[ Upstream commit a91714312e ]
That way percpu_ref_exit() is safe after failing percpu_ref_init().
At least one user (cgroup_create()) had a double-free that way;
there might be other similar bugs. Easier to fix in percpu_ref_init(),
rather than playing whack-a-mole in sloppy users...
Usual symptoms look like a messed refcounting in one of subsystems
that use percpu allocations (might be percpu-refcount, might be
something else). Having refcounts for two different objects share
memory is Not Nice(tm)...
Reported-by: syzbot+5b1e53987f858500ec00@syzkaller.appspotmail.com
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 2e40316753 ]
Will reported the following splat when running with Protected KVM
enabled:
[ 2.427181] ------------[ cut here ]------------
[ 2.427668] WARNING: CPU: 3 PID: 1 at arch/arm64/kvm/mmu.c:489 __create_hyp_private_mapping+0x118/0x1ac
[ 2.428424] Modules linked in:
[ 2.429040] CPU: 3 PID: 1 Comm: swapper/0 Not tainted 5.18.0-rc2-00084-g8635adc4efc7 #1
[ 2.429589] Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
[ 2.430286] pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 2.430734] pc : __create_hyp_private_mapping+0x118/0x1ac
[ 2.431091] lr : create_hyp_exec_mappings+0x40/0x80
[ 2.431377] sp : ffff80000803baf0
[ 2.431597] x29: ffff80000803bb00 x28: 0000000000000000 x27: 0000000000000000
[ 2.432156] x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000
[ 2.432561] x23: ffffcd96c343b000 x22: 0000000000000000 x21: ffff80000803bb40
[ 2.433004] x20: 0000000000000004 x19: 0000000000001800 x18: 0000000000000000
[ 2.433343] x17: 0003e68cf7efdd70 x16: 0000000000000004 x15: fffffc81f602a2c8
[ 2.434053] x14: ffffdf8380000000 x13: ffffcd9573200000 x12: ffffcd96c343b000
[ 2.434401] x11: 0000000000000004 x10: ffffcd96c1738000 x9 : 0000000000000004
[ 2.434812] x8 : ffff80000803bb40 x7 : 7f7f7f7f7f7f7f7f x6 : 544f422effff306b
[ 2.435136] x5 : 000000008020001e x4 : ffff207d80a88c00 x3 : 0000000000000005
[ 2.435480] x2 : 0000000000001800 x1 : 000000014f4ab800 x0 : 000000000badca11
[ 2.436149] Call trace:
[ 2.436600] __create_hyp_private_mapping+0x118/0x1ac
[ 2.437576] create_hyp_exec_mappings+0x40/0x80
[ 2.438180] kvm_init_vector_slots+0x180/0x194
[ 2.458941] kvm_arch_init+0x80/0x274
[ 2.459220] kvm_init+0x48/0x354
[ 2.459416] arm_init+0x20/0x2c
[ 2.459601] do_one_initcall+0xbc/0x238
[ 2.459809] do_initcall_level+0x94/0xb4
[ 2.460043] do_initcalls+0x54/0x94
[ 2.460228] do_basic_setup+0x1c/0x28
[ 2.460407] kernel_init_freeable+0x110/0x178
[ 2.460610] kernel_init+0x20/0x1a0
[ 2.460817] ret_from_fork+0x10/0x20
[ 2.461274] ---[ end trace 0000000000000000 ]---
Indeed, the Protected KVM mode promotes __create_hyp_private_mapping()
to a hypercall as EL1 no longer has access to the hypervisor's stage-1
page-table. However, the call from kvm_init_vector_slots() happens after
pKVM has been initialized on the primary CPU, but before it has been
initialized on secondaries. As such, if the KVM initcall procedure is
migrated from one CPU to another in this window, the hypercall may end up
running on a CPU for which EL2 has not been initialized.
Fortunately, the pKVM hypervisor doesn't rely on the host to re-map the
vectors in the private range, so the hypercall in question is in fact
superfluous. Skip it when pKVM is enabled.
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
[maz: simplified the checks slightly]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220513092607.35233-1-qperret@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fa8785e593 ]
Change suniv f1c100s pinctrl,PD14 multiplexing function lvds1 to uart2
When the pin PD13 and PD14 is setting up to uart2 function in dts,
there's an error occurred:
1c20800.pinctrl: unsupported function uart2 on pin PD14
Because 'uart2' is not any one multiplexing option of PD14,
and pinctrl don't know how to configure it.
So change the pin PD14 lvds1 function to uart2.
Signed-off-by: IotaHydrae <writeforever@foxmail.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Link: https://lore.kernel.org/r/tencent_70C1308DDA794C81CAEF389049055BACEC09@qq.com
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 309d7363ca ]
Some board revisions of the Framework Laptop have an ALC295 with a
disconnected or faulty headset mic presence detect.
The "dell-headset-multi" fixup addresses this issue, but also enables an
inoperative "Headphone Mic" input device whenever a headset is
connected.
Adding a new quirk chain specific to the Framework Laptop resolves this
issue. The one introduced here is based on the System76 "no headphone
mic" quirk chain.
The VID:PID f111:0001 have been allocated to Framework Computer for this
board revision.
Revision history:
- v2: Moved to a custom quirk chain to suppress the "Headphone Mic"
pincfg.
Signed-off-by: Dustin L. Howett <dustin@howett.net>
Link: https://lore.kernel.org/r/20220511010759.3554-1-dustin@howett.net
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 1efcdd9c1f ]
The driver is currently using ALC269_FIXUP_DELL4_MIC_NO_PRESENCE for
the Latitude 7520, but this fixup chain has some issues:
- The internal mic is really loud and the recorded audio is distorted
at "standard" audio levels.
- There are pop noises at system startup and when plugging/unplugging
headphone jacks.
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=215885
Signed-off-by: Gabriele Mazzotta <gabriele.mzt@gmail.com>
Link: https://lore.kernel.org/r/20220501124237.4667-1-gabriele.mzt@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d7be213849 ]
This device doesn't support reading the sample rate, so we need to apply
this quirk to avoid a 15-second delay waiting for three timeouts.
Signed-off-by: Forest Crossman <cyrozap@gmail.com>
Link: https://lore.kernel.org/r/20220504002444.114011-2-cyrozap@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 1b073ebb17 upstream.
Adds the PCI ID for X-Fi cards sold under the Platnum and XtremeMusic names
Before: snd_ctxfi 0000:05:05.0: chip 20K1 model Unknown (1102:0021) is found
After: snd_ctxfi 0000:05:05.0: chip 20K1 model SB046x (1102:0021) is found
[ This is only about defining the model name string, and the rest is
handled just like before, as a default unknown device.
Edward confirmed that the stuff has been working fine -- tiwai ]
Signed-off-by: Edward Matijevic <motolav@gmail.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/cae7d1a4-8bd9-7dfe-7427-db7e766f7272@gmail.com
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1bbc21785b upstream.
Currently the sysfs interface maps the BERT error region as "memory"
(through acpi_os_map_memory()) in order to copy the error records into
memory buffers through memory operations (eg memory_read_from_buffer()).
The OS system cannot detect whether the BERT error region is part of
system RAM or it is "device memory" (eg BMC memory) and therefore it
cannot detect which memory attributes the bus to memory support (and
corresponding kernel mapping, unless firmware provides the required
information).
The acpi_os_map_memory() arch backend implementation determines the
mapping attributes. On arm64, if the BERT error region is not present in
the EFI memory map, the error region is mapped as device-nGnRnE; this
triggers alignment faults since memcpy unaligned accesses are not
allowed in device-nGnRnE regions.
The ACPI sysfs code cannot therefore map by default the BERT error
region with memory semantics but should use a safer default.
Change the sysfs code to map the BERT error region as MMIO (through
acpi_os_map_iomem()) and use the memcpy_fromio() interface to read the
error region into the kernel buffer.
Link: https://lore.kernel.org/linux-arm-kernel/31ffe8fc-f5ee-2858-26c5-0fd8bdd68702@arm.com
Link: https://lore.kernel.org/linux-acpi/CAJZ5v0g+OVbhuUUDrLUCfX_mVqY_e8ubgLTU98=jfjTeb4t+Pw@mail.gmail.com
Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com>
Tested-by: Veronika Kabatova <vkabatov@redhat.com>
Tested-by: Aristeu Rozanski <aris@redhat.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: dann frazier <dann.frazier@canonical.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1ce6c8d68f upstream.
get_random_bytes_user() checks for signals after producing a PAGE_SIZE
worth of output, just like /dev/zero does. write_pool() is doing
basically the same work (actually, slightly more expensive), and so
should stop to check for signals in the same way. Let's also name it
write_pool_user() to match get_random_bytes_user(), so this won't be
misused in the future.
Before this patch, massive writes to /dev/urandom would tie up the
process for an extremely long time and make it unterminatable. After, it
can be successfully interrupted. The following test program can be used
to see this works as intended:
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
static unsigned char x[~0U];
static void handle(int) { }
int main(int argc, char *argv[])
{
pid_t pid = getpid(), child;
int fd;
signal(SIGUSR1, handle);
if (!(child = fork())) {
for (;;)
kill(pid, SIGUSR1);
}
fd = open("/dev/urandom", O_WRONLY);
pause();
printf("interrupted after writing %zd bytes\n", write(fd, x, sizeof(x)));
close(fd);
kill(child, SIGTERM);
return 0;
}
Result before: "interrupted after writing 2147479552 bytes"
Result after: "interrupted after writing 4096 bytes"
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 79025e727a upstream.
Now that random/urandom is using {read,write}_iter, we can wire it up to
using the generic splice handlers.
Fixes: 36e2c7421f ("fs: don't allow splice read/write without explicit ops")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: added the splice_write path. Note that sendfile() and such still
does not work for read, though it does for write, because of a file
type restriction in splice_direct_to_actor(), which I'll address
separately.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 22b0a222af upstream.
Now that the read side has been converted to fix a regression with
splice, convert the write side as well to have some symmetry in the
interface used (and help deprecate ->write()).
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: cleaned up random_ioctl a bit, require full writes in
RNDADDENTROPY since it's crediting entropy, simplify control flow of
write_pool(), and incorporate suggestions from Al.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1b388e7765 upstream.
This is a pre-requisite to wiring up splice() again for the random
and urandom drivers. It also allows us to remove the INT_MAX check in
getrandom(), because import_single_range() applies capping internally.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
[Jason: rewrote get_random_bytes_user() to simplify and also incorporate
additional suggestions from Al.]
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3092adcef3 upstream.
There are currently two separate batched entropy implementations, for
u32 and u64, with nearly identical code, with the goal of avoiding
unaligned memory accesses and letting the buffers be used more
efficiently. Having to maintain these two functions independently is a
bit of a hassle though, considering that they always need to be kept in
sync.
This commit factors them out into a type-generic macro, so that the
expansion produces the same code as before, such that diffing the
assembly shows no differences. This will also make it easier in the
future to add u16 and u8 batches.
This was initially tested using an always_inline function and letting
gcc constant fold the type size in, but the code gen was less efficient,
and in general it was more verbose and harder to follow. So this patch
goes with the boring macro solution, similar to what's already done for
the _wait functions in random.h.
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5ad7dd882e upstream.
randomize_page is an mm function. It is documented like one. It contains
the history of one. It has the naming convention of one. It looks
just like another very similar function in mm, randomize_stack_top().
And it has always been maintained and updated by mm people. There is no
need for it to be in random.c. In the "which shape does not look like
the other ones" test, pointing to randomize_page() is correct.
So move randomize_page() into mm/util.c, right next to the similar
randomize_stack_top() function.
This commit contains no actual code changes.
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 560181c27b upstream.
Much of random.c is devoted to initializing the rng and accounting for
when a sufficient amount of entropy has been added. In a perfect world,
this would all happen during init, and so we could mark these functions
as __init. But in reality, this isn't the case: sometimes the rng only
finishes initializing some seconds after system init is finished.
For this reason, at the moment, a whole host of functions that are only
used relatively close to system init and then never again are intermixed
with functions that are used in hot code all the time. This creates more
cache misses than necessary.
In order to pack the hot code closer together, this commit moves the
initialization functions that can't be marked as __init into
.text.unlikely by way of the __cold attribute.
Of particular note is moving credit_init_bits() into a macro wrapper
that inlines the crng_ready() static branch check. This avoids a
function call to a nop+ret, and most notably prevents extra entropy
arithmetic from being computed in mix_interrupt_randomness().
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a19402634c upstream.
The current code was a mix of "nbytes", "count", "size", "buffer", "in",
and so forth. Instead, let's clean this up by naming input parameters
"buf" (or "ubuf") and "len", so that you always understand that you're
reading this variety of function argument.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7c3a8a1db5 upstream.
Before these were returning signed values, but the API is intended to be
used with unsigned values.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7782cfeca7 upstream.
Accoriding to the kernel style guide, having `extern` on functions in
headers is old school and deprecated, and doesn't add anything. So remove
them from random.h, and tidy up the file a little bit too.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f5bda35fba upstream.
Since crng_ready() is only false briefly during initialization and then
forever after becomes true, we don't need to evaluate it after, making
it a prime candidate for a static branch.
One complication, however, is that it changes state in a particular call
to credit_init_bits(), which might be made from atomic context, which
means we must kick off a workqueue to change the static key. Further
complicating things, credit_init_bits() may be called sufficiently early
on in system initialization such that system_wq is NULL.
Fortunately, there exists the nice function execute_in_process_context(),
which will immediately execute the function if !in_interrupt(), and
otherwise defer it to a workqueue. During early init, before workqueues
are available, in_interrupt() is always false, because interrupts
haven't even been enabled yet, which means the function in that case
executes immediately. Later on, after workqueues are available,
in_interrupt() might be true, but in that case, the work is queued in
system_wq and all goes well.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 12e45a2a63 upstream.
RDRAND and RDSEED can fail sometimes, which is fine. We currently
initialize the RNG with 512 bits of RDRAND/RDSEED. We only need 256 bits
of those to succeed in order to initialize the RNG. Instead of the
current "all or nothing" approach, actually credit these contributions
the amount that is actually contributed.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2f14062bb1 upstream.
Currently, start_kernel() adds latent entropy and the command line to
the entropy bool *after* the RNG has been initialized, deferring when
it's actually used by things like stack canaries until the next time
the pool is seeded. This surely is not intended.
Rather than splitting up which entropy gets added where and when between
start_kernel() and random_init(), just do everything in random_init(),
which should eliminate these kinds of bugs in the future.
While we're at it, rename the awkwardly titled "rand_initialize()" to
the more standard "random_init()" nomenclature.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8a5b8a4a4c upstream.
This expands to exactly the same code that it replaces, but makes things
consistent by using the same macro for jiffy comparisons throughout.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cc1e127bfa upstream.
The CONFIG_WARN_ALL_UNSEEDED_RANDOM debug option controls whether the
kernel warns about all unseeded randomness or just the first instance.
There's some complicated rate limiting and comparison to the previous
caller, such that even with CONFIG_WARN_ALL_UNSEEDED_RANDOM enabled,
developers still don't see all the messages or even an accurate count of
how many were missed. This is the result of basically parallel
mechanisms aimed at accomplishing more or less the same thing, added at
different points in random.c history, which sort of compete with the
first-instance-only limiting we have now.
It turns out, however, that nobody cares about the first unseeded
randomness instance of in-kernel users. The same first user has been
there for ages now, and nobody is doing anything about it. It isn't even
clear that anybody _can_ do anything about it. Most places that can do
something about it have switched over to using get_random_bytes_wait()
or wait_for_random_bytes(), which is the right thing to do, but there is
still much code that needs randomness sometimes during init, and as a
geeneral rule, if you're not using one of the _wait functions or the
readiness notifier callback, you're bound to be doing it wrong just
based on that fact alone.
So warning about this same first user that can't easily change is simply
not an effective mechanism for anything at all. Users can't do anything
about it, as the Kconfig text points out -- the problem isn't in
userspace code -- and kernel developers don't or more often can't react
to it.
Instead, show the warning for all instances when CONFIG_WARN_ALL_UNSEEDED_RANDOM
is set, so that developers can debug things need be, or if it isn't set,
don't show a warning at all.
At the same time, CONFIG_WARN_ALL_UNSEEDED_RANDOM now implies setting
random.ratelimit_disable=1 on by default, since if you care about one
you probably care about the other too. And we can clean up usage around
the related urandom_warning ratelimiter as well (whose behavior isn't
changing), so that it properly counts missed messages after the 10
message threshold is reached.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 68c9c8b192 upstream.
Initialization happens once -- by way of credit_init_bits() -- and then
it never happens again. Therefore, it doesn't need to be in
crng_reseed(), which is a hot path that is called multiple times. It
also doesn't make sense to have there, as initialization activity is
better associated with initialization routines.
After the prior commit, crng_reseed() now won't be called by multiple
concurrent callers, which means that we can safely move the
"finialize_init" logic into crng_init_bits() unconditionally.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit fed7ef0616 upstream.
Since all changes of crng_init now go through credit_init_bits(), we can
fix a long standing race in which two concurrent callers of
credit_init_bits() have the new bit count >= some threshold, but are
doing so with crng_init as a lower threshold, checked outside of a lock,
resulting in crng_reseed() or similar being called twice.
In order to fix this, we can use the original cmpxchg value of the bit
count, and only change crng_init when the bit count transitions from
below a threshold to meeting the threshold.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e3d2c5e79a upstream.
crng_init represents a state machine, with three states, and various
rules for transitions. For the longest time, we've been managing these
with "0", "1", and "2", and expecting people to figure it out. To make
the code more obvious, replace these with proper enum values
representing the transition, and then redocument what each of these
states mean.
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Cc: Joe Perches <joe@perches.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e73aaae2fa upstream.
The SipHash family of permutations is currently used in three places:
- siphash.c itself, used in the ordinary way it was intended.
- random32.c, in a construction from an anonymous contributor.
- random.c, as part of its fast_mix function.
Each one of these places reinvents the wheel with the same C code, same
rotation constants, and same symmetry-breaking constants.
This commit tidies things up a bit by placing macros for the
permutations and constants into siphash.h, where each of the three .c
users can access them. It also leaves a note dissuading more users of
them from emerging.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 791332b3cb upstream.
Now that fast_mix() has more than one caller, gcc no longer inlines it.
That's fine. But it also doesn't handle the compound literal argument we
pass it very efficiently, nor does it handle the loop as well as it
could. So just expand the code to spell out this function so that it
generates the same code as it did before. Performance-wise, this now
behaves as it did before the last commit. The difference in actual code
size on x86 is 45 bytes, which is less than a cache line.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e3e33fc2ea upstream.
Years ago, a separate fast pool was added for interrupts, so that the
cost associated with taking the input pool spinlocks and mixing into it
would be avoided in places where latency is critical. However, one
oversight was that add_input_randomness() and add_disk_randomness()
still sometimes are called directly from the interrupt handler, rather
than being deferred to a thread. This means that some unlucky interrupts
will be caught doing a blake2s_compress() call and potentially spinning
on input_pool.lock, which can also be taken by unprivileged users by
writing into /dev/urandom.
In order to fix this, add_timer_randomness() now checks whether it is
being called from a hard IRQ and if so, just mixes into the per-cpu IRQ
fast pool using fast_mix(), which is much faster and can be done
lock-free. A nice consequence of this, as well, is that it means hard
IRQ context FPU support is likely no longer useful.
The entropy estimation algorithm used by add_timer_randomness() is also
somewhat different than the one used for add_interrupt_randomness(). The
former looks at deltas of deltas of deltas, while the latter just waits
for 64 interrupts for one bit or for one second since the last bit. In
order to bridge these, and since add_interrupt_randomness() runs after
an add_timer_randomness() that's called from hard IRQ, we add to the
fast pool credit the related amount, and then subtract one to account
for add_interrupt_randomness()'s contribution.
A downside of this, however, is that the num argument is potentially
attacker controlled, which puts a bit more pressure on the fast_mix()
sponge to do more than it's really intended to do. As a mitigating
factor, the first 96 bits of input aren't attacker controlled (a cycle
counter followed by zeros), which means it's essentially two rounds of
siphash rather than one, which is somewhat better. It's also not that
much different from add_interrupt_randomness()'s use of the irq stack
instruction pointer register.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Filipe Manana <fdmanana@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a4b5c26b79 upstream.
There are no code changes here; this is just a reordering of functions,
so that in subsequent commits, the timer entropy functions can call into
the interrupt ones.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e85c0fc1d9 upstream.
Per the thread linked below, "premature next" is not considered to be a
realistic threat model, and leads to more serious security problems.
"Premature next" is the scenario in which:
- Attacker compromises the current state of a fully initialized RNG via
some kind of infoleak.
- New bits of entropy are added directly to the key used to generate the
/dev/urandom stream, without any buffering or pooling.
- Attacker then, somehow having read access to /dev/urandom, samples RNG
output and brute forces the individual new bits that were added.
- Result: the RNG never "recovers" from the initial compromise, a
so-called violation of what academics term "post-compromise security".
The usual solutions to this involve some form of delaying when entropy
gets mixed into the crng. With Fortuna, this involves multiple input
buckets. With what the Linux RNG was trying to do prior, this involves
entropy estimation.
However, by delaying when entropy gets mixed in, it also means that RNG
compromises are extremely dangerous during the window of time before
the RNG has gathered enough entropy, during which time nonces may become
predictable (or repeated), ephemeral keys may not be secret, and so
forth. Moreover, it's unclear how realistic "premature next" is from an
attack perspective, if these attacks even make sense in practice.
Put together -- and discussed in more detail in the thread below --
these constitute grounds for just doing away with the current code that
pretends to handle premature next. I say "pretends" because it wasn't
doing an especially great job at it either; should we change our mind
about this direction, we would probably implement Fortuna to "fix" the
"problem", in which case, removing the pretend solution still makes
sense.
This also reduces the crng reseed period from 5 minutes down to 1
minute. The rationale from the thread might lead us toward reducing that
even further in the future (or even eliminating it), but that remains a
topic of a future commit.
At a high level, this patch changes semantics from:
Before: Seed for the first time after 256 "bits" of estimated
entropy have been accumulated since the system booted. Thereafter,
reseed once every five minutes, but only if 256 new "bits" have been
accumulated since the last reseeding.
After: Seed for the first time after 256 "bits" of estimated entropy
have been accumulated since the system booted. Thereafter, reseed
once every minute.
Most of this patch is renaming and removing: POOL_MIN_BITS becomes
POOL_INIT_BITS, credit_entropy_bits() becomes credit_init_bits(),
crng_reseed() loses its "force" parameter since it's now always true,
the drain_entropy() function no longer has any use so it's removed,
entropy estimation is skipped if we've already init'd, the various
notifiers for "low on entropy" are now only active prior to init, and
finally, some documentation comments are cleaned up here and there.
Link: https://lore.kernel.org/lkml/YmlMGx6+uigkGiZ0@zx2c4.com/
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Nadia Heninger <nadiah@cs.ucsd.edu>
Cc: Tom Ristenpart <ristenpart@cornell.edu>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5c3b747ef5 upstream.
Before, the first 64 bytes of input, regardless of how entropic it was,
would be used to mutate the crng base key directly, and none of those
bytes would be credited as having entropy. Then 256 bits of credited
input would be accumulated, and only then would the rng transition from
the earlier "fast init" phase into being actually initialized.
The thinking was that by mixing and matching fast init and real init, an
attacker who compromised the fast init state, considered easy to do
given how little entropy might be in those first 64 bytes, would then be
able to bruteforce bits from the actual initialization. By keeping these
separate, bruteforcing became impossible.
However, by not crediting potentially creditable bits from those first 64
bytes of input, we delay initialization, and actually make the problem
worse, because it means the user is drawing worse random numbers for a
longer period of time.
Instead, we can take the first 128 bits as fast init, and allow them to
be credited, and then hold off on the next 128 bits until they've
accumulated. This is still a wide enough margin to prevent bruteforcing
the rng state, while still initializing much faster.
Then, rather than trying to piecemeal inject into the base crng key at
various points, instead just extract from the pool when we need it, for
the crng_init==0 phase. Performance may even be better for the various
inputs here, since there are likely more calls to mix_pool_bytes() then
there are to get_random_bytes() during this phase of system execution.
Since the preinit injection code is gone, bootloader randomness can then
do something significantly more straight forward, removing the weird
system_wq hack in hwgenerator randomness.
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit cbe89e5a37 upstream.
It's too hard to keep the batches synchronized, and pointless anyway,
since in !crng_ready(), we're updating the base_crng key really often,
where batching only hurts. So instead, if the crng isn't ready, just
call into get_random_bytes(). At this stage nothing is performance
critical anyhow.
Cc: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4b758eda85 upstream.
All platforms are now guaranteed to provide some value for
random_get_entropy(). In case some bug leads to this not being so, we
print a warning, because that indicates that something is really very
wrong (and likely other things are impacted too). This should never be
hit, but it's a good and cheap way of finding out if something ever is
problematic.
Since we now have viable fallback code for random_get_entropy() on all
platforms, which is, in the worst case, not worse than jiffies, we can
count on getting the best possible value out of it. That means there's
no longer a use for using jiffies as entropy input. It also means we no
longer have a reason for doing the round-robin register flow in the IRQ
handler, which was always of fairly dubious value.
Instead we can greatly simplify the IRQ handler inputs and also unify
the construction between 64-bits and 32-bits. We now collect the cycle
counter and the return address, since those are the two things that
matter. Because the return address and the irq number are likely
related, to the extent we mix in the irq number, we can just xor it into
the top unchanging bytes of the return address, rather than the bottom
changing bytes of the cycle counter as before. Then, we can do a fixed 2
rounds of SipHash/HSipHash. Finally, we use the same construction of
hashing only half of the [H]SipHash state on 32-bit and 64-bit. We're
not actually discarding any entropy, since that entropy is carried
through until the next time. And more importantly, it lets us do the
same sponge-like construction everywhere.
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit e10e2f5803 upstream.
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is really not the best we can do.
Instead, at least calling random_get_entropy_fallback() would be
preferable, because that always needs to return _something_, even
falling back to jiffies eventually. It's not as though
random_get_entropy_fallback() is super high precision or guaranteed to
be entropic, but basically anything that's not zero all the time is
better than returning zero all the time.
This is accomplished by just including the asm-generic code like on
other architectures, which means we can get rid of the empty stub
function here.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Max Filippov <jcmvbkbc@gmail.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ac9756c797 upstream.
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is really not the best we can do.
Instead, at least calling random_get_entropy_fallback() would be
preferable, because that always needs to return _something_, even
falling back to jiffies eventually. It's not as though
random_get_entropy_fallback() is super high precision or guaranteed to
be entropic, but basically anything that's not zero all the time is
better than returning zero all the time.
This is accomplished by just including the asm-generic code like on
other architectures, which means we can get rid of the empty stub
function here.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: David S. Miller <davem@davemloft.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 9f13fb0cd1 upstream.
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is really not the best we can do.
Instead, at least calling random_get_entropy_fallback() would be
preferable, because that always needs to return _something_, even
falling back to jiffies eventually. It's not as though
random_get_entropy_fallback() is super high precision or guaranteed to
be entropic, but basically anything that's not zero all the time is
better than returning zero all the time.
This is accomplished by just including the asm-generic code like on
other architectures, which means we can get rid of the empty stub
function here.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Richard Weinberger <richard@nod.at>
Cc: Anton Ivanov <anton.ivanov@cambridgegreys.com>
Acked-by: Johannes Berg <johannes@sipsolutions.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3bd4abc07a upstream.
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is suboptimal. Instead, fallback
to calling random_get_entropy_fallback(), which isn't extremely high
precision or guaranteed to be entropic, but is certainly better than
returning zero all the time.
If CONFIG_X86_TSC=n, then it's possible for the kernel to run on systems
without RDTSC, such as 486 and certain 586, so the fallback code is only
required for that case.
As well, fix up both the new function and the get_cycles() function from
which it was derived to use cpu_feature_enabled() rather than
boot_cpu_has(), and use !IS_ENABLED() instead of #ifndef.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c04e72700f upstream.
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is really not the best we can do.
Instead, at least calling random_get_entropy_fallback() would be
preferable, because that always needs to return _something_, even
falling back to jiffies eventually. It's not as though
random_get_entropy_fallback() is super high precision or guaranteed to
be entropic, but basically anything that's not zero all the time is
better than returning zero all the time.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Dinh Nguyen <dinguyen@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ff8a8f59c9 upstream.
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is really not the best we can do.
Instead, at least calling random_get_entropy_fallback() would be
preferable, because that always needs to return _something_, even
falling back to jiffies eventually. It's not as though
random_get_entropy_fallback() is super high precision or guaranteed to
be entropic, but basically anything that's not zero all the time is
better than returning zero all the time.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1c99c6a7c3 upstream.
For situations in which we don't have a c0 counter register available,
we've been falling back to reading the c0 "random" register, which is
usually bounded by the amount of TLB entries and changes every other
cycle or so. This means it wraps extremely often. We can do better by
combining this fast-changing counter with a potentially slower-changing
counter from random_get_entropy_fallback() in the more significant bits.
This commit combines the two, taking into account that the changing bits
are in a different bit position depending on the CPU model. In addition,
we previously were falling back to 0 for ancient CPUs that Linux does
not support anyway; remove that dead path entirely.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Tested-by: Maciej W. Rozycki <macro@orcam.me.uk>
Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6d01238623 upstream.
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is really not the best we can do.
Instead, at least calling random_get_entropy_fallback() would be
preferable, because that always needs to return _something_, even
falling back to jiffies eventually. It's not as though
random_get_entropy_fallback() is super high precision or guaranteed to
be entropic, but basically anything that's not zero all the time is
better than returning zero all the time.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Reviewed-by: Palmer Dabbelt <palmer@rivosinc.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0f392c9539 upstream.
In the event that random_get_entropy() can't access a cycle counter or
similar, falling back to returning 0 is really not the best we can do.
Instead, at least calling random_get_entropy_fallback() would be
preferable, because that always needs to return _something_, even
falling back to jiffies eventually. It's not as though
random_get_entropy_fallback() is super high precision or guaranteed to
be entropic, but basically anything that's not zero all the time is
better than returning zero all the time.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1366992e16 upstream.
The addition of random_get_entropy_fallback() provides access to
whichever time source has the highest frequency, which is useful for
gathering entropy on platforms without available cycle counters. It's
not necessarily as good as being able to quickly access a cycle counter
that the CPU has, but it's still something, even when it falls back to
being jiffies-based.
In the event that a given arch does not define get_cycles(), falling
back to the get_cycles() default implementation that returns 0 is really
not the best we can do. Instead, at least calling
random_get_entropy_fallback() would be preferable, because that always
needs to return _something_, even falling back to jiffies eventually.
It's not as though random_get_entropy_fallback() is super high precision
or guaranteed to be entropic, but basically anything that's not zero all
the time is better than returning zero all the time.
Finally, since random_get_entropy_fallback() is used during extremely
early boot when randomizing freelists in mm_init(), it can be called
before timekeeping has been initialized. In that case there really is
nothing we can do; jiffies hasn't even started ticking yet. So just give
up and return 0.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4088358321 upstream.
PowerPC defines a get_cycles() function, but it does not do the usual
`#define get_cycles get_cycles` dance, making it impossible for generic
code to see if an arch-specific function was defined. While the
get_cycles() ifdef is not currently used, the following timekeeping
patch in this series will depend on the macro existing (or not existing)
when defining random_get_entropy().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@ozlabs.org>
Cc: Paul Mackerras <paulus@samba.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1097710bc9 upstream.
Alpha defines a get_cycles() function, but it does not do the usual
`#define get_cycles get_cycles` dance, making it impossible for generic
code to see if an arch-specific function was defined. While the
get_cycles() ifdef is not currently used, the following timekeeping
patch in this series will depend on the macro existing (or not existing)
when defining random_get_entropy().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Acked-by: Matt Turner <mattst88@gmail.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 8865bbe6ba upstream.
PA-RISC defines a get_cycles() function, but it does not do the usual
`#define get_cycles get_cycles` dance, making it impossible for generic
code to see if an arch-specific function was defined. While the
get_cycles() ifdef is not currently used, the following timekeeping
patch in this series will depend on the macro existing (or not existing)
when defining random_get_entropy().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Acked-by: Helge Deller <deller@gmx.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 2e3df52325 upstream.
S390x defines a get_cycles() function, but it does not do the usual
`#define get_cycles get_cycles` dance, making it impossible for generic
code to see if an arch-specific function was defined. While the
get_cycles() ifdef is not currently used, the following timekeeping
patch in this series will depend on the macro existing (or not existing)
when defining random_get_entropy().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 57c0900b91 upstream.
Itanium defines a get_cycles() function, but it does not do the usual
`#define get_cycles get_cycles` dance, making it impossible for generic
code to see if an arch-specific function was defined. While the
get_cycles() ifdef is not currently used, the following timekeeping
patch in this series will depend on the macro existing (or not existing)
when defining random_get_entropy().
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>