Commit graph

12 commits

Author SHA1 Message Date
Alan Stern
d16ba48774 USB: EHCI: convert warning messages to debug-level
This patch (as1606) converts two warning messages in the ehci-hcd
driver to debug messages, and adds a little extra information to each.

The log messages occur when an EHCI controller takes too long (more
than 20 ms) to turn its async or periodic schedule on or off.  If this
happens at all, it's liable to happen quite often and there's no point
spamming the system log with these warnings.  Furthermore, there's
nothing much we can do about it when the problem happens.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Reported-and-tested-by: Thomas Voegtle <tv@lio96.de>
Cc: stable <stable@vger.kernel.org> # [3.6]
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-09-21 09:37:53 -07:00
Alan Stern
18aafe64d7 USB: EHCI: use hrtimer for the I/O watchdog
This patch (as1586) replaces the kernel timer used by ehci-hcd as an
I/O watchdog with an hrtimer event.

Unlike in the current code, the watchdog event is now always enabled
whenever any isochronous URBs are active.  This will prevent bugs
caused by the periodic schedule wrapping around with no completion
interrupts; the watchdog handler is guaranteed to scan the isochronous
transfers at least once during each iteration of the schedule.  The
extra overhead will be negligible: one timer interrupt every 100 ms.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:56:47 -07:00
Alan Stern
569b394f53 USB: EHCI: always scan each interrupt QH
This patch (as1585) fixes a bug in ehci-hcd's scheme for scanning
interrupt QHs.

Currently a single routine takes care of scanning everything on the
periodic schedule.  Whenever an interrupt occurs, it scans all
isochronous and interrupt URBs scheduled for frames that have elapsed
since the last scan.

This has two disadvantages.  The first is relatively minor: An
interrupt QH is likely to end up getting scanned multiple times,
particularly if the last scan was not fairly recent.  (The current
code avoids this by maintaining a periodic_stamp in each interrupt
QH.)

The second is more serious.  The periodic schedule wraps around.  If
the last scan occurred during frame N, and the next scan occurs when
the schedule has gone through an entire cycle and is back at frame N,
the scanning code won't look at any frames other than N.  Consequently
it won't see any QHs that completed during frame N-1 or earlier.

The patch replaces the entire frame-based approach for scanning
interrupt QHs with a new routine using a list-based approach, the same
as for async QHs.  This has a slight disadvantage, because it means
that all interrupt QHs have to be scanned every time.  But it is more
robust than the current approach.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:56:47 -07:00
Alan Stern
32830f2076 USB: EHCI: use hrtimer for unlinking empty async QHs
This patch (as1583) changes ehci-hcd to use an hrtimer event for
unlinking empty (unused) async QHs instead of using a kernel timer.

The check for empty QHs is moved to a new routine, where it doesn't
require going through an entire scan of both the async and periodic
schedules.  And it can unlink multiple QHs at once, unlike the current
code.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:56:47 -07:00
Alan Stern
3c273a056b USB: EHCI: unlink multiple async QHs together
This patch (as1582) changes ehci-hcd's strategy for unlinking async
QHs.  Currently the driver never unlinks more than one QH at a time.
This can be inefficient and cause unnecessary delays, since a QH
cannot be reused while it is waiting to be unlinked.

The new strategy unlinks all the waiting QHs at once.  In practice the
improvement won't be very big, because it's somewhat uncommon to have
two or more QHs waiting to be unlinked at any time.  But it does
happen, and in any case, doing things this way makes more sense IMO.

The change requires the async unlinking code to be refactored
slightly.  Now in addition to the routines for starting and ending an
unlink, there are new routines for unlinking a single QH and starting
an IAA cycle.  This approach is needed because there are two separate
paths for unlinking async QHs:

	When a transfer error occurs or an URB is cancelled, the QH
	must be unlinked right away;

	When a QH has been idle sufficiently long, it is unlinked
	to avoid consuming DMA bandwidth uselessly.

In the first case we want the unlink to proceed as quickly as
possible, whereas in the second case we can afford to batch several
QHs together and unlink them all at once.  Hence the division of
labor.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:56:47 -07:00
Alan Stern
9d9387475a USB: EHCI: use hrtimer for the IAA watchdog
This patch (as1581) replaces the iaa_watchdog kernel timer used by
ehci-hcd with an hrtimer event, in keeping with the general conversion
to high-res timers.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:56:46 -07:00
Alan Stern
55934eb3b9 USB: EHCI: use hrtimer for (s)iTD deallocation
This patch (as1579) adds an hrtimer event to handle deallocation of
iTDs and siTDs in ehci-hcd.

Because of the frame-oriented approach used by the EHCI periodic
schedule, the hardware can continue to access the Transfer Descriptor
for isochronous (or split-isochronous) transactions for up to a
millisecond after the transaction completes.  The iTD (or siTD) must
not be reused before then.

The strategy currently used involves putting completed iTDs on a list
of cached entries and every so often returning them to the endpoint's
free list.  The new strategy reduces overhead by putting completed
iTDs back on the free list immediately, although they are not reused
until it is safe to do so.

When the isochronous endpoint stops (its queue becomes empty), the
iTDs on its free list get moved to a global list, from which they will
be deallocated after a minimum of 2 ms.  This delay is what the new
hrtimer event is for.

Overall this may not be a tremendous improvement over the current
code, but to me it seems a lot more clear and logical.  In addition,
it removes the need for each iTD to keep a reference to the
ehci_iso_stream it belongs to, since the iTD never needs to be moved
back to the stream's free list from the global list.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:54:25 -07:00
Alan Stern
bf6387bcd1 USB: EHCI: use hrtimer for controller death
This patch (as1578) adds an hrtimer event to handle the death of an
EHCI controller.  When a controller dies, it doesn't necessarily stop
running right away.  The new event polls at 1-ms intervals to see when
all activity has safely stopped.  This replaces a busy-wait polling
loop in the current code.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:54:25 -07:00
Alan Stern
df2022553d USB: EHCI: use hrtimer for interrupt QH unlink
This patch (as1577) adds hrtimer support for unlinking interrupt QHs
in ehci-hcd.  The current code relies on a fixed delay of either 2 or
55 us, which is not always adequate and in any case is totally bogus.
Thanks to internal caching, the EHCI hardware may continue to access
an interrupt QH for more than a millisecond after it has been unlinked.

In fact, the EHCI spec doesn't say how long to wait before using an
unlinked interrupt QH.  The patch sets the delay to 9 microframes
minimum, which ought to be adequate.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:54:25 -07:00
Alan Stern
314466101c USB: EHCI: use hrtimer for async schedule
This patch (as1576) adds hrtimer support for managing ehci-hcd's
async schedule.  Just as with the earlier change to the periodic
schedule management, two new hrtimer events take care of everything.

One event polls at 1-ms intervals to see when the Asynchronous
Schedule Status (ASS) flag matches the Asynchronous Schedule Enable
(ASE) value; the schedule's state must not be changed until it does.
The other event delays for 15 ms after the async schedule becomes
empty before turning it off.

The new events replace a busy-wait poll and a kernel timer usage.
They also replace the rather illogical method currently used for
indicating the async schedule should be turned off: attempting to
unlink the dedicated QH at the head of the async list.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:54:25 -07:00
Alan Stern
3ca9aebac2 USB: EHCI: use hrtimer for the periodic schedule
This patch (as1573) adds hrtimer support for managing ehci-hcd's
periodic schedule.  There are two issues to deal with.

First, the schedule's state (on or off) must not be changed until the
hardware status has caught up with the current command.  This is
handled by an hrtimer event that polls at 1-ms intervals to see when
the Periodic Schedule Status (PSS) flag matches the Periodic Schedule
Enable (PSE) value.

Second, the schedule should not be turned off as soon as it becomes
empty.  Turning the schedule on and off takes time, so we want to wait
until the schedule has been empty for a suitable period before turning
it off.  This is handled by an hrtimer event that gets set to expire
10 ms after the periodic schedule becomes empty.

The existing code polls (for up to 1125 us and with interrupts
disabled!) to check the status, and doesn't implement a delay before
turning off the schedule.  Furthermore, if the polling fails then the
driver decides that the controller has died.  This has caused problems
for several people; some controllers can take 10 ms or more to turn
off their periodic schedules.

This patch fixes these issues.  It also makes the "broken_periodic"
workaround unnecessary; there is no longer any danger of turning off
the periodic schedule after it has been on for less than 1 ms.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:53:16 -07:00
Alan Stern
d58b4bcc6d USB: EHCI: introduce high-res timer
This patch (as1572) begins the conversion of ehci-hcd over to using
high-resolution timers rather than old-fashioned low-resolution kernel
timers.  This reduces overhead caused by timer roundoff on systems
where HZ is smaller than 1000.  Also, the new timer framework
introduced here is much more logical and easily extended than the
ad-hoc approach ehci-hcd currently uses for timers.

An hrtimer structure is added to ehci_hcd, along with a bitflag array
and an array of ktime_t values, to keep track of which timing events
are pending and what their expiration times are.

Only the infrastructure for the timing operations is added in this
patch.  Later patches will add routines for handling each of the
various timing events the driver needs.  In some cases the new hrtimer
handlers will replace the existing handlers for ehci-hcd's kernel
timers; as this happens the old timers will be removed.  In other
cases the new timing events will replace busy-wait loops.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2012-07-16 16:53:16 -07:00