause of the error is decrementing
fs_devices->missing_devices but not clearing device->dev_state. Every
time we umount filesystem, it would call close_ctree, And it would
eventually involve btrfs_close_one_device to close the device, but it
only decrements fs_devices->missing_devices but does not clear the
device BTRFS_DEV_STATE_MISSING bit. Worse, this bug will cause Integer
Overflow, because every time umount, fs_devices->missing_devices will
decrease. If fs_devices->missing_devices value hit 0, it would overflow.
With added debugging:
loop1: detected capacity change from 0 to 20971520
BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 1 transid 21 /dev/loop1 scanned by systemd-udevd (2311)
loop2: detected capacity change from 0 to 20971520
BTRFS: device fsid 56ad51f1-5523-463b-8547-c19486c51ebb devid 2 transid 17 /dev/loop2 scanned by systemd-udevd (2313)
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 0
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): using free space tree
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000f706684d /dev/loop1 18446744073709551615
BTRFS warning (device loop1): devid 2 uuid 6635ac31-56dd-4852-873b-c60f5e2d53d2 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 18446744073709551615
If fs_devices->missing_devices is 0, next time it would be 18446744073709551615
After apply this patch, the fs_devices->missing_devices seems to be
right:
$ truncate -s 10g test1
$ truncate -s 10g test2
$ losetup /dev/loop1 test1
$ losetup /dev/loop2 test2
$ mkfs.btrfs -draid1 -mraid1 /dev/loop1 /dev/loop2 -f
$ losetup -d /dev/loop2
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ mount -o degraded /dev/loop1 /mnt/1
$ umount /mnt/1
$ dmesg
loop1: detected capacity change from 0 to 20971520
loop2: detected capacity change from 0 to 20971520
BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 1 transid 5 /dev/loop1 scanned by mkfs.btrfs (1863)
BTRFS: device fsid 15aa1203-98d3-4a66-bcae-ca82f629c2cd devid 2 transid 5 /dev/loop2 scanned by mkfs.btrfs (1863)
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): checking UUID tree
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
BTRFS info (device loop1): flagging fs with big metadata feature
BTRFS info (device loop1): allowing degraded mounts
BTRFS info (device loop1): disk space caching is enabled
BTRFS info (device loop1): has skinny extents
BTRFS info (device loop1): before clear_missing.00000000975bd577 /dev/loop1 0
BTRFS warning (device loop1): devid 2 uuid 8b333791-0b3f-4f57-b449-1c1ab6b51f38 is missing
BTRFS info (device loop1): before clear_missing.0000000000000000 /dev/loop2 1
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Li Zhang <zhanglikernel@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In open_ctree() in btrfs_check_rw_degradable() [1], we check each block
group individually if at least the minimum number of devices is available
for that profile. If all the devices are available, then we don't have to
check degradable.
[1]
open_ctree()
::
3559 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
Also before calling btrfs_check_rw_degradable() in open_ctee() at the
line number shown below [2] we call btrfs_read_chunk_tree() and down to
add_missing_dev() to record number of missing devices.
[2]
open_ctree()
::
3454 ret = btrfs_read_chunk_tree(fs_info);
btrfs_read_chunk_tree()
read_one_chunk() / read_one_dev()
add_missing_dev()
So, check if there is any missing device before btrfs_check_rw_degradable()
in open_ctree().
Also, with this the mount command could save ~16ms.[3] in the most
common case, that is no device is missing.
[3]
1) * 16934.96 us | btrfs_check_rw_degradable [btrfs]();
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is preparatory work for send protocol update to version 2 and
higher.
We have many pending protocol update requests but still don't have the
basic protocol rev in place, the first thing that must happen is to do
the actual versioning support.
The protocol version is u32 and is a new member in the send ioctl
struct. Validity of the version field is backed by a new flag bit. Old
kernels would fail when a higher version is requested. Version protocol
0 will pick the highest supported version, BTRFS_SEND_STREAM_VERSION,
that's also exported in sysfs.
The version is still unchanged and will be increased once we have new
incompatible commands or stream updates.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 95ea0486b2 ("btrfs: allow read-write for 4K sectorsize on 64K
page size systems") added write support for 4K sectorsize on a 64K
systems. Fix the now stale comments.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Christoph pointed out that I'm updating bdev->bd_inode for the device
time when we remove block devices from a btrfs file system, however this
isn't actually exposed to anything. The inode we want to update is the
one that's associated with the path to the device, usually on devtmpfs,
so that blkid notices the difference.
We still don't want to do the blkdev_open, so use kern_path() to get the
path to the given device and do the update time on that inode.
Fixes: 8f96a5bfa1 ("btrfs: update the bdev time directly when closing")
Reported-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If you already have an inode and need to update the time on the inode
there is no way to do this properly. Export this helper to allow file
systems to update time on the inode so the appropriate handler is
called, either ->update_time or generic_update_time.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Attempting to defragment a Btrfs file containing a transparent huge page
immediately deadlocks with the following stack trace:
#0 context_switch (kernel/sched/core.c:4940:2)
#1 __schedule (kernel/sched/core.c:6287:8)
#2 schedule (kernel/sched/core.c:6366:3)
#3 io_schedule (kernel/sched/core.c:8389:2)
#4 wait_on_page_bit_common (mm/filemap.c:1356:4)
#5 __lock_page (mm/filemap.c:1648:2)
#6 lock_page (./include/linux/pagemap.h:625:3)
#7 pagecache_get_page (mm/filemap.c:1910:4)
#8 find_or_create_page (./include/linux/pagemap.h:420:9)
#9 defrag_prepare_one_page (fs/btrfs/ioctl.c:1068:9)
#10 defrag_one_range (fs/btrfs/ioctl.c:1326:14)
#11 defrag_one_cluster (fs/btrfs/ioctl.c:1421:9)
#12 btrfs_defrag_file (fs/btrfs/ioctl.c:1523:9)
#13 btrfs_ioctl_defrag (fs/btrfs/ioctl.c:3117:9)
#14 btrfs_ioctl (fs/btrfs/ioctl.c:4872:10)
#15 vfs_ioctl (fs/ioctl.c:51:10)
#16 __do_sys_ioctl (fs/ioctl.c:874:11)
#17 __se_sys_ioctl (fs/ioctl.c:860:1)
#18 __x64_sys_ioctl (fs/ioctl.c:860:1)
#19 do_syscall_x64 (arch/x86/entry/common.c:50:14)
#20 do_syscall_64 (arch/x86/entry/common.c:80:7)
#21 entry_SYSCALL_64+0x7c/0x15b (arch/x86/entry/entry_64.S:113)
A huge page is represented by a compound page, which consists of a
struct page for each PAGE_SIZE page within the huge page. The first
struct page is the "head page", and the remaining are "tail pages".
Defragmentation attempts to lock each page in the range. However,
lock_page() on a tail page actually locks the corresponding head page.
So, if defragmentation tries to lock more than one struct page in a
compound page, it tries to lock the same head page twice and deadlocks
with itself.
Ideally, we should be able to defragment transparent huge pages.
However, THP for filesystems is currently read-only, so a lot of code is
not ready to use huge pages for I/O. For now, let's just return
ETXTBUSY.
This can be reproduced with the following on a kernel with
CONFIG_READ_ONLY_THP_FOR_FS=y:
$ cat create_thp_file.c
#include <fcntl.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/mman.h>
static const char zeroes[1024 * 1024];
static const size_t FILE_SIZE = 2 * 1024 * 1024;
int main(int argc, char **argv)
{
if (argc != 2) {
fprintf(stderr, "usage: %s PATH\n", argv[0]);
return EXIT_FAILURE;
}
int fd = creat(argv[1], 0777);
if (fd == -1) {
perror("creat");
return EXIT_FAILURE;
}
size_t written = 0;
while (written < FILE_SIZE) {
ssize_t ret = write(fd, zeroes,
sizeof(zeroes) < FILE_SIZE - written ?
sizeof(zeroes) : FILE_SIZE - written);
if (ret < 0) {
perror("write");
return EXIT_FAILURE;
}
written += ret;
}
close(fd);
fd = open(argv[1], O_RDONLY);
if (fd == -1) {
perror("open");
return EXIT_FAILURE;
}
/*
* Reserve some address space so that we can align the file mapping to
* the huge page size.
*/
void *placeholder_map = mmap(NULL, FILE_SIZE * 2, PROT_NONE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (placeholder_map == MAP_FAILED) {
perror("mmap (placeholder)");
return EXIT_FAILURE;
}
void *aligned_address =
(void *)(((uintptr_t)placeholder_map + FILE_SIZE - 1) & ~(FILE_SIZE - 1));
void *map = mmap(aligned_address, FILE_SIZE, PROT_READ | PROT_EXEC,
MAP_SHARED | MAP_FIXED, fd, 0);
if (map == MAP_FAILED) {
perror("mmap");
return EXIT_FAILURE;
}
if (madvise(map, FILE_SIZE, MADV_HUGEPAGE) < 0) {
perror("madvise");
return EXIT_FAILURE;
}
char *line = NULL;
size_t line_capacity = 0;
FILE *smaps_file = fopen("/proc/self/smaps", "r");
if (!smaps_file) {
perror("fopen");
return EXIT_FAILURE;
}
for (;;) {
for (size_t off = 0; off < FILE_SIZE; off += 4096)
((volatile char *)map)[off];
ssize_t ret;
bool this_mapping = false;
while ((ret = getline(&line, &line_capacity, smaps_file)) > 0) {
unsigned long start, end, huge;
if (sscanf(line, "%lx-%lx", &start, &end) == 2) {
this_mapping = (start <= (uintptr_t)map &&
(uintptr_t)map < end);
} else if (this_mapping &&
sscanf(line, "FilePmdMapped: %ld", &huge) == 1 &&
huge > 0) {
return EXIT_SUCCESS;
}
}
sleep(6);
rewind(smaps_file);
fflush(smaps_file);
}
}
$ ./create_thp_file huge
$ btrfs fi defrag -czstd ./huge
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 2efc459d06 ("sysfs: Add sysfs_emit and sysfs_emit_at to format
sysfs out") merged in 5.10 introduced two new functions sysfs_emit() and
sysfs_emit_at() which are aware of the PAGE_SIZE limit of the output
buffer.
Use the above two new functions instead of scnprintf() and snprintf()
in various sysfs show().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
It's a common practice to avoid use sizeof(struct btrfs_super_block)
(3531), but to use BTRFS_SUPER_INFO_SIZE (4096).
The problem is that, sizeof(struct btrfs_super_block) doesn't match
BTRFS_SUPER_INFO_SIZE from the very beginning.
Furthermore, for all call sites except selftests, we always allocate
BTRFS_SUPER_INFO_SIZE space for super block, there isn't any real reason
to use the smaller value, and it doesn't really save any space.
So let's get rid of such confusing behavior, and unify those two values.
This modification also adds a new static_assert() to verify the size,
and moves the BTRFS_SUPER_INFO_* macros to the definition of
btrfs_super_block for the static_assert().
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Update the comments at btrfs_chunk_alloc() and do_chunk_alloc() that
describe which cases can lead to a failure to allocate metadata and system
space despite having previously reserved space. This adds one more reason
that I previously forgot to mention.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a task is doing some modification to the chunk btree and it is not in
the context of a chunk allocation or a chunk removal, it can deadlock with
another task that is currently allocating a new data or metadata chunk.
These contexts are the following:
* When relocating a system chunk, when we need to COW the extent buffers
that belong to the chunk btree;
* When adding a new device (ioctl), where we need to add a new device item
to the chunk btree;
* When removing a device (ioctl), where we need to remove a device item
from the chunk btree;
* When resizing a device (ioctl), where we need to update a device item in
the chunk btree and may need to relocate a system chunk that lies beyond
the new device size when shrinking a device.
The problem happens due to a sequence of steps like the following:
1) Task A starts a data or metadata chunk allocation and it locks the
chunk mutex;
2) Task B is relocating a system chunk, and when it needs to COW an extent
buffer of the chunk btree, it has locked both that extent buffer as
well as its parent extent buffer;
3) Since there is not enough available system space, either because none
of the existing system block groups have enough free space or because
the only one with enough free space is in RO mode due to the relocation,
task B triggers a new system chunk allocation. It blocks when trying to
acquire the chunk mutex, currently held by task A;
4) Task A enters btrfs_chunk_alloc_add_chunk_item(), in order to insert
the new chunk item into the chunk btree and update the existing device
items there. But in order to do that, it has to lock the extent buffer
that task B locked at step 2, or its parent extent buffer, but task B
is waiting on the chunk mutex, which is currently locked by task A,
therefore resulting in a deadlock.
One example report when the deadlock happens with system chunk relocation:
INFO: task kworker/u9:5:546 blocked for more than 143 seconds.
Not tainted 5.15.0-rc3+ #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u9:5 state:D stack:25936 pid: 546 ppid: 2 flags:0x00004000
Workqueue: events_unbound btrfs_async_reclaim_metadata_space
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
rwsem_down_read_slowpath+0x4ee/0x9d0 kernel/locking/rwsem.c:993
__down_read_common kernel/locking/rwsem.c:1214 [inline]
__down_read kernel/locking/rwsem.c:1223 [inline]
down_read_nested+0xe6/0x440 kernel/locking/rwsem.c:1590
__btrfs_tree_read_lock+0x31/0x350 fs/btrfs/locking.c:47
btrfs_tree_read_lock fs/btrfs/locking.c:54 [inline]
btrfs_read_lock_root_node+0x8a/0x320 fs/btrfs/locking.c:191
btrfs_search_slot_get_root fs/btrfs/ctree.c:1623 [inline]
btrfs_search_slot+0x13b4/0x2140 fs/btrfs/ctree.c:1728
btrfs_update_device+0x11f/0x500 fs/btrfs/volumes.c:2794
btrfs_chunk_alloc_add_chunk_item+0x34d/0xea0 fs/btrfs/volumes.c:5504
do_chunk_alloc fs/btrfs/block-group.c:3408 [inline]
btrfs_chunk_alloc+0x84d/0xf50 fs/btrfs/block-group.c:3653
flush_space+0x54e/0xd80 fs/btrfs/space-info.c:670
btrfs_async_reclaim_metadata_space+0x396/0xa90 fs/btrfs/space-info.c:953
process_one_work+0x9df/0x16d0 kernel/workqueue.c:2297
worker_thread+0x90/0xed0 kernel/workqueue.c:2444
kthread+0x3e5/0x4d0 kernel/kthread.c:319
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
INFO: task syz-executor:9107 blocked for more than 143 seconds.
Not tainted 5.15.0-rc3+ #1
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor state:D stack:23200 pid: 9107 ppid: 7792 flags:0x00004004
Call Trace:
context_switch kernel/sched/core.c:4940 [inline]
__schedule+0xcd9/0x2530 kernel/sched/core.c:6287
schedule+0xd3/0x270 kernel/sched/core.c:6366
schedule_preempt_disabled+0xf/0x20 kernel/sched/core.c:6425
__mutex_lock_common kernel/locking/mutex.c:669 [inline]
__mutex_lock+0xc96/0x1680 kernel/locking/mutex.c:729
btrfs_chunk_alloc+0x31a/0xf50 fs/btrfs/block-group.c:3631
find_free_extent_update_loop fs/btrfs/extent-tree.c:3986 [inline]
find_free_extent+0x25cb/0x3a30 fs/btrfs/extent-tree.c:4335
btrfs_reserve_extent+0x1f1/0x500 fs/btrfs/extent-tree.c:4415
btrfs_alloc_tree_block+0x203/0x1120 fs/btrfs/extent-tree.c:4813
__btrfs_cow_block+0x412/0x1620 fs/btrfs/ctree.c:415
btrfs_cow_block+0x2f6/0x8c0 fs/btrfs/ctree.c:570
btrfs_search_slot+0x1094/0x2140 fs/btrfs/ctree.c:1768
relocate_tree_block fs/btrfs/relocation.c:2694 [inline]
relocate_tree_blocks+0xf73/0x1770 fs/btrfs/relocation.c:2757
relocate_block_group+0x47e/0xc70 fs/btrfs/relocation.c:3673
btrfs_relocate_block_group+0x48a/0xc60 fs/btrfs/relocation.c:4070
btrfs_relocate_chunk+0x96/0x280 fs/btrfs/volumes.c:3181
__btrfs_balance fs/btrfs/volumes.c:3911 [inline]
btrfs_balance+0x1f03/0x3cd0 fs/btrfs/volumes.c:4301
btrfs_ioctl_balance+0x61e/0x800 fs/btrfs/ioctl.c:4137
btrfs_ioctl+0x39ea/0x7b70 fs/btrfs/ioctl.c:4949
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:874 [inline]
__se_sys_ioctl fs/ioctl.c:860 [inline]
__x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
So fix this by making sure that whenever we try to modify the chunk btree
and we are neither in a chunk allocation context nor in a chunk remove
context, we reserve system space before modifying the chunk btree.
Reported-by: Hao Sun <sunhao.th@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CACkBjsax51i4mu6C0C3vJqQN3NR_iVuucoeG3U1HXjrgzn5FFQ@mail.gmail.com/
Fixes: 79bd37120b ("btrfs: rework chunk allocation to avoid exhaustion of the system chunk array")
CC: stable@vger.kernel.org # 5.14+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently auto reclaim of unusable zones reclaims the block-groups in
the order they have been added to the reclaim list.
Change this to a greedy algorithm by sorting the list so we have the
block-groups with the least amount of valid bytes reclaimed first.
Note: we can't splice the block groups from reclaim_bgs to let the sort
happen outside of the lock. The block groups can be still in use by
other parts eg. via bg_list and we must hold unused_bgs_lock while
processing them.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ write note and comment why we can't splice the list ]
Signed-off-by: David Sterba <dsterba@suse.com>
Just use the %pg format specifier in all the debug printks previously
using it. Note that both bdevname and the %pg specifier never print
a pathname, so the kbasename call wasn't needed to start with.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
[ adjust messages and indentation ]
Signed-off-by: David Sterba <dsterba@suse.com>
For device removal and replace we call btrfs_find_device_by_devspec,
which if we give it a device path and nothing else will call
btrfs_get_dev_args_from_path, which opens the block device and reads the
super block and then looks up our device based on that.
However at this point we're holding the sb write "lock", so reading the
block device pulls in the dependency of ->open_mutex, which produces the
following lockdep splat
======================================================
WARNING: possible circular locking dependency detected
5.14.0-rc2+ #405 Not tainted
------------------------------------------------------
losetup/11576 is trying to acquire lock:
ffff9bbe8cded938 ((wq_completion)loop0){+.+.}-{0:0}, at: flush_workqueue+0x67/0x5e0
but task is already holding lock:
ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #4 (&lo->lo_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
lo_open+0x28/0x60 [loop]
blkdev_get_whole+0x25/0xf0
blkdev_get_by_dev.part.0+0x168/0x3c0
blkdev_open+0xd2/0xe0
do_dentry_open+0x161/0x390
path_openat+0x3cc/0xa20
do_filp_open+0x96/0x120
do_sys_openat2+0x7b/0x130
__x64_sys_openat+0x46/0x70
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #3 (&disk->open_mutex){+.+.}-{3:3}:
__mutex_lock+0x7d/0x750
blkdev_get_by_dev.part.0+0x56/0x3c0
blkdev_get_by_path+0x98/0xa0
btrfs_get_bdev_and_sb+0x1b/0xb0
btrfs_find_device_by_devspec+0x12b/0x1c0
btrfs_rm_device+0x127/0x610
btrfs_ioctl+0x2a31/0x2e70
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
-> #2 (sb_writers#12){.+.+}-{0:0}:
lo_write_bvec+0xc2/0x240 [loop]
loop_process_work+0x238/0xd00 [loop]
process_one_work+0x26b/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #1 ((work_completion)(&lo->rootcg_work)){+.+.}-{0:0}:
process_one_work+0x245/0x560
worker_thread+0x55/0x3c0
kthread+0x140/0x160
ret_from_fork+0x1f/0x30
-> #0 ((wq_completion)loop0){+.+.}-{0:0}:
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
flush_workqueue+0x91/0x5e0
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
(wq_completion)loop0 --> &disk->open_mutex --> &lo->lo_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&lo->lo_mutex);
lock(&disk->open_mutex);
lock(&lo->lo_mutex);
lock((wq_completion)loop0);
*** DEADLOCK ***
1 lock held by losetup/11576:
#0: ffff9bbe88e4fc68 (&lo->lo_mutex){+.+.}-{3:3}, at: __loop_clr_fd+0x41/0x660 [loop]
stack backtrace:
CPU: 0 PID: 11576 Comm: losetup Not tainted 5.14.0-rc2+ #405
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Call Trace:
dump_stack_lvl+0x57/0x72
check_noncircular+0xcf/0xf0
? stack_trace_save+0x3b/0x50
__lock_acquire+0x10ea/0x1d90
lock_acquire+0xb5/0x2b0
? flush_workqueue+0x67/0x5e0
? lockdep_init_map_type+0x47/0x220
flush_workqueue+0x91/0x5e0
? flush_workqueue+0x67/0x5e0
? verify_cpu+0xf0/0x100
drain_workqueue+0xa0/0x110
destroy_workqueue+0x36/0x250
__loop_clr_fd+0x9a/0x660 [loop]
? blkdev_ioctl+0x8d/0x2a0
block_ioctl+0x3f/0x50
__x64_sys_ioctl+0x80/0xb0
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f31b02404cb
Instead what we want to do is populate our device lookup args before we
grab any locks, and then pass these args into btrfs_rm_device(). From
there we can find the device and do the appropriate removal.
Suggested-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We are going to want to populate our device lookup args outside of any
locks and then do the actual device lookup later, so add a helper to do
this work and make btrfs_find_device_by_devspec() use this helper for
now.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a lot of device lookup functions that all do something slightly
different. Clean this up by adding a struct to hold the different
lookup criteria, and then pass this around to btrfs_find_device() so it
can do the proper matching based on the lookup criteria.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's a subtle case where if we're removing the seed device from a
file system we need to free its private copy of the fs_devices. However
we do not need to call close_fs_devices(), because at this point there
are no devices left to close as we've closed the last one. The only
thing that close_fs_devices() does is decrement ->opened, which should
be 1. We want to avoid calling close_fs_devices() here because it has a
lockdep_assert_held(&uuid_mutex), and we are going to stop holding the
uuid_mutex in this path.
So simply decrement the ->opened counter like we should, and then clean
up like normal. Also add a comment explaining what we're doing here as
I initially removed this code erroneously.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
A bug was was checking a wrong device count before we delete the struct
btrfs_fs_devices in btrfs_rm_device(). To avoid future confusion and
easy reference add a comment about the various device counts that we have
in the struct btrfs_fs_devices.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For both sprout and seed fsids,
btrfs_fs_devices::num_devices provides device count including missing
btrfs_fs_devices::open_devices provides device count excluding missing
We create a dummy struct btrfs_device for the missing device, so
num_devices != open_devices when there is a missing device.
In btrfs_rm_devices() we wrongly check for %cur_devices->open_devices
before freeing the seed fs_devices. Instead we should check for
%cur_devices->num_devices.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At replay_dir_deletes(), if find_dir_range() returns an error we break out
of the main while loop and then assign a value of 0 (success) to the 'ret'
variable, resulting in completely ignoring that an error happened. Fix
that by jumping to the 'out' label when find_dir_range() returns an error
(negative value).
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The member btrfs_bio::logical is only initialized by two call sites:
- btrfs_repair_one_sector()
No corresponding site to utilize it.
- btrfs_submit_direct()
The corresponding site to utilize it is btrfs_check_read_dio_bio().
However for btrfs_check_read_dio_bio(), we can grab the file_offset from
btrfs_dio_private::file_offset directly.
Thus it turns out we don't really need that btrfs_bio::logical member at
all.
For btrfs_bio, the logical bytenr can be fetched from its
bio->bi_iter.bi_sector directly.
So let's just remove the member to save 8 bytes for structure btrfs_bio.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The naming of "logical_offset" can be confused with logical bytenr of
the dio range.
In fact it's file offset, and the naming "file_offset" is already widely
used in all other sites.
Just do the rename to avoid confusion.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Using local kmaps slightly reduces the chances to stray writes, and
the bvec interface cleans up the code a little bit.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_update_block_group() accounts for the number of bytes allocated or
freed. Argument @alloc specifies whether the call is for alloc or free.
Convert the argument @alloc type from int to bool.
Reviewed-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that real_root is only used in ref-verify core gate it behind
CONFIG_BTRFS_FS_REF_VERIFY ifdef. This shrinks the size of pending
delayed refs by 8 bytes per ref, of which we can have many at any one
time depending on intensity of the workload. Also change the comment
about the member as it no longer deals with qgroups.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Instead of checking whether qgroup processing for a dealyed ref has to
happen in the core of delayed ref, simply pull the check at init time of
respective delayed ref structures. This eliminates the final use of
real_root in delayed-ref core paving the way to making this member
optional.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to make 'real_root' used only in ref-verify it's required to
have the necessary context to perform the same checks that this member
is used for. So add 'mod_root' which will contain the root on behalf of
which a delayed ref was created and a 'skip_group' parameter which
will contain callsite-specific override of skip_qgroup.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The real_root field is going to be used only by ref-verify tool so limit
its use outside of it. Blocks belonging to the chunk root will always
have it as an owner so the check is equivalent.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Both data and metadata delayed ref structures have fields named
root/ref_root respectively. Those are somewhat cryptic and don't really
convey the real meaning. In fact those roots are really the original
owners of the respective block (i.e in case of a snapshot a data delayed
ref will contain the original root that owns the given block). Rename
those fields accordingly and adjust comments.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Error injection stressing uncovered a busy loop in our data reclaim
loop. There are two cases here, one where we loop creating block groups
until space_info->full is set, or in the main loop we will skip erroring
out any tickets if space_info->full == 0. Unfortunately if we aborted
the transaction then we will never allocate chunks or reclaim any space
and thus never get ->full, and you'll see stack traces like this:
watchdog: BUG: soft lockup - CPU#0 stuck for 26s! [kworker/u4:4:139]
CPU: 0 PID: 139 Comm: kworker/u4:4 Tainted: G W 5.13.0-rc1+ #328
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_data_space
RIP: 0010:btrfs_join_transaction+0x12/0x20
RSP: 0018:ffffb2b780b77de0 EFLAGS: 00000246
RAX: ffffb2b781863d58 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000801 RSI: ffff987952b57400 RDI: ffff987940aa3000
RBP: ffff987954d55000 R08: 0000000000000001 R09: ffff98795539e8f0
R10: 000000000000000f R11: 000000000000000f R12: ffffffffffffffff
R13: ffff987952b574c8 R14: ffff987952b57400 R15: 0000000000000008
FS: 0000000000000000(0000) GS:ffff9879bbc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f0703da4000 CR3: 0000000113398004 CR4: 0000000000370ef0
Call Trace:
flush_space+0x4a8/0x660
btrfs_async_reclaim_data_space+0x55/0x130
process_one_work+0x1e9/0x380
worker_thread+0x53/0x3e0
? process_one_work+0x380/0x380
kthread+0x118/0x140
? __kthread_bind_mask+0x60/0x60
ret_from_fork+0x1f/0x30
Fix this by checking to see if we have a btrfs fs error in either of the
reclaim loops, and if so fail the tickets and bail. In addition to
this, fix maybe_fail_all_tickets() to not try to grant tickets if we've
aborted, simply fail everything.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have a few flags that are inconsistently used to describe the fs in
different states of failure. As of 5963ffcaf3 ("btrfs: always abort
the transaction if we abort a trans handle") we will always set
BTRFS_FS_STATE_ERROR if we abort, so we don't have to check both ABORTED
and ERROR to see if things have gone wrong. Add a helper to check
BTRFS_FS_STATE_ERROR and then convert all checkers of FS_STATE_ERROR to
use the helper.
The TRANS_ABORTED bit check was added in af72273381 ("Btrfs: clean up
resources during umount after trans is aborted") but is not actually
specific.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we will abort the transaction if we get a random error (like
-EIO) while trying to remove the directory entries from the root log
during rename.
However since these are simply log tree related errors, we can mark the
trans as needing a full commit. Then if the error was truly
catastrophic we'll hit it during the normal commit and abort as
appropriate.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During inspection of the return path for replay I noticed that we don't
actually abort the transaction if we get a failure during replay. This
isn't a problem necessarily, as we properly return the error and will
fail to mount. However we still leave this dangling transaction that
could conceivably be committed without thinking there was an error.
We were using btrfs_handle_fs_error() here, but that pre-dates the
transaction abort code. Simply replace the btrfs_handle_fs_error()
calls with transaction aborts, so we still know where exactly things
went wrong, and add a few in some other un-handled error cases.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix memdup.cocci warning:
fs/btrfs/zoned.c:1198:23-30: WARNING opportunity for kmemdup
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Kai Song <songkai01@inspur.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For compressed write, we use a mechanism called async COW, which unlike
regular run_delalloc_cow() or cow_file_range() will also unlock the
first page.
This mechanism allows us to continue handling next ranges, without
waiting for the time consuming compression.
But this has a problem for subpage case, as we could have the following
delalloc range for a page:
0 32K 64K
| |///////| |///////|
\- A \- B
In the above case, if we pass both ranges to cow_file_range_async(),
both range A and range B will try to unlock the full page [0, 64K).
And which one finishes later than the other one will try to do other
page operations like end_page_writeback() on a unlocked page, triggering
VM layer BUG_ON().
To make subpage compression work at least partially, here we add another
restriction for it, only allow compression if the delalloc range is
fully page aligned.
By that, async extent is always ensured to unlock the first page
exclusively, just like it used to be for regular sectorsize.
In theory, we only need to make sure the delalloc range fully covers its
first page, but the tail page will be locked anyway, blocking later
writeback until the compression finishes.
Thus here we choose to make sure the range is fully page aligned before
doing the compression.
In the future, we could optimize the situation by properly increasing
subpage::writers number for the locked page, but that also means we need
to change how we run delalloc range of page.
(Instead of running each delalloc range we hit, we need to find and lock
all delalloc ranges covering the page, then run each of them).
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
With experimental subpage compression enabled, a simple fsstress can
lead to self deadlock on page 720896:
mkfs.btrfs -f -s 4k $dev > /dev/null
mount $dev -o compress $mnt
$fsstress -p 1 -n 100 -w -d $mnt -v -s 1625511156
[CAUSE]
If we have a file layout looks like below:
0 32K 64K 96K 128K
|//| |///////////////|
4K
Then we run delalloc range for the inode, it will:
- Call find_lock_delalloc_range() with @delalloc_start = 0
Then we got a delalloc range [0, 4K).
This range will be COWed.
- Call find_lock_delalloc_range() again with @delalloc_start = 4K
Since find_lock_delalloc_range() never cares whether the range
is still inside page range [0, 64K), it will return range [64K, 128K).
This range meets the condition for subpage compression, will go
through async COW path.
And async COW path will return @page_started.
But that @page_started is now for range [64K, 128K), not for range
[0, 64K).
- writepage_dellloc() returned 1 for page [0, 64K)
Thus page [0, 64K) will not be unlocked, nor its page dirty status
will be cleared.
Next time when we try to lock page [0, 64K) we will deadlock, as there
is no one to release page [0, 64K).
This problem will never happen for regular page size as one page only
contains one sector. After the first find_lock_delalloc_range() call,
the @delalloc_end will go beyond @page_end no matter if we found a
delalloc range or not
Thus this bug only happens for subpage, as now we need multiple runs to
exhaust the delalloc range of a page.
[FIX]
Fix the problem by ensuring the delalloc range we ran at least started
inside @locked_page.
So that we will never get incorrect @page_started.
And to prevent such problem from happening again:
- Make find_lock_delalloc_range() return false if the found range is
beyond @end value passed in.
Since @end will be utilized now, add an ASSERT() to ensure we pass
correct @end into find_lock_delalloc_range().
This also means, for selftests we needs to populate @end before calling
find_lock_delalloc_range().
- New ASSERT() in find_lock_delalloc_range()
Now we will make sure the @start/@end passed in at least covers part
of the page.
- New ASSERT() in run_delalloc_range()
To make sure the range at least starts inside @locked page.
- Use @delalloc_start as proper cursor, while @delalloc_end is always
reset to @page_end.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several call sites of extent_clear_unlock_delalloc() which get
@locked_page = NULL.
So that extent_clear_unlock_delalloc() will try to call
process_one_page() to unlock every page even the first page is not
locked by btrfs_page_start_writer_lock().
This will trigger an ASSERT() in btrfs_subpage_end_and_test_writer() as
previously we require every page passed to
btrfs_subpage_end_and_test_writer() to be locked by
btrfs_page_start_writer_lock().
But compression path doesn't go that way.
Thankfully it's not hard to distinguish page locked by lock_page() and
btrfs_page_start_writer_lock().
So do the check in btrfs_subpage_end_and_test_writer() so now it can
handle both cases well.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Pages passed to __extent_writepage() are always locked, but they may be
locked by different functions.
There are two types of locked page for __extent_writepage():
- Page locked by plain lock_page()
It should not have any subpage::writers count.
Can be unlocked by unlock_page().
This is the most common locked page for __extent_writepage() called
inside extent_write_cache_pages() or extent_write_full_page().
Rarer cases include the @locked_page from extent_write_locked_range().
- Page locked by lock_delalloc_pages()
There is only one caller, all pages except @locked_page for
extent_write_locked_range().
In this case, we have to call subpage helper to handle the case.
So here we introduce a helper, btrfs_page_unlock_writer(), to allow
__extent_writepage() to unlock different locked pages.
And since for all other callers of __extent_writepage() their pages are
ensured to be locked by lock_page(), also add an extra check for
epd::extent_locked to unlock such pages directly.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several problems in lzo_compress_pages() preventing it from
being subpage compatible:
- No page offset is calculated when reading from inode pages
For subpage case, we could have @start which is not aligned to
PAGE_SIZE.
Thus the destination where we read data from must take offset in page
into consideration.
- The padding for segment header is bound to PAGE_SIZE
This means, for subpage case we can skip several corners where on x86
machines we need to add padding zeros.
The rework will:
- Update the comment to replace "page" with "sector"
- Introduce a new helper, copy_compressed_data_to_page(), to do the copy
So that we don't need to bother page switching for both input and
output.
Now in lzo_compress_pages() we only care about page switching for
input, while in copy_compressed_data_to_page() we only care about the
page switching for output.
- Only one main cursor
For lzo_compress_pages() we use @cur_in as main cursor.
It will be the file offset we are currently at.
All other helper variables will be only declared inside the loop.
For copy_compressed_data_to_page() it's similar, we will have
@cur_out at the main cursor, which records how many bytes are in the
output.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Introduce a new helper, submit_uncompressed_range(), for async cow cases
where we fallback to COW.
There are some new updates introduced to the helper:
- Proper locked_page detection
It's possible that the async_extent range doesn't cover the locked
page. In that case we shouldn't unlock the locked page.
In the new helper, we will ensure that we only unlock the locked page
when:
* The locked page covers part of the async_extent range
* The locked page is not unlocked by cow_file_range() nor
extent_write_locked_range()
This also means extra comments are added focusing on the page locking.
- Add extra comment on some rare parameter used.
We use @unlock_page = 0 for cow_file_range(), where only two call
sites doing the same thing, including the new helper.
It's definitely worth some comments.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two sites are not subpage compatible yet for
extent_write_locked_range():
- How @nr_pages are calculated
For subpage we can have the following range with 64K page size:
0 32K 64K 96K 128K
| |////|/////| |
In that case, although 96K - 32K == 64K, thus it looks like one page
is enough, but the range spans two pages, not one.
Fix it by doing proper round_up() and round_down() to calculate
@nr_pages.
Also add some extra ASSERT()s to ensure the range passed in is already
aligned.
- How the page end is calculated
Currently we just use cur + PAGE_SIZE - 1 to calculate the page end.
Which can't handle the above range layout, and will trigger ASSERT()
in btrfs_writepage_endio_finish_ordered(), as the range is no longer
covered by the page range.
Fix it by taking page end into consideration.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In end_compressed_writeback() we just clear the full page writeback.
For subpage case, if there are two delalloc ranges in the same page, the
2nd range will trigger a BUG_ON() as the page writeback is already
cleared by previous range.
Fix it by using btrfs_page_clamp_clear_writeback() helper.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a WARN_ON() checking if @start is aligned to PAGE_SIZE, not
sectorsize, which will cause false alert for subpage. Fix it to check
against sectorsize.
Furthermore:
- Use ASSERT() to do the check
So that in the future we may skip the check for production build
- Also check alignment for @len
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>