Commit Graph

16961 Commits

Author SHA1 Message Date
Chen Jun bcbda81020 mm: fix uninitialized use in overcommit_policy_handler
We get an unexpected value of /proc/sys/vm/overcommit_memory after
running the following program:

  int main()
  {
      int fd = open("/proc/sys/vm/overcommit_memory", O_RDWR);
      write(fd, "1", 1);
      write(fd, "2", 1);
      close(fd);
  }

write(fd, "2", 1) will pass *ppos = 1 to proc_dointvec_minmax.
proc_dointvec_minmax will return 0 without setting new_policy.

  t.data = &new_policy;
  ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos)
      -->do_proc_dointvec
         -->__do_proc_dointvec
              if (write) {
                if (proc_first_pos_non_zero_ignore(ppos, table))
                  goto out;

  sysctl_overcommit_memory = new_policy;

so sysctl_overcommit_memory will be set to an uninitialized value.

Check whether new_policy has been changed by proc_dointvec_minmax.

Link: https://lkml.kernel.org/r/20210923020524.13289-1-chenjun102@huawei.com
Fixes: 56f3547bfa ("mm: adjust vm_committed_as_batch according to vm overcommit policy")
Signed-off-by: Chen Jun <chenjun102@huawei.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Feng Tang <feng.tang@intel.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Rui Xiang <rui.xiang@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-24 16:13:35 -07:00
Qi Zheng 5c91c0e77b mm/memory_failure: fix the missing pte_unmap() call
The paired pte_unmap() call is missing before the
dev_pagemap_mapping_shift() returns.  So fix it.

David says:
 "I guess this code never runs on 32bit / highmem, that's why we didn't
  notice so far".

[akpm@linux-foundation.org: cleanup]

Link: https://lkml.kernel.org/r/20210923122642.4999-1-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-24 16:13:35 -07:00
Weizhao Ouyang 57ed7b4303 mm/debug: sync up latest migrate_reason to migrate_reason_names
Sync up MR_DEMOTION to migrate_reason_names and add a synch prompt.

Link: https://lkml.kernel.org/r/20210921064553.293905-3-o451686892@gmail.com
Fixes: 26aa2d199d ("mm/migrate: demote pages during reclaim")
Signed-off-by: Weizhao Ouyang <o451686892@gmail.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Wei Xu <weixugc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-24 16:13:35 -07:00
Weizhao Ouyang a4ce739104 mm/debug: sync up MR_CONTIG_RANGE and MR_LONGTERM_PIN
Sync up MR_CONTIG_RANGE and MR_LONGTERM_PIN to migrate_reason_names.

Link: https://lkml.kernel.org/r/20210921064553.293905-2-o451686892@gmail.com
Fixes: 310253514b ("mm/migrate: rename migration reason MR_CMA to MR_CONTIG_RANGE")
Fixes: d1e153fea2 ("mm/gup: migrate pinned pages out of movable zone")
Signed-off-by: Weizhao Ouyang <o451686892@gmail.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mina Almasry <almasrymina@google.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Wei Xu <weixugc@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-24 16:13:35 -07:00
Minchan Kim 243418e392 mm: fs: invalidate bh_lrus for only cold path
The kernel test robot reported the regression of fio.write_iops[1] with
commit 8cc621d2f4 ("mm: fs: invalidate BH LRU during page migration").

Since lru_add_drain is called frequently, invalidate bh_lrus there could
increase bh_lrus cache miss ratio, which needs more IO in the end.

This patch moves the bh_lrus invalidation from the hot path( e.g.,
zap_page_range, pagevec_release) to cold path(i.e., lru_add_drain_all,
lru_cache_disable).

Zhengjun Xing confirmed
 "I test the patch, the regression reduced to -2.9%"

[1] https://lore.kernel.org/lkml/20210520083144.GD14190@xsang-OptiPlex-9020/
[2] 8cc621d2f4, mm: fs: invalidate BH LRU during page migration

Link: https://lkml.kernel.org/r/20210907212347.1977686-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reported-by: kernel test robot <oliver.sang@intel.com>
Reviewed-by: Chris Goldsworthy <cgoldswo@codeaurora.org>
Tested-by: "Xing, Zhengjun" <zhengjun.xing@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-24 16:13:35 -07:00
Liu Yuntao de6ee65968 mm/shmem.c: fix judgment error in shmem_is_huge()
In the case of SHMEM_HUGE_WITHIN_SIZE, the page index is not rounded up
correctly.  When the page index points to the first page in a huge page,
round_up() cannot bring it to the end of the huge page, but to the end
of the previous one.

An example:

HPAGE_PMD_NR on my machine is 512(2 MB huge page size).  After
allcoating a 3000 KB buffer, I access it at location 2050 KB.  In
shmem_is_huge(), the corresponding index happens to be 512.  After
rounded up by HPAGE_PMD_NR, it will still be 512 which is smaller than
i_size, and shmem_is_huge() will return true.  As a result, my buffer
takes an additional huge page, and that shouldn't happen when
shmem_enabled is set to within_size.

Link: https://lkml.kernel.org/r/20210909032007.18353-1-liuyuntao10@huawei.com
Fixes: f3f0e1d215 ("khugepaged: add support of collapse for tmpfs/shmem pages")
Signed-off-by: Liu Yuntao <liuyuntao10@huawei.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: wuxu.wu <wuxu.wu@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-24 16:13:34 -07:00
Adam Borowski 892ab4bbd0 mm/damon: don't use strnlen() with known-bogus source length
gcc knows the true length too, and rightfully complains.

Link: https://lkml.kernel.org/r/20210912204447.10427-1-kilobyte@angband.pl
Signed-off-by: Adam Borowski <kilobyte@angband.pl>
Cc: SeongJae Park <sj38.park@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-24 16:13:34 -07:00
Naoya Horiguchi acfa299a4a mm, hwpoison: add is_free_buddy_page() in HWPoisonHandlable()
Commit fcc00621d8 ("mm/hwpoison: retry with shake_page() for
unhandlable pages") changed the return value of __get_hwpoison_page() to
retry for transiently unhandlable cases.  However, __get_hwpoison_page()
currently fails to properly judge buddy pages as handlable, so hard/soft
offline for buddy pages always fail as "unhandlable page".  This is
totally regrettable.

So let's add is_free_buddy_page() in HWPoisonHandlable(), so that
__get_hwpoison_page() returns different return values between buddy
pages and unhandlable pages as intended.

Link: https://lkml.kernel.org/r/20210909004131.163221-1-naoya.horiguchi@linux.dev
Fixes: fcc00621d8 ("mm/hwpoison: retry with shake_page() for unhandlable pages")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-24 16:13:34 -07:00
Shakeel Butt 1f828223b7 memcg: flush lruvec stats in the refault
Prior to the commit 7e1c0d6f58 ("memcg: switch lruvec stats to rstat")
and the commit aa48e47e39 ("memcg: infrastructure to flush memcg
stats"), each lruvec memcg stats can be off by (nr_cgroups * nr_cpus *
32) at worst and for unbounded amount of time.  The commit aa48e47e39
moved the lruvec stats to rstat infrastructure and the commit
7e1c0d6f58 bounded the error for all the lruvec stats to (nr_cpus *
32) at worst for at most 2 seconds.  More specifically it decoupled the
number of stats and the number of cgroups from the error rate.

However this reduction in error comes with the cost of triggering the
slowpath of stats update more frequently.  Previously in the slowpath
the kernel adds the stats up the memcg tree.  After aa48e47e39, the
kernel triggers the asyn lruvec stats flush through queue_work().  This
causes regression reports from 0day kernel bot [1] as well as from
phoronix test suite [2].

We tried two options to fix the regression:

 1) Increase the threshold to trigger the slowpath in lruvec stats
    update codepath from 32 to 512.

 2) Remove the slowpath from lruvec stats update codepath and instead
    flush the stats in the page refault codepath. The assumption is that
    the kernel timely flush the stats, so, the update tree would be
    small in the refault codepath to not cause the preformance impact.

Following are the results of will-it-scale/page_fault[1|2|3] benchmark
on four settings i.e.  (1) 5.15-rc1 as baseline (2) 5.15-rc1 with
aa48e47e39 and 7e1c0d6f58 reverted (3) 5.15-rc1 with option-1
(4) 5.15-rc1 with option-2.

  test       (1)      (2)               (3)               (4)
  pg_f1   368563   406277 (10.23%)   399693  (8.44%)   416398 (12.97%)
  pg_f2   338399   372133  (9.96%)   369180  (9.09%)   381024 (12.59%)
  pg_f3   500853   575399 (14.88%)   570388 (13.88%)   576083 (15.02%)

From the above result, it seems like the option-2 not only solves the
regression but also improves the performance for at least these
benchmarks.

Feng Tang (intel) ran the aim7 benchmark with these two options and
confirms that option-1 reduces the regression but option-2 removes the
regression.

Michael Larabel (phoronix) ran multiple benchmarks with these options
and reported the results at [3] and it shows for most benchmarks
option-2 removes the regression introduced by the commit aa48e47e39
("memcg: infrastructure to flush memcg stats").

Based on the experiment results, this patch proposed the option-2 as the
solution to resolve the regression.

Link: https://lore.kernel.org/all/20210726022421.GB21872@xsang-OptiPlex-9020 [1]
Link: https://www.phoronix.com/scan.php?page=article&item=linux515-compile-regress [2]
Link: https://openbenchmarking.org/result/2109226-DEBU-LINUX5104 [3]
Fixes: aa48e47e39 ("memcg: infrastructure to flush memcg stats")
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Tested-by: Michael Larabel <Michael@phoronix.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Roman Gushchin <guro@fb.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Hillf Danton <hdanton@sina.com>,
Cc: Michal Koutný <mkoutny@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>,
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-23 10:09:13 -07:00
Linus Torvalds d9fb678414 AFS fixes
-----BEGIN PGP SIGNATURE-----
 
 iQIyBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmE/CK0ACgkQ+7dXa6fL
 C2vR+A/3ZOlda7wl9grj+qPPiJE1jCav7myLJJR73Yog5T8ZfFkaK6a20IOAyOBu
 1v9GzTEODCA12uomYfvIZqNHrcBr2oV6jf8twcnioELQELEP4KPQsXpd1eqq/Kho
 O3JUaY7BRiKIk5jUL7IEt2hdBgYCBU2FMoQa+M3FiKfoq601rDDsb5YnwWP0og26
 MxXpVmn8uY+QTfwCI4uoJaRZmEX5tu7DnPX3VNHbno9uuI2VJo16S/jmw5CAkG5B
 K9p9VdWbGkelM3CXl2rYBG4cA56uwEhVDfTze+A/Eg9JYD2WCFrsehGWC1DR/QtZ
 LMM5FxiajF2tvg8KQE/Ou+er96qujwfIJKUgI+vqYLh2s6b5ZLqIyzUpTk4fIrf4
 MbHBb4ec0AMXrGapO0fu7UZ2x7f+T7CkYrtIMYxddjlv8YQ860TtzEp/esing4IW
 2DHe6xe72LiqoZ09DBaFq0DJKxtFYKQ94GcHjVGxOaFf4nx4OVkQP3gPz3jrhIy8
 boWJZQ3xv4cuSbX23GBdELzPbkaTRUjI1siYM2zVk31S4YkZVyy5LbgjQL93C+Bp
 BzQwhMGiFQOz17J5eBehVIvHoKDi5fVBuX3WK7aMFmPtUxNhh3KnLKjaxERxdUYw
 6pHq3P23rX15TVC24djqtDevv+otITqJ7dKDovKnGm6hoPRqnw==
 =BLd7
 -----END PGP SIGNATURE-----

Merge tag 'afs-fixes-20210913' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs

Pull AFS fixes from David Howells:
 "Fixes for AFS problems that can cause data corruption due to
  interaction with another client modifying data cached locally:

   - When d_revalidating a dentry, don't look at the inode to which it
     points. Only check the directory to which the dentry belongs. This
     was confusing things and causing the silly-rename cleanup code to
     remove the file now at the dentry of a file that got deleted.

   - Fix mmap data coherency. When a callback break is received that
     relates to a file that we have cached, the data content may have
     been changed (there are other reasons, such as the user's rights
     having been changed). However, we're checking it lazily, only on
     entry to the kernel, which doesn't happen if we have a writeable
     shared mapped page on that file.

     We make the kernel keep track of mmapped files and clear all PTEs
     mapping to that file as soon as the callback comes in by calling
     unmap_mapping_pages() (we don't necessarily want to zap the
     pagecache). This causes the kernel to be reentered when userspace
     tries to access the mmapped address range again - and at that point
     we can query the server and, if we need to, zap the page cache.

     Ideally, I would check each file at the point of notification, but
     that involves poking the server[*] - which is holding an exclusive
     lock on the vnode it is changing, waiting for all the clients it
     notified to reply. This could then deadlock against the server.
     Further, invalidating the pagecache might call ->launder_page(),
     which would try to write to the file, which would definitely
     deadlock. (AFS doesn't lease file access).

     [*] Checking to see if the file content has changed is a matter of
         comparing the current data version number, but we have to ask
         the server for that. We also need to get a new callback promise
         and we need to poke the server for that too.

   - Add some more points at which the inode is validated, since we're
     doing it lazily, notably in ->read_iter() and ->page_mkwrite(), but
     also when performing some directory operations.

     Ideally, checking in ->read_iter() would be done in some derivation
     of filemap_read(). If we're going to call the server to read the
     file, then we get the file status fetch as part of that.

   - The above is now causing us to make a lot more calls to
     afs_validate() to check the inode - and afs_validate() takes the
     RCU read lock each time to make a quick check (ie.
     afs_check_validity()). This is entirely for the purpose of checking
     cb_s_break to see if the server we're using reinitialised its list
     of callbacks - however this isn't a very common event, so most of
     the time we're taking this needlessly.

     Add a new cell-wide counter to count the number of
     reinitialisations done by any server and check that - and only if
     that changes, take the RCU read lock and check the server list (the
     server list may change, but the cell a file is part of won't).

   - Don't update vnode->cb_s_break and ->cb_v_break inside the validity
     checking loop. The cb_lock is done with read_seqretry, so we might
     go round the loop a second time after resetting those values - and
     that could cause someone else checking validity to miss something
     (I think).

  Also included are patches for fixes for some bugs encountered whilst
  debugging this:

   - Fix a leak of afs_read objects and fix a leak of keys hidden by
     that.

   - Fix a leak of pages that couldn't be added to extend a writeback.

   - Fix the maintenance of i_blocks when i_size is changed by a local
     write or a local dir edit"

Link: https://bugzilla.kernel.org/show_bug.cgi?id=214217 [1]
Link: https://lore.kernel.org/r/163111665183.283156.17200205573146438918.stgit@warthog.procyon.org.uk/ # v1
Link: https://lore.kernel.org/r/163113612442.352844.11162345591911691150.stgit@warthog.procyon.org.uk/ # i_blocks patch

* tag 'afs-fixes-20210913' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
  afs: Fix updating of i_blocks on file/dir extension
  afs: Fix corruption in reads at fpos 2G-4G from an OpenAFS server
  afs: Try to avoid taking RCU read lock when checking vnode validity
  afs: Fix mmap coherency vs 3rd-party changes
  afs: Fix incorrect triggering of sillyrename on 3rd-party invalidation
  afs: Add missing vnode validation checks
  afs: Fix page leak
  afs: Fix missing put on afs_read objects and missing get on the key therein
2021-09-20 15:49:02 -07:00
Linus Torvalds 77e02cf57b memblock: introduce saner 'memblock_free_ptr()' interface
The boot-time allocation interface for memblock is a mess, with
'memblock_alloc()' returning a virtual pointer, but then you are
supposed to free it with 'memblock_free()' that takes a _physical_
address.

Not only is that all kinds of strange and illogical, but it actually
causes bugs, when people then use it like a normal allocation function,
and it fails spectacularly on a NULL pointer:

   https://lore.kernel.org/all/20210912140820.GD25450@xsang-OptiPlex-9020/

or just random memory corruption if the debug checks don't catch it:

   https://lore.kernel.org/all/61ab2d0c-3313-aaab-514c-e15b7aa054a0@suse.cz/

I really don't want to apply patches that treat the symptoms, when the
fundamental cause is this horribly confusing interface.

I started out looking at just automating a sane replacement sequence,
but because of this mix or virtual and physical addresses, and because
people have used the "__pa()" macro that can take either a regular
kernel pointer, or just the raw "unsigned long" address, it's all quite
messy.

So this just introduces a new saner interface for freeing a virtual
address that was allocated using 'memblock_alloc()', and that was kept
as a regular kernel pointer.  And then it converts a couple of users
that are obvious and easy to test, including the 'xbc_nodes' case in
lib/bootconfig.c that caused problems.

Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: 40caa127f3 ("init: bootconfig: Remove all bootconfig data when the init memory is removed")
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-14 13:23:22 -07:00
Linus Torvalds 316346243b Merge branch 'gcc-min-version-5.1' (make gcc-5.1 the minimum version)
Merge patch series from Nick Desaulniers to update the minimum gcc
version to 5.1.

This is some of the left-overs from the merge window that I didn't want
to deal with yesterday, so it comes in after -rc1 but was sent before.

Gcc-4.9 support has been an annoyance for some time, and with -Werror I
had the choice of applying a fairly big patch from Kees Cook to remove a
fair number of initializer warnings (still leaving some), or this patch
series from Nick that just removes the source of the problem.

The initializer cleanups might still be worth it regardless, but
honestly, I preferred just tackling the problem with gcc-4.9 head-on.
We've been more aggressiuve about no longer having to care about
compilers that were released a long time ago, and I think it's been a
good thing.

I added a couple of patches on top to sort out a few left-overs now that
we no longer support gcc-4.x.

As noted by Arnd, as a result of this minimum compiler version upgrade
we can probably change our use of '--std=gnu89' to '--std=gnu11', and
finally start using local loop declarations etc.  But this series does
_not_ yet do that.

Link: https://lore.kernel.org/all/20210909182525.372ee687@canb.auug.org.au/
Link: https://lore.kernel.org/lkml/CAK7LNASs6dvU6D3jL2GG3jW58fXfaj6VNOe55NJnTB8UPuk2pA@mail.gmail.com/
Link: https://github.com/ClangBuiltLinux/linux/issues/1438

* emailed patches from Nick Desaulniers <ndesaulniers@google.com>:
  Drop some straggling mentions of gcc-4.9 as being stale
  compiler_attributes.h: drop __has_attribute() support for gcc4
  vmlinux.lds.h: remove old check for GCC 4.9
  compiler-gcc.h: drop checks for older GCC versions
  Makefile: drop GCC < 5 -fno-var-tracking-assignments workaround
  arm64: remove GCC version check for ARCH_SUPPORTS_INT128
  powerpc: remove GCC version check for UPD_CONSTR
  riscv: remove Kconfig check for GCC version for ARCH_RV64I
  Kconfig.debug: drop GCC 5+ version check for DWARF5
  mm/ksm: remove old GCC 4.9+ check
  compiler.h: drop fallback overflow checkers
  Documentation: raise minimum supported version of GCC to 5.1
2021-09-13 10:43:04 -07:00
Nick Desaulniers adac17e3f6 mm/ksm: remove old GCC 4.9+ check
The minimum supported version of GCC has been raised to GCC 5.1.

Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-13 10:18:28 -07:00
David Howells 6e0e99d58a afs: Fix mmap coherency vs 3rd-party changes
Fix the coherency management of mmap'd data such that 3rd-party changes
become visible as soon as possible after the callback notification is
delivered by the fileserver.  This is done by the following means:

 (1) When we break a callback on a vnode specified by the CB.CallBack call
     from the server, we queue a work item (vnode->cb_work) to go and
     clobber all the PTEs mapping to that inode.

     This causes the CPU to trip through the ->map_pages() and
     ->page_mkwrite() handlers if userspace attempts to access the page(s)
     again.

     (Ideally, this would be done in the service handler for CB.CallBack,
     but the server is waiting for our reply before considering, and we
     have a list of vnodes, all of which need breaking - and the process of
     getting the mmap_lock and stripping the PTEs on all CPUs could be
     quite slow.)

 (2) Call afs_validate() from the ->map_pages() handler to check to see if
     the file has changed and to get a new callback promise from the
     server.

Also handle the fileserver telling us that it's dropping all callbacks,
possibly after it's been restarted by sending us a CB.InitCallBackState*
call by the following means:

 (3) Maintain a per-cell list of afs files that are currently mmap'd
     (cell->fs_open_mmaps).

 (4) Add a work item to each server that is invoked if there are any open
     mmaps when CB.InitCallBackState happens.  This work item goes through
     the aforementioned list and invokes the vnode->cb_work work item for
     each one that is currently using this server.

     This causes the PTEs to be cleared, causing ->map_pages() or
     ->page_mkwrite() to be called again, thereby calling afs_validate()
     again.

I've chosen to simply strip the PTEs at the point of notification reception
rather than invalidate all the pages as well because (a) it's faster, (b)
we may get a notification for other reasons than the data being altered (in
which case we don't want to clobber the pagecache) and (c) we need to ask
the server to find out - and I don't want to wait for the reply before
holding up userspace.

This was tested using the attached test program:

	#include <stdbool.h>
	#include <stdio.h>
	#include <stdlib.h>
	#include <unistd.h>
	#include <fcntl.h>
	#include <sys/mman.h>
	int main(int argc, char *argv[])
	{
		size_t size = getpagesize();
		unsigned char *p;
		bool mod = (argc == 3);
		int fd;
		if (argc != 2 && argc != 3) {
			fprintf(stderr, "Format: %s <file> [mod]\n", argv[0]);
			exit(2);
		}
		fd = open(argv[1], mod ? O_RDWR : O_RDONLY);
		if (fd < 0) {
			perror(argv[1]);
			exit(1);
		}

		p = mmap(NULL, size, mod ? PROT_READ|PROT_WRITE : PROT_READ,
			 MAP_SHARED, fd, 0);
		if (p == MAP_FAILED) {
			perror("mmap");
			exit(1);
		}
		for (;;) {
			if (mod) {
				p[0]++;
				msync(p, size, MS_ASYNC);
				fsync(fd);
			}
			printf("%02x", p[0]);
			fflush(stdout);
			sleep(1);
		}
	}

It runs in two modes: in one mode, it mmaps a file, then sits in a loop
reading the first byte, printing it and sleeping for a second; in the
second mode it mmaps a file, then sits in a loop incrementing the first
byte and flushing, then printing and sleeping.

Two instances of this program can be run on different machines, one doing
the reading and one doing the writing.  The reader should see the changes
made by the writer, but without this patch, they aren't because validity
checking is being done lazily - only on entry to the filesystem.

Testing the InitCallBackState change is more complicated.  The server has
to be taken offline, the saved callback state file removed and then the
server restarted whilst the reading-mode program continues to run.  The
client machine then has to poke the server to trigger the InitCallBackState
call.

Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Markus Suvanto <markus.suvanto@gmail.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/163111668833.283156.382633263709075739.stgit@warthog.procyon.org.uk/
2021-09-13 09:10:39 +01:00
Linus Torvalds 35776f1051 ARM development updates for 5.15:
- Rename "mod_init" and "mod_exit" so that initcall debug output is
   actually useful (Randy Dunlap)
 - Update maintainers entries for linux-arm-kernel to indicate it is
   moderated for non-subscribers (Randy Dunlap)
 - Move install rules to arch/arm/Makefile (Masahiro Yamada)
 - Drop unnecessary ARCH_NR_GPIOS definition (Linus Walleij)
 - Don't warn about atags_to_fdt() stack size (David Heidelberg)
 - Speed up unaligned copy_{from,to}_kernel_nofault (Arnd Bergmann)
 - Get rid of set_fs() usage (Arnd Bergmann)
 - Remove checks for GCC prior to v4.6 (Geert Uytterhoeven)
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEuNNh8scc2k/wOAE+9OeQG+StrGQFAmE6GkAACgkQ9OeQG+St
 rGS7HhAAokcdC80ZOJJ+vT/J4sqpTdfTnJmImhkKOKgcw9yBFt7JBuA/6mp6/EV0
 2Jd2RpeKG3S8PRlMWE4hGmyIla94r0olDvdh57+4AB/xrSfPO7l7EiaW2xLi0i3F
 KMysXxxKgbfckoNqPtiYF71cKkUKbZa169t8PyiiW5XYVQncnVGIbmEy69MJCg9n
 08NUtkKoDgHkS6hXDVDLoFsGJX5P7X5IDPx6og233qBWRzWgcn1NURfJKD0F7/l+
 UPnftUAF8JZp0rhtF2RH1IOu2v2MOVUsrK7D5OjzUEdMSleTN2oX3hmF4HPsG8eJ
 LeTKJfxoiX3JdWRlmUjomRU6eDqLAIMKsZ0wWoupQTaCq3WHs/mnxEOKY9n/UYGk
 eQdgb/EQQ5gDUok2WQOxG+Q85s29d14isQnoNa1D0O2YzTK7JiQ6YrASkZWVNLnT
 Zuw5vDtKk+7NV7QczTl9nHnPWIsRaZr40MXbTIROUO+aPoTxt6lPkv/dqUltrbEg
 6Ix/8XsbtAgz8/UEDNz69RYA2DyzDBTO5VLdJutDsXliTAkY+HkqcORTFd72BvWX
 JEO/xg037a8x5vGpu/t0s+nmDgfy79Yi21u7i3MSjf2FiH09bOUhf7tiuhHVzb97
 3po8S/YRiIsJWC1NpMpYFBYeCtJonMJycM05ff6MrLyvLYU2xbs=
 =Tx+y
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm

Pull ARM development updates from Russell King:

 - Rename "mod_init" and "mod_exit" so that initcall debug output is
   actually useful (Randy Dunlap)

 - Update maintainers entries for linux-arm-kernel to indicate it is
   moderated for non-subscribers (Randy Dunlap)

 - Move install rules to arch/arm/Makefile (Masahiro Yamada)

 - Drop unnecessary ARCH_NR_GPIOS definition (Linus Walleij)

 - Don't warn about atags_to_fdt() stack size (David Heidelberg)

 - Speed up unaligned copy_{from,to}_kernel_nofault (Arnd Bergmann)

 - Get rid of set_fs() usage (Arnd Bergmann)

 - Remove checks for GCC prior to v4.6 (Geert Uytterhoeven)

* tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm:
  ARM: 9118/1: div64: Remove always-true __div64_const32_is_OK() duplicate
  ARM: 9117/1: asm-generic: div64: Remove always-true __div64_const32_is_OK()
  ARM: 9116/1: unified: Remove check for gcc < 4
  ARM: 9110/1: oabi-compat: fix oabi epoll sparse warning
  ARM: 9113/1: uaccess: remove set_fs() implementation
  ARM: 9112/1: uaccess: add __{get,put}_kernel_nofault
  ARM: 9111/1: oabi-compat: rework fcntl64() emulation
  ARM: 9114/1: oabi-compat: rework sys_semtimedop emulation
  ARM: 9108/1: oabi-compat: rework epoll_wait/epoll_pwait emulation
  ARM: 9107/1: syscall: always store thread_info->abi_syscall
  ARM: 9109/1: oabi-compat: add epoll_pwait handler
  ARM: 9106/1: traps: use get_kernel_nofault instead of set_fs()
  ARM: 9115/1: mm/maccess: fix unaligned copy_{from,to}_kernel_nofault
  ARM: 9105/1: atags_to_fdt: don't warn about stack size
  ARM: 9103/1: Drop ARCH_NR_GPIOS definition
  ARM: 9102/1: move theinstall rules to arch/arm/Makefile
  ARM: 9100/1: MAINTAINERS: mark all linux-arm-kernel@infradead list as moderated
  ARM: 9099/1: crypto: rename 'mod_init' & 'mod_exit' functions to be module-specific
2021-09-09 13:25:49 -07:00
Linus Torvalds a3fa7a101d Merge branches 'akpm' and 'akpm-hotfixes' (patches from Andrew)
Merge yet more updates and hotfixes from Andrew Morton:
 "Post-linux-next material, based upon latest upstream to catch the
  now-merged dependencies:

   - 10 patches.

     Subsystems affected by this patch series: mm (vmstat and migration)
     and compat.

  And bunch of hotfixes, mostly cc:stable:

   - 8 patches.

     Subsystems affected by this patch series: mm (hmm, hugetlb, vmscan,
     pagealloc, pagemap, kmemleak, mempolicy, and memblock)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  arch: remove compat_alloc_user_space
  compat: remove some compat entry points
  mm: simplify compat numa syscalls
  mm: simplify compat_sys_move_pages
  kexec: avoid compat_alloc_user_space
  kexec: move locking into do_kexec_load
  mm: migrate: change to use bool type for 'page_was_mapped'
  mm: migrate: fix the incorrect function name in comments
  mm: migrate: introduce a local variable to get the number of pages
  mm/vmstat: protect per cpu variables with preempt disable on RT

* emailed hotfixes from Andrew Morton <akpm@linux-foundation.org>:
  nds32/setup: remove unused memblock_region variable in setup_memory()
  mm/mempolicy: fix a race between offset_il_node and mpol_rebind_task
  mm/kmemleak: allow __GFP_NOLOCKDEP passed to kmemleak's gfp
  mmap_lock: change trace and locking order
  mm/page_alloc.c: avoid accessing uninitialized pcp page migratetype
  mm,vmscan: fix divide by zero in get_scan_count
  mm/hugetlb: initialize hugetlb_usage in mm_init
  mm/hmm: bypass devmap pte when all pfn requested flags are fulfilled
2021-09-08 18:52:05 -07:00
yanghui 276aeee1c5 mm/mempolicy: fix a race between offset_il_node and mpol_rebind_task
Servers happened below panic:

  Kernel version:5.4.56
  BUG: unable to handle page fault for address: 0000000000002c48
  RIP: 0010:__next_zones_zonelist+0x1d/0x40
  Call Trace:
    __alloc_pages_nodemask+0x277/0x310
    alloc_page_interleave+0x13/0x70
    handle_mm_fault+0xf99/0x1390
    __do_page_fault+0x288/0x500
    do_page_fault+0x30/0x110
    page_fault+0x3e/0x50

The reason for the panic is that MAX_NUMNODES is passed in the third
parameter in __alloc_pages_nodemask(preferred_nid).  So access to
zonelist->zoneref->zone_idx in __next_zones_zonelist will cause a panic.

In offset_il_node(), first_node() returns nid from pol->v.nodes, after
this other threads may chang pol->v.nodes before next_node().  This race
condition will let next_node return MAX_NUMNODES.  So put pol->nodes in
a local variable.

The race condition is between offset_il_node and cpuset_change_task_nodemask:

  CPU0:                                     CPU1:
  alloc_pages_vma()
    interleave_nid(pol,)
      offset_il_node(pol,)
        first_node(pol->v.nodes)            cpuset_change_task_nodemask
                        //nodes==0xc          mpol_rebind_task
                                                mpol_rebind_policy
                                                  mpol_rebind_nodemask(pol,nodes)
                        //nodes==0x3
        next_node(nid, pol->v.nodes)//return MAX_NUMNODES

Link: https://lkml.kernel.org/r/20210906034658.48721-1-yanghui.def@bytedance.com
Signed-off-by: yanghui <yanghui.def@bytedance.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 18:45:53 -07:00
Naohiro Aota 79d3705040 mm/kmemleak: allow __GFP_NOLOCKDEP passed to kmemleak's gfp
In a memory pressure situation, I'm seeing the lockdep WARNING below.
Actually, this is similar to a known false positive which is already
addressed by commit 6dcde60efd ("xfs: more lockdep whackamole with
kmem_alloc*").

This warning still persists because it's not from kmalloc() itself but
from an allocation for kmemleak object.  While kmalloc() itself suppress
the warning with __GFP_NOLOCKDEP, gfp_kmemleak_mask() is dropping the
flag for the kmemleak's allocation.

Allow __GFP_NOLOCKDEP to be passed to kmemleak's allocation, so that the
warning for it is also suppressed.

  ======================================================
  WARNING: possible circular locking dependency detected
  5.14.0-rc7-BTRFS-ZNS+ #37 Not tainted
  ------------------------------------------------------
  kswapd0/288 is trying to acquire lock:
  ffff88825ab45df0 (&xfs_nondir_ilock_class){++++}-{3:3}, at: xfs_ilock+0x8a/0x250

  but task is already holding lock:
  ffffffff848cc1e0 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30

  which lock already depends on the new lock.

  the existing dependency chain (in reverse order) is:

  -> #1 (fs_reclaim){+.+.}-{0:0}:
         fs_reclaim_acquire+0x112/0x160
         kmem_cache_alloc+0x48/0x400
         create_object.isra.0+0x42/0xb10
         kmemleak_alloc+0x48/0x80
         __kmalloc+0x228/0x440
         kmem_alloc+0xd3/0x2b0
         kmem_alloc_large+0x5a/0x1c0
         xfs_attr_copy_value+0x112/0x190
         xfs_attr_shortform_getvalue+0x1fc/0x300
         xfs_attr_get_ilocked+0x125/0x170
         xfs_attr_get+0x329/0x450
         xfs_get_acl+0x18d/0x430
         get_acl.part.0+0xb6/0x1e0
         posix_acl_xattr_get+0x13a/0x230
         vfs_getxattr+0x21d/0x270
         getxattr+0x126/0x310
         __x64_sys_fgetxattr+0x1a6/0x2a0
         do_syscall_64+0x3b/0x90
         entry_SYSCALL_64_after_hwframe+0x44/0xae

  -> #0 (&xfs_nondir_ilock_class){++++}-{3:3}:
         __lock_acquire+0x2c0f/0x5a00
         lock_acquire+0x1a1/0x4b0
         down_read_nested+0x50/0x90
         xfs_ilock+0x8a/0x250
         xfs_can_free_eofblocks+0x34f/0x570
         xfs_inactive+0x411/0x520
         xfs_fs_destroy_inode+0x2c8/0x710
         destroy_inode+0xc5/0x1a0
         evict+0x444/0x620
         dispose_list+0xfe/0x1c0
         prune_icache_sb+0xdc/0x160
         super_cache_scan+0x31e/0x510
         do_shrink_slab+0x337/0x8e0
         shrink_slab+0x362/0x5c0
         shrink_node+0x7a7/0x1a40
         balance_pgdat+0x64e/0xfe0
         kswapd+0x590/0xa80
         kthread+0x38c/0x460
         ret_from_fork+0x22/0x30

  other info that might help us debug this:
   Possible unsafe locking scenario:
         CPU0                    CPU1
         ----                    ----
    lock(fs_reclaim);
                                 lock(&xfs_nondir_ilock_class);
                                 lock(fs_reclaim);
    lock(&xfs_nondir_ilock_class);

   *** DEADLOCK ***
  3 locks held by kswapd0/288:
   #0: ffffffff848cc1e0 (fs_reclaim){+.+.}-{0:0}, at: __fs_reclaim_acquire+0x5/0x30
   #1: ffffffff848a08d8 (shrinker_rwsem){++++}-{3:3}, at: shrink_slab+0x269/0x5c0
   #2: ffff8881a7a820e8 (&type->s_umount_key#60){++++}-{3:3}, at: super_cache_scan+0x5a/0x510

Link: https://lkml.kernel.org/r/20210907055659.3182992-1-naohiro.aota@wdc.com
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: "Darrick J . Wong" <djwong@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 18:45:53 -07:00
Miaohe Lin 053cfda102 mm/page_alloc.c: avoid accessing uninitialized pcp page migratetype
If it's not prepared to free unref page, the pcp page migratetype is
unset.  Thus we will get rubbish from get_pcppage_migratetype() and
might list_del(&page->lru) again after it's already deleted from the list
leading to grumble about data corruption.

Link: https://lkml.kernel.org/r/20210902115447.57050-1-linmiaohe@huawei.com
Fixes: df1acc8569 ("mm/page_alloc: avoid conflating IRQs disabled with zone->lock")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 18:45:53 -07:00
Rik van Riel 32d4f4b782 mm,vmscan: fix divide by zero in get_scan_count
Commit f56ce412a5 ("mm: memcontrol: fix occasional OOMs due to
proportional memory.low reclaim") introduced a divide by zero corner
case when oomd is being used in combination with cgroup memory.low
protection.

When oomd decides to kill a cgroup, it will force the cgroup memory to
be reclaimed after killing the tasks, by writing to the memory.max file
for that cgroup, forcing the remaining page cache and reclaimable slab
to be reclaimed down to zero.

Previously, on cgroups with some memory.low protection that would result
in the memory being reclaimed down to the memory.low limit, or likely
not at all, having the page cache reclaimed asynchronously later.

With f56ce412a5 the oomd write to memory.max tries to reclaim all the
way down to zero, which may race with another reclaimer, to the point of
ending up with the divide by zero below.

This patch implements the obvious fix.

Link: https://lkml.kernel.org/r/20210826220149.058089c6@imladris.surriel.com
Fixes: f56ce412a5 ("mm: memcontrol: fix occasional OOMs due to proportional memory.low reclaim")
Signed-off-by: Rik van Riel <riel@surriel.com>
Acked-by: Roman Gushchin <guro@fb.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Chris Down <chris@chrisdown.name>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 18:45:53 -07:00
Li Zhijian 4b42fb2136 mm/hmm: bypass devmap pte when all pfn requested flags are fulfilled
Previously, we noticed the one rpma example was failed[1] since commit
36f30e486d ("IB/core: Improve ODP to use hmm_range_fault()"), where it
will use ODP feature to do RDMA WRITE between fsdax files.

After digging into the code, we found hmm_vma_handle_pte() will still
return EFAULT even though all the its requesting flags has been
fulfilled.  That's because a DAX page will be marked as (_PAGE_SPECIAL |
PAGE_DEVMAP) by pte_mkdevmap().

Link: https://github.com/pmem/rpma/issues/1142 [1]
Link: https://lkml.kernel.org/r/20210830094232.203029-1-lizhijian@cn.fujitsu.com
Fixes: 4055062749 ("mm/hmm: add missing call to hmm_pte_need_fault in HMM_PFN_SPECIAL handling")
Signed-off-by: Li Zhijian <lizhijian@cn.fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 18:45:52 -07:00
Arnd Bergmann 59ab844eed compat: remove some compat entry points
These are all handled correctly when calling the native system call entry
point, so remove the special cases.

Link: https://lkml.kernel.org/r/20210727144859.4150043-6-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:35 -07:00
Arnd Bergmann e130242dc3 mm: simplify compat numa syscalls
The compat implementations for mbind, get_mempolicy, set_mempolicy and
migrate_pages are just there to handle the subtly different layout of
bitmaps on 32-bit hosts.

The compat implementation however lacks some of the checks that are
present in the native one, in particular for checking that the extra bits
are all zero when user space has a larger mask size than the kernel.
Worse, those extra bits do not get cleared when copying in or out of the
kernel, which can lead to incorrect data as well.

Unify the implementation to handle the compat bitmap layout directly in
the get_nodes() and copy_nodes_to_user() helpers.  Splitting out the
get_bitmap() helper from get_nodes() also helps readability of the native
case.

On x86, two additional problems are addressed by this: compat tasks can
pass a bitmap at the end of a mapping, causing a fault when reading across
the page boundary for a 64-bit word.  x32 tasks might also run into
problems with get_mempolicy corrupting data when an odd number of 32-bit
words gets passed.

On parisc the migrate_pages() system call apparently had the wrong calling
convention, as big-endian architectures expect the words inside of a
bitmap to be swapped.  This is not a problem though since parisc has no
NUMA support.

[arnd@arndb.de: fix mempolicy crash]
  Link: https://lkml.kernel.org/r/20210730143417.3700653-1-arnd@kernel.org
  Link: https://lore.kernel.org/lkml/YQPLG20V3dmOfq3a@osiris/

Link: https://lkml.kernel.org/r/20210727144859.4150043-5-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:35 -07:00
Arnd Bergmann 5b1b561ba7 mm: simplify compat_sys_move_pages
The compat move_pages() implementation uses compat_alloc_user_space() for
converting the pointer array.  Moving the compat handling into the
function itself is a bit simpler and lets us avoid the
compat_alloc_user_space() call.

Link: https://lkml.kernel.org/r/20210727144859.4150043-4-arnd@kernel.org
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Baolin Wang 213ecb3157 mm: migrate: change to use bool type for 'page_was_mapped'
Change to use bool type for 'page_was_mapped' variable making it more
readable.

Link: https://lkml.kernel.org/r/ce1279df18d2c163998c403e0b5ec6d3f6f90f7a.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Baolin Wang 68a9843f14 mm: migrate: fix the incorrect function name in comments
since commit a98a2f0c8c ("mm/rmap: split migration into its own
function"), the migration ptes establishment has been split into a
separate try_to_migrate() function, thus update the related comments.

Link: https://lkml.kernel.org/r/5b824bad6183259c916ae6cf42f81d14c6118b06.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Baolin Wang 2b9b624f5a mm: migrate: introduce a local variable to get the number of pages
Use thp_nr_pages() instead of compound_nr() to get the number of pages for
THP page, meanwhile introducing a local variable 'nr_pages' to avoid
getting the number of pages repeatedly.

Link: https://lkml.kernel.org/r/a8e331ac04392ee230c79186330fb05e86a2aa77.1629447552.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Alistair Popple <apopple@nvidia.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Ingo Molnar c68ed79457 mm/vmstat: protect per cpu variables with preempt disable on RT
Disable preemption on -RT for the vmstat code.  On vanila the code runs in
IRQ-off regions while on -RT it may not when stats are updated under a
local_lock.  "preempt_disable" ensures that the same resources is not
updated in parallel due to preemption.

This patch differs from the preempt-rt version where __count_vm_event and
__count_vm_events are also protected.  The counters are explicitly
"allowed to be to be racy" so there is no need to protect them from
preemption.  Only the accurate page stats that are updated by a
read-modify-write need protection.  This patch also differs in that a
preempt_[en|dis]able_rt helper is not used.  As vmstat is the only user of
the helper, it was suggested that it be open-coded in vmstat.c instead of
risking the helper being used in unnecessary contexts.

Link: https://lkml.kernel.org/r/20210805160019.1137-2-mgorman@techsingularity.net
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 15:32:34 -07:00
Linus Torvalds 2d338201d5 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "147 patches, based on 7d2a07b769.

  Subsystems affected by this patch series: mm (memory-hotplug, rmap,
  ioremap, highmem, cleanups, secretmem, kfence, damon, and vmscan),
  alpha, percpu, procfs, misc, core-kernel, MAINTAINERS, lib,
  checkpatch, epoll, init, nilfs2, coredump, fork, pids, criu, kconfig,
  selftests, ipc, and scripts"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (94 commits)
  scripts: check_extable: fix typo in user error message
  mm/workingset: correct kernel-doc notations
  ipc: replace costly bailout check in sysvipc_find_ipc()
  selftests/memfd: remove unused variable
  Kconfig.debug: drop selecting non-existing HARDLOCKUP_DETECTOR_ARCH
  configs: remove the obsolete CONFIG_INPUT_POLLDEV
  prctl: allow to setup brk for et_dyn executables
  pid: cleanup the stale comment mentioning pidmap_init().
  kernel/fork.c: unexport get_{mm,task}_exe_file
  coredump: fix memleak in dump_vma_snapshot()
  fs/coredump.c: log if a core dump is aborted due to changed file permissions
  nilfs2: use refcount_dec_and_lock() to fix potential UAF
  nilfs2: fix memory leak in nilfs_sysfs_delete_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_create_snapshot_group
  nilfs2: fix memory leak in nilfs_sysfs_delete_##name##_group
  nilfs2: fix memory leak in nilfs_sysfs_create_##name##_group
  nilfs2: fix NULL pointer in nilfs_##name##_attr_release
  nilfs2: fix memory leak in nilfs_sysfs_create_device_group
  trap: cleanup trap_init()
  init: move usermodehelper_enable() to populate_rootfs()
  ...
2021-09-08 12:55:35 -07:00
Linus Torvalds cc09ee80c3 SLUB: reduce irq disabled scope and make it RT compatible
This series was initially inspired by Mel's pcplist local_lock rewrite, and
 also interest to better understand SLUB's locking and the new primitives and RT
 variants and implications. It makes SLUB compatible with PREEMPT_RT and
 generally more preemption-friendly, apparently without significant regressions,
 as the fast paths are not affected.
 
 The main changes to SLUB by this series:
 
 * irq disabling is now only done for minimum amount of time needed to protect
   the strict kmem_cache_cpu fields, and as part of spin lock, local lock and
   bit lock operations to make them irq-safe
 
 * SLUB is fully PREEMPT_RT compatible
 
 Series is based on 5.14-rc6 and also available as a git branch:
 https://git.kernel.org/pub/scm/linux/kernel/git/vbabka/linux.git/log/?h=slub-local-lock-v5r0
 
 The series should now be sufficiently tested in both RT and !RT configs, mainly
 thanks to Mike.
 
 The RFC/v1 version also got basic performance screening by Mel that didn't show
 major regressions. Mike's testing with hackbench of v2 on !RT reported
 negligible differences [6]:
 
 virgin(ish) tip
 5.13.0.g60ab3ed-tip
           7,320.67 msec task-clock                #    7.792 CPUs utilized            ( +-  0.31% )
            221,215      context-switches          #    0.030 M/sec                    ( +-  3.97% )
             16,234      cpu-migrations            #    0.002 M/sec                    ( +-  4.07% )
             13,233      page-faults               #    0.002 M/sec                    ( +-  0.91% )
     27,592,205,252      cycles                    #    3.769 GHz                      ( +-  0.32% )
      8,309,495,040      instructions              #    0.30  insn per cycle           ( +-  0.37% )
      1,555,210,607      branches                  #  212.441 M/sec                    ( +-  0.42% )
          5,484,209      branch-misses             #    0.35% of all branches          ( +-  2.13% )
 
            0.93949 +- 0.00423 seconds time elapsed  ( +-  0.45% )
            0.94608 +- 0.00384 seconds time elapsed  ( +-  0.41% ) (repeat)
            0.94422 +- 0.00410 seconds time elapsed  ( +-  0.43% )
 
 5.13.0.g60ab3ed-tip +slub-local-lock-v2r3
           7,343.57 msec task-clock                #    7.776 CPUs utilized            ( +-  0.44% )
            223,044      context-switches          #    0.030 M/sec                    ( +-  3.02% )
             16,057      cpu-migrations            #    0.002 M/sec                    ( +-  4.03% )
             13,164      page-faults               #    0.002 M/sec                    ( +-  0.97% )
     27,684,906,017      cycles                    #    3.770 GHz                      ( +-  0.45% )
      8,323,273,871      instructions              #    0.30  insn per cycle           ( +-  0.28% )
      1,556,106,680      branches                  #  211.901 M/sec                    ( +-  0.31% )
          5,463,468      branch-misses             #    0.35% of all branches          ( +-  1.33% )
 
            0.94440 +- 0.00352 seconds time elapsed  ( +-  0.37% )
            0.94830 +- 0.00228 seconds time elapsed  ( +-  0.24% ) (repeat)
            0.93813 +- 0.00440 seconds time elapsed  ( +-  0.47% ) (repeat)
 
 RT configs showed some throughput regressions, but that's expected tradeoff for
 the preemption improvements through the RT mutex. It didn't prevent the v2 to
 be incorporated to the 5.13 RT tree [7], leading to testing exposure and
 bugfixes.
 
 Before the series, SLUB is lockless in both allocation and free fast paths, but
 elsewhere, it's disabling irqs for considerable periods of time - especially in
 allocation slowpath and the bulk allocation, where IRQs are re-enabled only
 when a new page from the page allocator is needed, and the context allows
 blocking. The irq disabled sections can then include deactivate_slab() which
 walks a full freelist and frees the slab back to page allocator or
 unfreeze_partials() going through a list of percpu partial slabs. The RT tree
 currently has some patches mitigating these, but we can do much better in
 mainline too.
 
 Patches 1-6 are straightforward improvements or cleanups that could exist
 outside of this series too, but are prerequsities.
 
 Patches 7-9 are also preparatory code changes without functional changes, but
 not so useful without the rest of the series.
 
 Patch 10 simplifies the fast paths on systems with preemption, based on
 (hopefully correct) observation that the current loops to verify tid are
 unnecessary.
 
 Patches 11-20 focus on reducing irq disabled scope in the allocation slowpath.
 
 Patch 11 moves disabling of irqs into ___slab_alloc() from its callers, which
 are the allocation slowpath, and bulk allocation. Instead these callers only
 disable preemption to stabilize the cpu. The following patches then gradually
 reduce the scope of disabled irqs in ___slab_alloc() and the functions called
 from there. As of patch 14, the re-enabling of irqs based on gfp flags before
 calling the page allocator is removed from allocate_slab(). As of patch 17,
 it's possible to reach the page allocator (in case of existing slabs depleted)
 without disabling and re-enabling irqs a single time.
 
 Pathces 21-26 reduce the scope of disabled irqs in functions related to
 unfreezing percpu partial slab.
 
 Patch 27 is preparatory. Patch 28 is adopted from the RT tree and converts the
 flushing of percpu slabs on all cpus from using IPI to workqueue, so that the
 processing isn't happening with irqs disabled in the IPI handler. The flushing
 is not performance critical so it should be acceptable.
 
 Patch 29 also comes from RT tree and makes object_map_lock RT compatible.
 
 Patch 30 make slab_lock irq-safe on RT where we cannot rely on having
 irq disabled from the list_lock spin lock usage.
 
 Patch 31 changes kmem_cache_cpu->partial handling in put_cpu_partial() from
 cmpxchg loop to a short irq disabled section, which is used by all other code
 modifying the field. This addresses a theoretical race scenario pointed out by
 Jann, and makes the critical section safe wrt with RT local_lock semantics
 after the conversion in patch 35.
 
 Patch 32 changes preempt disable to migrate disable, so that the nested
 list_lock spinlock is safe to take on RT. Because migrate_disable() is a
 function call even on !RT, a small set of private wrappers is introduced
 to keep using the cheaper preempt_disable() on !PREEMPT_RT configurations.
 As of this patch, SLUB should be already compatible with RT's lock semantics.
 
 Finally, patch 33 changes irq disabled sections that protect kmem_cache_cpu
 fields in the slow paths, with a local lock. However on PREEMPT_RT it means the
 lockless fast paths can now preempt slow paths which don't expect that, so the
 local lock has to be taken also in the fast paths and they are no longer
 lockless. RT folks seem to not mind this tradeoff. The patch also updates the
 locking documentation in the file's comment.
 -----BEGIN PGP SIGNATURE-----
 
 iQEzBAABCAAdFiEEjUuTAak14xi+SF7M4CHKc/GJqRAFAmEzSooACgkQ4CHKc/GJ
 qRC3Agf+MXJB5NVCOkwgEk9wipbFETrJDsvM2Yf2CrqbK9MzKtPNrL82lZHdgtq2
 HJ5gT8QZTFQ7n8nbY3P6LRClDdtqYm8b7aX02qtc2JrM29wIQw8A1gummLkQDNRm
 s+vd0ndPc4V6mqJQqiTk1WB8F+SJ0u3LfjesbIlqgcWREzZaPgm+hw3UUEtz/tXu
 RiEkWI30u0S0X5/HimqK8pdmwGPvzX8l1N9Sc2VeoQoFPPL/Cm2D5jZR/xHtKLfW
 q4ZVVXdh/YtOWXMD0jOr9q/bxwLDWCkvWHEmAES5nT2apFmCuusZ3+XWzWf8bSX/
 j3eTiiNHTaktf/mndEymEbztnqmfGQ==
 =3Jty
 -----END PGP SIGNATURE-----

Merge tag 'mm-slub-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/linux

Pull SLUB updates from Vlastimil Babka:
 "SLUB: reduce irq disabled scope and make it RT compatible

  This series was initially inspired by Mel's pcplist local_lock
  rewrite, and also interest to better understand SLUB's locking and the
  new primitives and RT variants and implications. It makes SLUB
  compatible with PREEMPT_RT and generally more preemption-friendly,
  apparently without significant regressions, as the fast paths are not
  affected.

  The main changes to SLUB by this series:

   - irq disabling is now only done for minimum amount of time needed to
     protect the strict kmem_cache_cpu fields, and as part of spin lock,
     local lock and bit lock operations to make them irq-safe

   - SLUB is fully PREEMPT_RT compatible

  The series should now be sufficiently tested in both RT and !RT
  configs, mainly thanks to Mike.

  The RFC/v1 version also got basic performance screening by Mel that
  didn't show major regressions. Mike's testing with hackbench of v2 on
  !RT reported negligible differences [6]:

    virgin(ish) tip
    5.13.0.g60ab3ed-tip
              7,320.67 msec task-clock                #    7.792 CPUs utilized            ( +-  0.31% )
               221,215      context-switches          #    0.030 M/sec                    ( +-  3.97% )
                16,234      cpu-migrations            #    0.002 M/sec                    ( +-  4.07% )
                13,233      page-faults               #    0.002 M/sec                    ( +-  0.91% )
        27,592,205,252      cycles                    #    3.769 GHz                      ( +-  0.32% )
         8,309,495,040      instructions              #    0.30  insn per cycle           ( +-  0.37% )
         1,555,210,607      branches                  #  212.441 M/sec                    ( +-  0.42% )
             5,484,209      branch-misses             #    0.35% of all branches          ( +-  2.13% )

               0.93949 +- 0.00423 seconds time elapsed  ( +-  0.45% )
               0.94608 +- 0.00384 seconds time elapsed  ( +-  0.41% ) (repeat)
               0.94422 +- 0.00410 seconds time elapsed  ( +-  0.43% )

    5.13.0.g60ab3ed-tip +slub-local-lock-v2r3
              7,343.57 msec task-clock                #    7.776 CPUs utilized            ( +-  0.44% )
               223,044      context-switches          #    0.030 M/sec                    ( +-  3.02% )
                16,057      cpu-migrations            #    0.002 M/sec                    ( +-  4.03% )
                13,164      page-faults               #    0.002 M/sec                    ( +-  0.97% )
        27,684,906,017      cycles                    #    3.770 GHz                      ( +-  0.45% )
         8,323,273,871      instructions              #    0.30  insn per cycle           ( +-  0.28% )
         1,556,106,680      branches                  #  211.901 M/sec                    ( +-  0.31% )
             5,463,468      branch-misses             #    0.35% of all branches          ( +-  1.33% )

               0.94440 +- 0.00352 seconds time elapsed  ( +-  0.37% )
               0.94830 +- 0.00228 seconds time elapsed  ( +-  0.24% ) (repeat)
               0.93813 +- 0.00440 seconds time elapsed  ( +-  0.47% ) (repeat)

  RT configs showed some throughput regressions, but that's expected
  tradeoff for the preemption improvements through the RT mutex. It
  didn't prevent the v2 to be incorporated to the 5.13 RT tree [7],
  leading to testing exposure and bugfixes.

  Before the series, SLUB is lockless in both allocation and free fast
  paths, but elsewhere, it's disabling irqs for considerable periods of
  time - especially in allocation slowpath and the bulk allocation,
  where IRQs are re-enabled only when a new page from the page allocator
  is needed, and the context allows blocking. The irq disabled sections
  can then include deactivate_slab() which walks a full freelist and
  frees the slab back to page allocator or unfreeze_partials() going
  through a list of percpu partial slabs. The RT tree currently has some
  patches mitigating these, but we can do much better in mainline too.

  Patches 1-6 are straightforward improvements or cleanups that could
  exist outside of this series too, but are prerequsities.

  Patches 7-9 are also preparatory code changes without functional
  changes, but not so useful without the rest of the series.

  Patch 10 simplifies the fast paths on systems with preemption, based
  on (hopefully correct) observation that the current loops to verify
  tid are unnecessary.

  Patches 11-20 focus on reducing irq disabled scope in the allocation
  slowpath:

   - patch 11 moves disabling of irqs into ___slab_alloc() from its
     callers, which are the allocation slowpath, and bulk allocation.
     Instead these callers only disable preemption to stabilize the cpu.

   - The following patches then gradually reduce the scope of disabled
     irqs in ___slab_alloc() and the functions called from there. As of
     patch 14, the re-enabling of irqs based on gfp flags before calling
     the page allocator is removed from allocate_slab(). As of patch 17,
     it's possible to reach the page allocator (in case of existing
     slabs depleted) without disabling and re-enabling irqs a single
     time.

  Pathces 21-26 reduce the scope of disabled irqs in functions related
  to unfreezing percpu partial slab.

  Patch 27 is preparatory. Patch 28 is adopted from the RT tree and
  converts the flushing of percpu slabs on all cpus from using IPI to
  workqueue, so that the processing isn't happening with irqs disabled
  in the IPI handler. The flushing is not performance critical so it
  should be acceptable.

  Patch 29 also comes from RT tree and makes object_map_lock RT
  compatible.

  Patch 30 make slab_lock irq-safe on RT where we cannot rely on having
  irq disabled from the list_lock spin lock usage.

  Patch 31 changes kmem_cache_cpu->partial handling in put_cpu_partial()
  from cmpxchg loop to a short irq disabled section, which is used by
  all other code modifying the field. This addresses a theoretical race
  scenario pointed out by Jann, and makes the critical section safe wrt
  with RT local_lock semantics after the conversion in patch 35.

  Patch 32 changes preempt disable to migrate disable, so that the
  nested list_lock spinlock is safe to take on RT. Because
  migrate_disable() is a function call even on !RT, a small set of
  private wrappers is introduced to keep using the cheaper
  preempt_disable() on !PREEMPT_RT configurations. As of this patch,
  SLUB should be already compatible with RT's lock semantics.

  Finally, patch 33 changes irq disabled sections that protect
  kmem_cache_cpu fields in the slow paths, with a local lock. However on
  PREEMPT_RT it means the lockless fast paths can now preempt slow paths
  which don't expect that, so the local lock has to be taken also in the
  fast paths and they are no longer lockless. RT folks seem to not mind
  this tradeoff. The patch also updates the locking documentation in the
  file's comment"

Mike Galbraith and Mel Gorman verified that their earlier testing
observations still hold for the final series:

Link: https://lore.kernel.org/lkml/89ba4f783114520c167cc915ba949ad2c04d6790.camel@gmx.de/
Link: https://lore.kernel.org/lkml/20210907082010.GB3959@techsingularity.net/

* tag 'mm-slub-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/linux: (33 commits)
  mm, slub: convert kmem_cpu_slab protection to local_lock
  mm, slub: use migrate_disable() on PREEMPT_RT
  mm, slub: protect put_cpu_partial() with disabled irqs instead of cmpxchg
  mm, slub: make slab_lock() disable irqs with PREEMPT_RT
  mm: slub: make object_map_lock a raw_spinlock_t
  mm: slub: move flush_cpu_slab() invocations __free_slab() invocations out of IRQ context
  mm, slab: split out the cpu offline variant of flush_slab()
  mm, slub: don't disable irqs in slub_cpu_dead()
  mm, slub: only disable irq with spin_lock in __unfreeze_partials()
  mm, slub: separate detaching of partial list in unfreeze_partials() from unfreezing
  mm, slub: detach whole partial list at once in unfreeze_partials()
  mm, slub: discard slabs in unfreeze_partials() without irqs disabled
  mm, slub: move irq control into unfreeze_partials()
  mm, slub: call deactivate_slab() without disabling irqs
  mm, slub: make locking in deactivate_slab() irq-safe
  mm, slub: move reset of c->page and freelist out of deactivate_slab()
  mm, slub: stop disabling irqs around get_partial()
  mm, slub: check new pages with restored irqs
  mm, slub: validate slab from partial list or page allocator before making it cpu slab
  mm, slub: restore irqs around calling new_slab()
  ...
2021-09-08 12:36:00 -07:00
Randy Dunlap 560a870570 mm/workingset: correct kernel-doc notations
Use the documented kernel-doc format to prevent kernel-doc warnings.

mm/workingset.c:256: warning: No description found for return value of 'workingset_eviction'
mm/workingset.c:285: warning: Function parameter or member 'folio' not described in 'workingset_refault'
mm/workingset.c:285: warning: Excess function parameter 'page' description in 'workingset_refault'

Link: https://lkml.kernel.org/r/20210808203153.10678-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:28 -07:00
Greg Kroah-Hartman 3843c50a78 percpu: remove export of pcpu_base_addr
This is not needed by any modules, so remove the export.

Link: https://lkml.kernel.org/r/20210722185814.504541-1-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:25 -07:00
SeongJae Park 17ccae8bb5 mm/damon: add kunit tests
This commit adds kunit based unit tests for the core and the virtual
address spaces monitoring primitives of DAMON.

Link: https://lkml.kernel.org/r/20210716081449.22187-12-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Brendan Higgins <brendanhiggins@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Fernand Sieber <sieberf@amazon.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:25 -07:00
SeongJae Park 75c1c2b53c mm/damon/dbgfs: support multiple contexts
In some use cases, users would want to run multiple monitoring context.
For example, if a user wants a high precision monitoring and dedicating
multiple CPUs for the job is ok, because DAMON creates one monitoring
thread per one context, the user can split the monitoring target regions
into multiple small regions and create one context for each region.  Or,
someone might want to simultaneously monitor different address spaces,
e.g., both virtual address space and physical address space.

The DAMON's API allows such usage, but 'damon-dbgfs' does not.  Therefore,
only kernel space DAMON users can do multiple contexts monitoring.

This commit allows the user space DAMON users to use multiple contexts
monitoring by introducing two new 'damon-dbgfs' debugfs files,
'mk_context' and 'rm_context'.  Users can create a new monitoring context
by writing the desired name of the new context to 'mk_context'.  Then, a
new directory with the name and having the files for setting of the
context ('attrs', 'target_ids' and 'record') will be created under the
debugfs directory.  Writing the name of the context to remove to
'rm_context' will remove the related context and directory.

Link: https://lkml.kernel.org/r/20210716081449.22187-10-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:25 -07:00
SeongJae Park 429538e854 mm/damon/dbgfs: export kdamond pid to the user space
For CPU usage accounting, knowing pid of the monitoring thread could be
helpful.  For example, users could use cpuaccount cgroups with the pid.

This commit therefore exports the pid of currently running monitoring
thread to the user space via 'kdamond_pid' file in the debugfs directory.

Link: https://lkml.kernel.org/r/20210716081449.22187-9-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:25 -07:00
SeongJae Park 4bc05954d0 mm/damon: implement a debugfs-based user space interface
DAMON is designed to be used by kernel space code such as the memory
management subsystems, and therefore it provides only kernel space API.
That said, letting the user space control DAMON could provide some
benefits to them.  For example, it will allow user space to analyze their
specific workloads and make their own special optimizations.

For such cases, this commit implements a simple DAMON application kernel
module, namely 'damon-dbgfs', which merely wraps the DAMON api and exports
those to the user space via the debugfs.

'damon-dbgfs' exports three files, ``attrs``, ``target_ids``, and
``monitor_on`` under its debugfs directory, ``<debugfs>/damon/``.

Attributes
----------

Users can read and write the ``sampling interval``, ``aggregation
interval``, ``regions update interval``, and min/max number of monitoring
target regions by reading from and writing to the ``attrs`` file.  For
example, below commands set those values to 5 ms, 100 ms, 1,000 ms, 10,
1000 and check it again::

    # cd <debugfs>/damon
    # echo 5000 100000 1000000 10 1000 > attrs
    # cat attrs
    5000 100000 1000000 10 1000

Target IDs
----------

Some types of address spaces supports multiple monitoring target.  For
example, the virtual memory address spaces monitoring can have multiple
processes as the monitoring targets.  Users can set the targets by writing
relevant id values of the targets to, and get the ids of the current
targets by reading from the ``target_ids`` file.  In case of the virtual
address spaces monitoring, the values should be pids of the monitoring
target processes.  For example, below commands set processes having pids
42 and 4242 as the monitoring targets and check it again::

    # cd <debugfs>/damon
    # echo 42 4242 > target_ids
    # cat target_ids
    42 4242

Note that setting the target ids doesn't start the monitoring.

Turning On/Off
--------------

Setting the files as described above doesn't incur effect unless you
explicitly start the monitoring.  You can start, stop, and check the
current status of the monitoring by writing to and reading from the
``monitor_on`` file.  Writing ``on`` to the file starts the monitoring of
the targets with the attributes.  Writing ``off`` to the file stops those.
DAMON also stops if every targets are invalidated (in case of the virtual
memory monitoring, target processes are invalidated when terminated).
Below example commands turn on, off, and check the status of DAMON::

    # cd <debugfs>/damon
    # echo on > monitor_on
    # echo off > monitor_on
    # cat monitor_on
    off

Please note that you cannot write to the above-mentioned debugfs files
while the monitoring is turned on.  If you write to the files while DAMON
is running, an error code such as ``-EBUSY`` will be returned.

[akpm@linux-foundation.org: remove unneeded "alloc failed" printks]
[akpm@linux-foundation.org: replace macro with static inline]

Link: https://lkml.kernel.org/r/20210716081449.22187-8-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
SeongJae Park 2fcb93629a mm/damon: add a tracepoint
This commit adds a tracepoint for DAMON.  It traces the monitoring results
of each region for each aggregation interval.  Using this, DAMON can
easily integrated with tracepoints supporting tools such as perf.

Link: https://lkml.kernel.org/r/20210716081449.22187-7-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
SeongJae Park 3f49584b26 mm/damon: implement primitives for the virtual memory address spaces
This commit introduces a reference implementation of the address space
specific low level primitives for the virtual address space, so that users
of DAMON can easily monitor the data accesses on virtual address spaces of
specific processes by simply configuring the implementation to be used by
DAMON.

The low level primitives for the fundamental access monitoring are defined
in two parts:

1. Identification of the monitoring target address range for the address
   space.
2. Access check of specific address range in the target space.

The reference implementation for the virtual address space does the works
as below.

PTE Accessed-bit Based Access Check
-----------------------------------

The implementation uses PTE Accessed-bit for basic access checks.  That
is, it clears the bit for the next sampling target page and checks whether
it is set again after one sampling period.  This could disturb the reclaim
logic.  DAMON uses ``PG_idle`` and ``PG_young`` page flags to solve the
conflict, as Idle page tracking does.

VMA-based Target Address Range Construction
-------------------------------------------

Only small parts in the super-huge virtual address space of the processes
are mapped to physical memory and accessed.  Thus, tracking the unmapped
address regions is just wasteful.  However, because DAMON can deal with
some level of noise using the adaptive regions adjustment mechanism,
tracking every mapping is not strictly required but could even incur a
high overhead in some cases.  That said, too huge unmapped areas inside
the monitoring target should be removed to not take the time for the
adaptive mechanism.

For the reason, this implementation converts the complex mappings to three
distinct regions that cover every mapped area of the address space.  Also,
the two gaps between the three regions are the two biggest unmapped areas
in the given address space.  The two biggest unmapped areas would be the
gap between the heap and the uppermost mmap()-ed region, and the gap
between the lowermost mmap()-ed region and the stack in most of the cases.
Because these gaps are exceptionally huge in usual address spaces,
excluding these will be sufficient to make a reasonable trade-off.  Below
shows this in detail::

    <heap>
    <BIG UNMAPPED REGION 1>
    <uppermost mmap()-ed region>
    (small mmap()-ed regions and munmap()-ed regions)
    <lowermost mmap()-ed region>
    <BIG UNMAPPED REGION 2>
    <stack>

[akpm@linux-foundation.org: mm/damon/vaddr.c needs highmem.h for kunmap_atomic()]
[sjpark@amazon.de: remove unnecessary PAGE_EXTENSION setup]
  Link: https://lkml.kernel.org/r/20210806095153.6444-2-sj38.park@gmail.com
[sjpark@amazon.de: safely walk page table]
  Link: https://lkml.kernel.org/r/20210831161800.29419-1-sj38.park@gmail.com

Link: https://lkml.kernel.org/r/20210716081449.22187-6-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
SeongJae Park 1c676e0d9b mm/idle_page_tracking: make PG_idle reusable
PG_idle and PG_young allow the two PTE Accessed bit users, Idle Page
Tracking and the reclaim logic concurrently work while not interfering
with each other.  That is, when they need to clear the Accessed bit, they
set PG_young to represent the previous state of the bit, respectively.
And when they need to read the bit, if the bit is cleared, they further
read the PG_young to know whether the other has cleared the bit meanwhile
or not.

For yet another user of the PTE Accessed bit, we could add another page
flag, or extend the mechanism to use the flags.  For the DAMON usecase,
however, we don't need to do that just yet.  IDLE_PAGE_TRACKING and DAMON
are mutually exclusive, so there's only ever going to be one user of the
current set of flags.

In this commit, we split out the CONFIG options to allow for the use of
PG_young and PG_idle outside of idle page tracking.

In the next commit, DAMON's reference implementation of the virtual memory
address space monitoring primitives will use it.

[sjpark@amazon.de: set PAGE_EXTENSION for non-64BIT]
  Link: https://lkml.kernel.org/r/20210806095153.6444-1-sj38.park@gmail.com
[akpm@linux-foundation.org: tweak Kconfig text]
[sjpark@amazon.de: hide PAGE_IDLE_FLAG from users]
  Link: https://lkml.kernel.org/r/20210813081238.34705-1-sj38.park@gmail.com

Link: https://lkml.kernel.org/r/20210716081449.22187-5-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Leonard Foerster <foersleo@amazon.de>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
SeongJae Park b9a6ac4e4e mm/damon: adaptively adjust regions
Even somehow the initial monitoring target regions are well constructed to
fulfill the assumption (pages in same region have similar access
frequencies), the data access pattern can be dynamically changed.  This
will result in low monitoring quality.  To keep the assumption as much as
possible, DAMON adaptively merges and splits each region based on their
access frequency.

For each ``aggregation interval``, it compares the access frequencies of
adjacent regions and merges those if the frequency difference is small.
Then, after it reports and clears the aggregated access frequency of each
region, it splits each region into two or three regions if the total
number of regions will not exceed the user-specified maximum number of
regions after the split.

In this way, DAMON provides its best-effort quality and minimal overhead
while keeping the upper-bound overhead that users set.

Link: https://lkml.kernel.org/r/20210716081449.22187-4-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
SeongJae Park f23b8eee18 mm/damon/core: implement region-based sampling
To avoid the unbounded increase of the overhead, DAMON groups adjacent
pages that are assumed to have the same access frequencies into a
region.  As long as the assumption (pages in a region have the same
access frequencies) is kept, only one page in the region is required to
be checked.  Thus, for each ``sampling interval``,

 1. the 'prepare_access_checks' primitive picks one page in each region,
 2. waits for one ``sampling interval``,
 3. checks whether the page is accessed meanwhile, and
 4. increases the access count of the region if so.

Therefore, the monitoring overhead is controllable by adjusting the
number of regions.  DAMON allows both the underlying primitives and user
callbacks to adjust regions for the trade-off.  In other words, this
commit makes DAMON to use not only time-based sampling but also
space-based sampling.

This scheme, however, cannot preserve the quality of the output if the
assumption is not guaranteed.  Next commit will address this problem.

Link: https://lkml.kernel.org/r/20210716081449.22187-3-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Marco Elver <elver@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
SeongJae Park 2224d84854 mm: introduce Data Access MONitor (DAMON)
Patch series "Introduce Data Access MONitor (DAMON)", v34.

Introduction
============

DAMON is a data access monitoring framework for the Linux kernel.  The
core mechanisms of DAMON called 'region based sampling' and 'adaptive
regions adjustment' (refer to 'mechanisms.rst' in the 11th patch of this
patchset for the detail) make it

- accurate (The monitored information is useful for DRAM level memory
  management.  It might not appropriate for Cache-level accuracy,
  though.),

- light-weight (The monitoring overhead is low enough to be applied
  online while making no impact on the performance of the target
  workloads.), and

- scalable (the upper-bound of the instrumentation overhead is
  controllable regardless of the size of target workloads.).

Using this framework, therefore, several memory management mechanisms such
as reclamation and THP can be optimized to aware real data access
patterns.  Experimental access pattern aware memory management
optimization works that incurring high instrumentation overhead will be
able to have another try.

Though DAMON is for kernel subsystems, it can be easily exposed to the
user space by writing a DAMON-wrapper kernel subsystem.  Then, user space
users who have some special workloads will be able to write personalized
tools or applications for deeper understanding and specialized
optimizations of their systems.

DAMON is also merged in two public Amazon Linux kernel trees that based on
v5.4.y[1] and v5.10.y[2].

[1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon
[2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon

The userspace tool[1] is available, released under GPLv2, and actively
being maintained.  I am also planning to implement another basic user
interface in perf[2].  Also, the basic test suite for DAMON is available
under GPLv2[3].

[1] https://github.com/awslabs/damo
[2] https://lore.kernel.org/linux-mm/20210107120729.22328-1-sjpark@amazon.com/
[3] https://github.com/awslabs/damon-tests

Long-term Plan
--------------

DAMON is a part of a project called Data Access-aware Operating System
(DAOS).  As the name implies, I want to improve the performance and
efficiency of systems using fine-grained data access patterns.  The
optimizations are for both kernel and user spaces.  I will therefore
modify or create kernel subsystems, export some of those to user space and
implement user space library / tools.  Below shows the layers and
components for the project.

    ---------------------------------------------------------------------------
    Primitives:     PTE Accessed bit, PG_idle, rmap, (Intel CMT), ...
    Framework:      DAMON
    Features:       DAMOS, virtual addr, physical addr, ...
    Applications:   DAMON-debugfs, (DARC), ...
    ^^^^^^^^^^^^^^^^^^^^^^^    KERNEL SPACE    ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

    Raw Interface:  debugfs, (sysfs), (damonfs), tracepoints, (sys_damon), ...

    vvvvvvvvvvvvvvvvvvvvvvv    USER SPACE      vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
    Library:        (libdamon), ...
    Tools:          DAMO, (perf), ...
    ---------------------------------------------------------------------------

The components in parentheses or marked as '...' are not implemented yet
but in the future plan.  IOW, those are the TODO tasks of DAOS project.
For more detail, please refer to the plans:
https://lore.kernel.org/linux-mm/20201202082731.24828-1-sjpark@amazon.com/

Evaluations
===========

We evaluated DAMON's overhead, monitoring quality and usefulness using 24
realistic workloads on my QEMU/KVM based virtual machine running a kernel
that v24 DAMON patchset is applied.

DAMON is lightweight.  It increases system memory usage by 0.39% and slows
target workloads down by 1.16%.

DAMON is accurate and useful for memory management optimizations.  An
experimental DAMON-based operation scheme for THP, namely 'ethp', removes
76.15% of THP memory overheads while preserving 51.25% of THP speedup.
Another experimental DAMON-based 'proactive reclamation' implementation,
'prcl', reduces 93.38% of residential sets and 23.63% of system memory
footprint while incurring only 1.22% runtime overhead in the best case
(parsec3/freqmine).

NOTE that the experimental THP optimization and proactive reclamation are
not for production but only for proof of concepts.

Please refer to the official document[1] or "Documentation/admin-guide/mm:
Add a document for DAMON" patch in this patchset for detailed evaluation
setup and results.

[1] https://damonitor.github.io/doc/html/latest-damon/admin-guide/mm/damon/eval.html

Real-world User Story
=====================

In summary, DAMON has used on production systems and proved its usefulness.

DAMON as a profiler
-------------------

We analyzed characteristics of a large scale production systems of our
customers using DAMON.  The systems utilize 70GB DRAM and 36 CPUs.  From
this, we were able to find interesting things below.

There were obviously different access pattern under idle workload and
active workload.  Under the idle workload, it accessed large memory
regions with low frequency, while the active workload accessed small
memory regions with high freuqnecy.

DAMON found a 7GB memory region that showing obviously high access
frequency under the active workload.  We believe this is the
performance-effective working set and need to be protected.

There was a 4KB memory region that showing highest access frequency under
not only active but also idle workloads.  We think this must be a hottest
code section like thing that should never be paged out.

For this analysis, DAMON used only 0.3-1% of single CPU time.  Because we
used recording-based analysis, it consumed about 3-12 MB of disk space per
20 minutes.  This is only small amount of disk space, but we can further
reduce the disk usage by using non-recording-based DAMON features.  I'd
like to argue that only DAMON can do such detailed analysis (finding 4KB
highest region in 70GB memory) with the light overhead.

DAMON as a system optimization tool
-----------------------------------

We also found below potential performance problems on the systems and made
DAMON-based solutions.

The system doesn't want to make the workload suffer from the page
reclamation and thus it utilizes enough DRAM but no swap device.  However,
we found the system is actively reclaiming file-backed pages, because the
system has intensive file IO.  The file IO turned out to be not
performance critical for the workload, but the customer wanted to ensure
performance critical file-backed pages like code section to not mistakenly
be evicted.

Using direct IO should or `mlock()` would be a straightforward solution,
but modifying the user space code is not easy for the customer.
Alternatively, we could use DAMON-based operation scheme[1].  By using it,
we can ask DAMON to track access frequency of each region and make
'process_madvise(MADV_WILLNEED)[2]' call for regions having specific size
and access frequency for a time interval.

We also found the system is having high number of TLB misses.  We tried
'always' THP enabled policy and it greatly reduced TLB misses, but the
page reclamation also been more frequent due to the THP internal
fragmentation caused memory bloat.  We could try another DAMON-based
operation scheme that applies 'MADV_HUGEPAGE' to memory regions having
>=2MB size and high access frequency, while applying 'MADV_NOHUGEPAGE' to
regions having <2MB size and low access frequency.

We do not own the systems so we only reported the analysis results and
possible optimization solutions to the customers.  The customers satisfied
about the analysis results and promised to try the optimization guides.

[1] https://lore.kernel.org/linux-mm/20201006123931.5847-1-sjpark@amazon.com/
[2] https://lore.kernel.org/linux-api/20200622192900.22757-4-minchan@kernel.org/

Comparison with Idle Page Tracking
==================================

Idle Page Tracking allows users to set and read idleness of pages using a
bitmap file which represents each page with each bit of the file.  One
recommended usage of it is working set size detection.  Users can do that
by

    1. find PFN of each page for workloads in interest,
    2. set all the pages as idle by doing writes to the bitmap file,
    3. wait until the workload accesses its working set, and
    4. read the idleness of the pages again and count pages became not idle.

NOTE: While Idle Page Tracking is for user space users, DAMON is primarily
designed for kernel subsystems though it can easily exposed to the user
space.  Hence, this section only assumes such user space use of DAMON.

For what use cases Idle Page Tracking would be better?
------------------------------------------------------

1. Flexible usecases other than hotness monitoring.

Because Idle Page Tracking allows users to control the primitive (Page
idleness) by themselves, Idle Page Tracking users can do anything they
want.  Meanwhile, DAMON is primarily designed to monitor the hotness of
each memory region.  For this, DAMON asks users to provide sampling
interval and aggregation interval.  For the reason, there could be some
use case that using Idle Page Tracking is simpler.

2. Physical memory monitoring.

Idle Page Tracking receives PFN range as input, so natively supports
physical memory monitoring.

DAMON is designed to be extensible for multiple address spaces and use
cases by implementing and using primitives for the given use case.
Therefore, by theory, DAMON has no limitation in the type of target
address space as long as primitives for the given address space exists.
However, the default primitives introduced by this patchset supports only
virtual address spaces.

Therefore, for physical memory monitoring, you should implement your own
primitives and use it, or simply use Idle Page Tracking.

Nonetheless, RFC patchsets[1] for the physical memory address space
primitives is already available.  It also supports user memory same to
Idle Page Tracking.

[1] https://lore.kernel.org/linux-mm/20200831104730.28970-1-sjpark@amazon.com/

For what use cases DAMON is better?
-----------------------------------

1. Hotness Monitoring.

Idle Page Tracking let users know only if a page frame is accessed or not.
For hotness check, the user should write more code and use more memory.
DAMON do that by itself.

2. Low Monitoring Overhead

DAMON receives user's monitoring request with one step and then provide
the results.  So, roughly speaking, DAMON require only O(1) user/kernel
context switches.

In case of Idle Page Tracking, however, because the interface receives
contiguous page frames, the number of user/kernel context switches
increases as the monitoring target becomes complex and huge.  As a result,
the context switch overhead could be not negligible.

Moreover, DAMON is born to handle with the monitoring overhead.  Because
the core mechanism is pure logical, Idle Page Tracking users might be able
to implement the mechanism on their own, but it would be time consuming
and the user/kernel context switching will still more frequent than that
of DAMON.  Also, the kernel subsystems cannot use the logic in this case.

3. Page granularity working set size detection.

Until v22 of this patchset, this was categorized as the thing Idle Page
Tracking could do better, because DAMON basically maintains additional
metadata for each of the monitoring target regions.  So, in the page
granularity working set size detection use case, DAMON would incur (number
of monitoring target pages * size of metadata) memory overhead.  Size of
the single metadata item is about 54 bytes, so assuming 4KB pages, about
1.3% of monitoring target pages will be additionally used.

All essential metadata for Idle Page Tracking are embedded in 'struct
page' and page table entries.  Therefore, in this use case, only one
counter variable for working set size accounting is required if Idle Page
Tracking is used.

There are more details to consider, but roughly speaking, this is true in
most cases.

However, the situation changed from v23.  Now DAMON supports arbitrary
types of monitoring targets, which don't use the metadata.  Using that,
DAMON can do the working set size detection with no additional space
overhead but less user-kernel context switch.  A first draft for the
implementation of monitoring primitives for this usage is available in a
DAMON development tree[1].  An RFC patchset for it based on this patchset
will also be available soon.

Since v24, the arbitrary type support is dropped from this patchset
because this patchset doesn't introduce real use of the type.  You can
still get it from the DAMON development tree[2], though.

[1] https://github.com/sjp38/linux/tree/damon/pgidle_hack
[2] https://github.com/sjp38/linux/tree/damon/master

4. More future usecases

While Idle Page Tracking has tight coupling with base primitives (PG_Idle
and page table Accessed bits), DAMON is designed to be extensible for many
use cases and address spaces.  If you need some special address type or
want to use special h/w access check primitives, you can write your own
primitives for that and configure DAMON to use those.  Therefore, if your
use case could be changed a lot in future, using DAMON could be better.

Can I use both Idle Page Tracking and DAMON?
--------------------------------------------

Yes, though using them concurrently for overlapping memory regions could
result in interference to each other.  Nevertheless, such use case would
be rare or makes no sense at all.  Even in the case, the noise would bot
be really significant.  So, you can choose whatever you want depending on
the characteristics of your use cases.

More Information
================

We prepared a showcase web site[1] that you can get more information.
There are

- the official documentations[2],
- the heatmap format dynamic access pattern of various realistic workloads for
  heap area[3], mmap()-ed area[4], and stack[5] area,
- the dynamic working set size distribution[6] and chronological working set
  size changes[7], and
- the latest performance test results[8].

[1] https://damonitor.github.io/_index
[2] https://damonitor.github.io/doc/html/latest-damon
[3] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.0.png.html
[4] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.1.png.html
[5] https://damonitor.github.io/test/result/visual/latest/rec.heatmap.2.png.html
[6] https://damonitor.github.io/test/result/visual/latest/rec.wss_sz.png.html
[7] https://damonitor.github.io/test/result/visual/latest/rec.wss_time.png.html
[8] https://damonitor.github.io/test/result/perf/latest/html/index.html

Baseline and Complete Git Trees
===============================

The patches are based on the latest -mm tree, specifically
v5.14-rc1-mmots-2021-07-15-18-47 of https://github.com/hnaz/linux-mm.  You can
also clone the complete git tree:

    $ git clone git://github.com/sjp38/linux -b damon/patches/v34

The web is also available:
https://github.com/sjp38/linux/releases/tag/damon/patches/v34

Development Trees
-----------------

There are a couple of trees for entire DAMON patchset series and features
for future release.

- For latest release: https://github.com/sjp38/linux/tree/damon/master
- For next release: https://github.com/sjp38/linux/tree/damon/next

Long-term Support Trees
-----------------------

For people who want to test DAMON but using LTS kernels, there are another
couple of trees based on two latest LTS kernels respectively and
containing the 'damon/master' backports.

- For v5.4.y: https://github.com/sjp38/linux/tree/damon/for-v5.4.y
- For v5.10.y: https://github.com/sjp38/linux/tree/damon/for-v5.10.y

Amazon Linux Kernel Trees
-------------------------

DAMON is also merged in two public Amazon Linux kernel trees that based on
v5.4.y[1] and v5.10.y[2].

[1] https://github.com/amazonlinux/linux/tree/amazon-5.4.y/master/mm/damon
[2] https://github.com/amazonlinux/linux/tree/amazon-5.10.y/master/mm/damon

Git Tree for Diff of Patches
============================

For easy review of diff between different versions of each patch, I
prepared a git tree containing all versions of the DAMON patchset series:
https://github.com/sjp38/damon-patches

You can clone it and use 'diff' for easy review of changes between
different versions of the patchset.  For example:

    $ git clone https://github.com/sjp38/damon-patches && cd damon-patches
    $ diff -u damon/v33 damon/v34

Sequence Of Patches
===================

First three patches implement the core logics of DAMON.  The 1st patch
introduces basic sampling based hotness monitoring for arbitrary types of
targets.  Following two patches implement the core mechanisms for control
of overhead and accuracy, namely regions based sampling (patch 2) and
adaptive regions adjustment (patch 3).

Now the essential parts of DAMON is complete, but it cannot work unless
someone provides monitoring primitives for a specific use case.  The
following two patches make it just work for virtual address spaces
monitoring.  The 4th patch makes 'PG_idle' can be used by DAMON and the
5th patch implements the virtual memory address space specific monitoring
primitives using page table Accessed bits and the 'PG_idle' page flag.

Now DAMON just works for virtual address space monitoring via the kernel
space api.  To let the user space users can use DAMON, following four
patches add interfaces for them.  The 6th patch adds a tracepoint for
monitoring results.  The 7th patch implements a DAMON application kernel
module, namely damon-dbgfs, that simply wraps DAMON and exposes DAMON
interface to the user space via the debugfs interface.  The 8th patch
further exports pid of monitoring thread (kdamond) to user space for
easier cpu usage accounting, and the 9th patch makes the debugfs interface
to support multiple contexts.

Three patches for maintainability follows.  The 10th patch adds
documentations for both the user space and the kernel space.  The 11th
patch provides unit tests (based on the kunit) while the 12th patch adds
user space tests (based on the kselftest).

Finally, the last patch (13th) updates the MAINTAINERS file.

This patch (of 13):

DAMON is a data access monitoring framework for the Linux kernel.  The
core mechanisms of DAMON make it

 - accurate (the monitoring output is useful enough for DRAM level
   performance-centric memory management; It might be inappropriate for
   CPU cache levels, though),
 - light-weight (the monitoring overhead is normally low enough to be
   applied online), and
 - scalable (the upper-bound of the overhead is in constant range
   regardless of the size of target workloads).

Using this framework, hence, we can easily write efficient kernel space
data access monitoring applications.  For example, the kernel's memory
management mechanisms can make advanced decisions using this.
Experimental data access aware optimization works that incurring high
access monitoring overhead could again be implemented on top of this.

Due to its simple and flexible interface, providing user space interface
would be also easy.  Then, user space users who have some special
workloads can write personalized applications for better understanding and
optimizations of their workloads and systems.

===

Nevertheless, this commit is defining and implementing only basic access
check part without the overhead-accuracy handling core logic.  The basic
access check is as below.

The output of DAMON says what memory regions are how frequently accessed
for a given duration.  The resolution of the access frequency is
controlled by setting ``sampling interval`` and ``aggregation interval``.
In detail, DAMON checks access to each page per ``sampling interval`` and
aggregates the results.  In other words, counts the number of the accesses
to each region.  After each ``aggregation interval`` passes, DAMON calls
callback functions that previously registered by users so that users can
read the aggregated results and then clears the results.  This can be
described in below simple pseudo-code::

    init()
    while monitoring_on:
        for page in monitoring_target:
            if accessed(page):
                nr_accesses[page] += 1
        if time() % aggregation_interval == 0:
            for callback in user_registered_callbacks:
                callback(monitoring_target, nr_accesses)
            for page in monitoring_target:
                nr_accesses[page] = 0
        if time() % update_interval == 0:
            update()
        sleep(sampling interval)

The target regions constructed at the beginning of the monitoring and
updated after each ``regions_update_interval``, because the target regions
could be dynamically changed (e.g., mmap() or memory hotplug).  The
monitoring overhead of this mechanism will arbitrarily increase as the
size of the target workload grows.

The basic monitoring primitives for actual access check and dynamic target
regions construction aren't in the core part of DAMON.  Instead, it allows
users to implement their own primitives that are optimized for their use
case and configure DAMON to use those.  In other words, users cannot use
current version of DAMON without some additional works.

Following commits will implement the core mechanisms for the
overhead-accuracy control and default primitives implementations.

Link: https://lkml.kernel.org/r/20210716081449.22187-1-sj38.park@gmail.com
Link: https://lkml.kernel.org/r/20210716081449.22187-2-sj38.park@gmail.com
Signed-off-by: SeongJae Park <sjpark@amazon.de>
Reviewed-by: Leonard Foerster <foersleo@amazon.de>
Reviewed-by: Fernand Sieber <sieberf@amazon.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Amit Shah <amit@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Woodhouse <dwmw@amazon.com>
Cc: Marco Elver <elver@google.com>
Cc: Fan Du <fan.du@intel.com>
Cc: Greg Kroah-Hartman <greg@kroah.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Joe Perches <joe@perches.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Maximilian Heyne <mheyne@amazon.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Steven Rostedt (VMware) <rostedt@goodmis.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Brendan Higgins <brendanhiggins@google.com>
Cc: Markus Boehme <markubo@amazon.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
Marco Elver c40c6e593b kfence: test: fail fast if disabled at boot
Fail kfence_test fast if KFENCE was disabled at boot, instead of each test
case trying several seconds to allocate from KFENCE and failing.  KUnit
will fail all test cases if kunit_suite::init returns an error.

Even if KFENCE was disabled, we still want the test to fail, so that CI
systems that parse KUnit output will alert on KFENCE being disabled
(accidentally or otherwise).

Link: https://lkml.kernel.org/r/20210825105533.1247922-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Tested-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
Marco Elver 4bbf04aa9a kfence: show cpu and timestamp in alloc/free info
Record cpu and timestamp on allocations and frees, and show them in
reports.  Upon an error, this can help correlate earlier messages in the
kernel log via allocation and free timestamps.

Link: https://lkml.kernel.org/r/20210714175312.2947941-1-elver@google.com
Suggested-by: Joern Engel <joern@purestorage.com>
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Acked-by: Joern Engel <joern@purestorage.com>
Cc: Yuanyuan Zhong <yzhong@purestorage.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
Jordy Zomer 110860541f mm/secretmem: use refcount_t instead of atomic_t
When a secret memory region is active, memfd_secret disables hibernation.
One of the goals is to keep the secret data from being written to
persistent-storage.

It accomplishes this by maintaining a reference count to
`secretmem_users`.  Once this reference is held your system can not be
hibernated due to the check in `hibernation_available()`.  However,
because `secretmem_users` is of type `atomic_t`, reference counter
overflows are possible.

As you can see there's an `atomic_inc` for each `memfd` that is opened in
the `memfd_secret` syscall.  If a local attacker succeeds to open 2^32
memfd's, the counter will wrap around to 0.  This implies that you may
hibernate again, even though there are still regions of this secret
memory, thereby bypassing the security check.

In an attempt to fix this I have used `refcount_t` instead of `atomic_t`
which prevents reference counter overflows.

Link: https://lkml.kernel.org/r/20210820043339.2151352-1-jordy@pwning.systems
Signed-off-by: Jordy Zomer <jordy@pwning.systems>
Cc: Kees Cook <keescook@chromium.org>,
Cc: Jordy Zomer <jordy@jordyzomer.github.io>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
Changbin Du ea0eafead4 mm: in_irq() cleanup
Replace the obsolete and ambiguos macro in_irq() with new macro
in_hardirq().

Link: https://lkml.kernel.org/r/20210813145245.86070-1-changbin.du@gmail.com
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>	[kmemleak]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
Weizhao Ouyang 395519b4b6 mm/early_ioremap.c: remove redundant early_ioremap_shutdown()
early_ioremap_reset() reserved a weak function so that architectures can
provide a specific cleanup.  Now no architectures use it, remove this
redundant function.

Link: https://lkml.kernel.org/r/20210901082917.399953-1-o451686892@gmail.com
Signed-off-by: Weizhao Ouyang <o451686892@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
Christoph Hellwig 8491502f78 mm: don't allow executable ioremap mappings
There is no need to execute from iomem (and most platforms it is
impossible anyway), so add the pgprot_nx() call similar to vmap.

Link: https://lkml.kernel.org/r/20210824091259.1324527-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
Christoph Hellwig 82a70ce042 mm: move ioremap_page_range to vmalloc.c
Patch series "small ioremap cleanups".

The first patch moves a little code around the vmalloc/ioremap boundary
following a bigger move by Nick earlier.  The second enforces
non-executable mapping on ioremap just like we do for vmap.  No driver
currently uses executable mappings anyway, as they should.

This patch (of 2):

This keeps it together with the implementation, and to remove the
vmap_range wrapper.

Link: https://lkml.kernel.org/r/20210824091259.1324527-1-hch@lst.de
Link: https://lkml.kernel.org/r/20210824091259.1324527-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:24 -07:00
Muchun Song fe3df441ef mm: remove redundant compound_head() calling
There is a READ_ONCE() in the macro of compound_head(), which will prevent
compiler from optimizing the code when there are more than once calling of
it in a function.  Remove the redundant calling of compound_head() from
page_to_index() and page_add_file_rmap() for better code generation.

Link: https://lkml.kernel.org/r/20210811101431.83940-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: William Kucharski <william.kucharski@oracle.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08 11:50:23 -07:00