Commit Graph

998411 Commits

Author SHA1 Message Date
Josef Bacik eb6b7fb4b5 btrfs: handle extent reference errors in do_relocation
We can already deal with errors appropriately from do_relocation, simply
handle any errors that come from changing the refs at this point
cleanly.  We have to abort the transaction if we fail here as we've
modified metadata at this point.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:21 +02:00
Josef Bacik 253e258c34 btrfs: handle errors in reference count manipulation in replace_path
If any of the reference count manipulation stuff fails in replace_path
we need to abort the transaction, as we've modified the blocks already.
We can simply break at this point and everything will be cleaned up.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:21 +02:00
Josef Bacik 0e9873e2fe btrfs: handle btrfs_search_slot failure in replace_path
The search can fail for various reasons, in case of errors there's no
cleanup to be done so we can pass the error to the caller, adjusting for
the case where the key is not found and search slot returns 1.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ update changelog ]
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:21 +02:00
Josef Bacik 45b87c5d25 btrfs: handle btrfs_cow_block errors in replace_path
If we error out COWing the root node when doing a replace_path then we
simply unlock and free the buffer and return the error.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:21 +02:00
Josef Bacik 7a9213a935 btrfs: convert logic BUG_ON()'s in replace_path to ASSERT()'s
A few BUG_ON()'s in replace_path are purely to keep us from making
logical mistakes, so replace them with ASSERT()'s.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:21 +02:00
Josef Bacik 592fbcd50c btrfs: do proper error handling in btrfs_update_reloc_root
We call btrfs_update_root in btrfs_update_reloc_root, which can fail for
all sorts of reasons, including IO errors.  Instead of panicing the box
lets return the error, now that all callers properly handle those
errors.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:21 +02:00
Josef Bacik bbae13f8ab btrfs: handle btrfs_update_reloc_root failure in prepare_to_merge
btrfs_update_reloc_root will will return errors in the future, so handle
an error properly in prepare_to_merge.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:21 +02:00
Josef Bacik 7934133fae btrfs: handle btrfs_update_reloc_root failure in insert_dirty_subvol
btrfs_update_reloc_root will will return errors in the future, so handle
the error properly in insert_dirty_subvol.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:21 +02:00
Josef Bacik ac54da6c37 btrfs: change insert_dirty_subvol to return errors
This will be able to return errors in the future, so change it to return
an error and handle the errors appropriately.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:21 +02:00
Josef Bacik 2dd8298eb3 btrfs: handle btrfs_update_reloc_root failure in commit_fs_roots
btrfs_update_reloc_root will will return errors in the future, so handle
the error properly in commit_fs_roots.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 39200e5908 btrfs: validate root::reloc_root after recording root in trans
If we fail to setup a root->reloc_root in a different thread that path
will error out, however it still leaves root->reloc_root NULL but would
still appear set up in the transaction.  Subsequent calls to
btrfs_record_root_in_transaction would succeed without attempting to
create the reloc root, as the transid has already been updated.

Handle this case by making sure we have a root->reloc_root set after a
btrfs_record_root_in_transaction call so we don't end up dereferencing a
NULL pointer.

Reported-by: Zygo Blaxell <ce3g8jdj@umail.furryterror.org>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 84c50ba521 btrfs: do proper error handling in create_reloc_root
We do memory allocations here, read blocks from disk, all sorts of
operations that could easily fail at any given point.  Instead of
panicing the box, simply return the error back up the chain, all callers
at this point have proper error handling.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 00bb36a0e7 btrfs: have proper error handling in btrfs_init_reloc_root
create_reloc_root will return errors in the future, and __add_reloc_root
can return ENOMEM or EEXIST, so handle these errors properly.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 03a7e111a9 btrfs: return an error from btrfs_record_root_in_trans
We can create a reloc root when we record the root in the trans, which
can fail for all sorts of different reasons.  Propagate this error up
the chain of callers.  Future patches will fix the callers of
btrfs_record_root_in_trans() to handle the error.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik f0118cb6bc btrfs: handle record_root_in_trans failure in create_pending_snapshot
record_root_in_trans can currently fail, so handle this failure
properly.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 1409e6cc74 btrfs: handle record_root_in_trans failure in btrfs_record_root_in_trans
record_root_in_trans can fail currently, handle this failure properly.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 1c442d2246 btrfs: handle record_root_in_trans failure in qgroup_account_snapshot
record_root_in_trans can fail currently, so handle this failure
properly.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 68075ea8d7 btrfs: handle btrfs_record_root_in_trans failure in start_transaction
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in start_transaction.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik d18c7bd95c btrfs: handle btrfs_record_root_in_trans failure in relocate_tree_block
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in relocate_tree_block.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 221581e485 btrfs: handle btrfs_record_root_in_trans failure in create_subvol
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in create_subvol.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 2002ae112a btrfs: handle btrfs_record_root_in_trans failure in btrfs_recover_log_trees
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_recover_log_trees.

This appears tricky, however we have a reference count on the
destination root, so if this fails we need to continue on in the loop to
make sure the proper cleanup is done.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:20 +02:00
Josef Bacik 2731f5186b btrfs: handle btrfs_record_root_in_trans failure in btrfs_delete_subvolume
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_delete_subvolume.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Josef Bacik b0fec6fd33 btrfs: handle btrfs_record_root_in_trans failure in btrfs_rename
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_rename.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Josef Bacik 00aa8e87c9 btrfs: handle btrfs_record_root_in_trans failure in btrfs_rename_exchange
btrfs_record_root_in_trans will return errors in the future, so handle
the error properly in btrfs_rename_exchange.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Josef Bacik 404bccbcaa btrfs: do proper error handling in record_reloc_root_in_trans
Generally speaking this shouldn't ever fail, the corresponding fs root
for the reloc root will already be in memory, so we won't get ENOMEM
here.

However if there is no corresponding root for the reloc root then we
could get ENOMEM when we try to allocate it or we could get ENOENT
when we look it up and see that it doesn't exist.

Convert these BUG_ON()'s into ASSERT()'s and add proper error handling
for the case of corruption.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Josef Bacik 92de551b83 btrfs: check record_root_in_trans related failures in select_reloc_root
We will record the fs root or the reloc root in the trans in
select_reloc_root.  These will actually return errors in the following
patches, so check their return value here and return it up the stack.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Josef Bacik 8ee66afe99 btrfs: convert BUG_ON()'s in select_reloc_root() to proper errors
We have several BUG_ON()'s in select_reloc_root() that can be tripped if
there is an extent tree corruption.  Convert these to ASSERT()'s, because
if we hit it during testing it really is bad, or could indicate a
problem with the backref walking code.

However if users hit these problems it generally indicates corruption,
I've hit a few machines in the fleet that trip over these with clearly
corrupted extent trees, so be nice and print out an error message and
return an error instead of bringing the whole box down.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Josef Bacik cbdc2ebc7c btrfs: handle errors from select_reloc_root()
Currently select_reloc_root() doesn't return an error, but followup
patches will make it possible for it to return an error.  We do have
proper error recovery in do_relocation however, so handle the
possibility of select_reloc_root() having an error properly instead of
BUG_ON(!root).

I've also adjusted select_reloc_root() to return ERR_PTR(-ENOENT) if we
don't find a root, instead of NULL, to make the error case easier to
deal with.  I've replaced the BUG_ON(!root) with an ASSERT(0) for this
case as it indicates we messed up the backref walking code, but it could
also indicate corruption.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Josef Bacik 1c7bfa159f btrfs: convert BUG_ON()'s in relocate_tree_block
We have a couple of BUG_ON()'s in relocate_tree_block() that can be
tripped if we have file system corruption.  Convert these to ASSERT()'s
so developers still get yelled at when they break the backref code, but
error out nicely for users so the whole box doesn't go down.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Josef Bacik ffe30dd892 btrfs: convert some BUG_ON()'s to ASSERT()'s in do_relocation
A few of these are checking for correctness, and won't be triggered by
corrupted file systems, so convert them to ASSERT() instead of BUG_ON()
and add a comment explaining their existence.

Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Matthew Wilcox (Oracle) 32c0a6bcaa btrfs: add and use readahead_batch_length
Implement readahead_batch_length() to determine the number of bytes in
the current batch of readahead pages and use it in btrfs. Also use the
readahead_pos to get the offset.

Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Wan Jiabing 183ebab766 btrfs: move forward declarations to the beginning of extent_io.h
There are two forward declarations deep in extent_io.h, move them
to the beginning and remove the duplicate one.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Wan Jiabing <wanjiabing@vivo.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:19 +02:00
Qu Wenruo 894d137818 btrfs: subpage: add overview comments
This patch adds an overview how btrfs subpage support works:

- limitations
- behavior
- basic implementation points

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo 5a2c60752a btrfs: make set_btree_ioerr accept extent buffer and be subpage compatible
Current set_btree_ioerr() only accepts @page parameter and grabs extent
buffer from page::private.  This works fine for sector size == PAGE_SIZE
case, but not for subpage case.

Add an extra parameter, @eb, for callers to pass extent buffer to this
function, so that subpage code can reuse this function.

And also add subpage special handling to update
btrfs_subpage::error_bitmap.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo 0d27797e92 btrfs: make set/clear_extent_buffer_dirty() subpage compatible
For set_extent_buffer_dirty() to support subpage sized metadata, just
call btrfs_page_set_dirty() to handle both cases.

For clear_extent_buffer_dirty(), it needs to clear the page dirty if and
only if all extent buffers in the page range are no longer dirty.
Also do the same for page error.

This is pretty different from the existing clear_extent_buffer_dirty()
routine, so add a new helper function,
clear_subpage_extent_buffer_dirty() to do this for subpage metadata.

Also since the main part of clearing page dirty code is still the same,
extract that into btree_clear_page_dirty() so that it can be utilized
for both cases.

But there is a special race between set_extent_buffer_dirty() and
clear_extent_buffer_dirty(), where we can clear the page dirty.

[POSSIBLE RACE WINDOW]
For the race window between clear_subpage_extent_buffer_dirty() and
set_extent_buffer_dirty(), due to the fact that we can't call
clear_page_dirty_for_io() under subpage spin lock, we can race like
below:

   T1 (eb1 in the same page)	|  T2 (eb2 in the same page)
 -------------------------------+------------------------------
 set_extent_buffer_dirty()	| clear_extent_buffer_dirty()
 |- was_dirty = false;		| |- clear_subpagE_extent_buffer_dirty()
 |				|    |- btrfs_clear_and_test_dirty()
 |				|    |  Since eb2 is the last dirty page
 |				|    |  we got:
 |				|    |  last == true;
 |				|    |
 |- btrfs_page_set_dirty()	|    |
 |  We set the page dirty and   |    |
 |  subpage dirty bitmap	|    |
 |				|    |- if (last)
 |				|    |  Since we don't have subpage lock
 |				|    |  held, now @last is no longer
 |				|    |  correct
 |				|    |- btree_clear_page_dirty()
 |				|	Now PageDirty == false, even if
 |				|       we have dirty_bitmap not zero.
 |- ASSERT(PageDirty());	|
    ^^^^ CRASH

The solution here is to also lock the eb->pages[0] for subpage case of
set_extent_buffer_dirty(), to prevent racing with
clear_extent_buffer_dirty().

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo b8f957715e btrfs: support page uptodate assertions in subpage mode
There are quite some assert checks on page uptodate in extent buffer
write accessors.  They ensure the destination page is already uptodate.

This is fine for regular sector size case, but not for subpage case, as
for subpage we only mark the page uptodate if the page contains no hole
and all its extent buffers are uptodate.

So instead of checking PageUptodate(), for subpage case we check the
uptodate bitmap of btrfs_subpage structure.

To make the check more elegant, introduce a helper,
assert_eb_page_uptodate() to do the check for both subpage and regular
sector size cases.

The following functions are involved:

- write_extent_buffer_chunk_tree_uuid()
- write_extent_buffer_fsid()
- write_extent_buffer()
- memzero_extent_buffer()
- copy_extent_buffer()
- extent_buffer_test_bit()
- extent_buffer_bitmap_set()
- extent_buffer_bitmap_clear()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo 1e5eb3d6a4 btrfs: make alloc_extent_buffer() check subpage dirty bitmap
In alloc_extent_buffer(), we make sure that the newly allocated page is
never dirty.

This is fine for sector size == PAGE_SIZE case, but for subpage it's
possible that one extent buffer in the page is dirty, thus the whole
page is marked dirty, and could cause false alert.

To support subpage, call btrfs_page_test_dirty() to handle both cases.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo eca0f6f643 btrfs: subpage: support metadata checksum calculation at write time
Add a new helper, csum_dirty_subpage_buffers(), to iterate through all
dirty extent buffers in one bvec.

Also extract the code of calculating csum for one extent buffer into
csum_one_extent_buffer(), so that both the existing csum_dirty_buffer()
and the new csum_dirty_subpage_buffers() can reuse the same routine.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo 139e8cd325 btrfs: subpage: do more sanity checks on metadata page dirtying
For btree_set_page_dirty(), we should also check the extent buffer
sanity for subpage support.

Unlike the regular sector size case, since one page can contain multiple
extent buffers, we need to make sure there is at least one dirty extent
buffer in the page.

So this patch will iterate through the btrfs_subpage::dirty_bitmap
to get the extent buffers, and check if any dirty extent buffer in the page
range has EXTENT_BUFFER_DIRTY and proper refs.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo 3470da3b7d btrfs: subpage: introduce helpers for writeback status
Introduces the following functions to handle subpage writeback status:

- btrfs_subpage_set_writeback()
- btrfs_subpage_clear_writeback()
- btrfs_subpage_test_writeback()
  These helpers can only be called when the range is ensured to be
  inside the page.

- btrfs_page_set_writeback()
- btrfs_page_clear_writeback()
- btrfs_page_test_writeback()
  These helpers can handle both regular sector size and subpage without
  problem.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo d8a5713e89 btrfs: subpage: introduce helpers for dirty status
Introduce the following functions to handle subpage dirty status:

- btrfs_subpage_set_dirty()
- btrfs_subpage_clear_dirty()
- btrfs_subpage_test_dirty()
  These helpers can only be called when the range is ensured to be
  inside the page.

- btrfs_page_set_dirty()
- btrfs_page_clear_dirty()
- btrfs_page_test_dirty()
  These helpers can handle both regular sector size and subpage without
  problem.
  Thus they would be used to replace PageDirty() related calls in
  later patches.

There is one special point to note here, just like set_page_dirty() and
clear_page_dirty_for_io(), btrfs_*page_set_dirty() and
btrfs_*page_clear_dirty() must be called with page locked.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo d239bcb83b btrfs: remove unnecessary variable shadowing in btrfs_invalidatepage()
In btrfs_invalidatepage() we re-declare @tree variable as
btrfs_ordered_inode_tree.

Since it's only used to do the spinlock, we can grab it from inode
directly, and remove the unnecessary declaration completely.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo ac5804eb85 btrfs: use min() to replace open-code in btrfs_invalidatepage()
In btrfs_invalidatepage() we introduce a temporary variable, new_len, to
update ordered->truncated_len.  But we can use min() to replace it
completely and no need for the variable.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Qu Wenruo fc57ad8d33 btrfs: add sysfs interface for supported sectorsize
Export supported sector sizes in /sys/fs/btrfs/features/supported_sectorsizes.

Currently all architectures have PAGE_SIZE, There's some disparity
between read-only and read-write support but that will be unified in the
future so there's only one file exporting the size.

The read-only support for systems with 64K pages also works for 4K
sector size.

This new sysfs interface would help eg. mkfs.btrfs to print more
accurate warnings about potentially incompatible option combinations.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:18 +02:00
Filipe Manana ace75066ce btrfs: improve btree readahead for full send operations
Currently a full send operation uses the standard btree readahead when
iterating over the subvolume/snapshot btree, which despite bringing good
performance benefits, it could be improved in a few aspects for use cases
such as full send operations, which are guaranteed to visit every node
and leaf of a btree, in ascending and sequential order. The limitations
of that standard btree readahead implementation are the following:

1) It only triggers readahead for leaves that are physically close
   to the leaf being read, within a 64K range;

2) It only triggers readahead for the next or previous leaves if the
   leaf being read is not currently in memory;

3) It never triggers readahead for nodes.

So add a new readahead mode that addresses all these points and use it
for full send operations.

The following test script was used to measure the improvement on a box
using an average, consumer grade, spinning disk and with 16GiB of RAM:

  $ cat test.sh
  #!/bin/bash

  DEV=/dev/sdj
  MNT=/mnt/sdj
  MKFS_OPTIONS="--nodesize 16384"     # default, just to be explicit
  MOUNT_OPTIONS="-o max_inline=2048"  # default, just to be explicit

  mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
  mount $MOUNT_OPTIONS $DEV $MNT

  # Create files with inline data to make it easier and faster to create
  # large btrees.
  add_files()
  {
      local total=$1
      local start_offset=$2
      local number_jobs=$3
      local total_per_job=$(($total / $number_jobs))

      echo "Creating $total new files using $number_jobs jobs"
      for ((n = 0; n < $number_jobs; n++)); do
          (
              local start_num=$(($start_offset + $n * $total_per_job))
              for ((i = 1; i <= $total_per_job; i++)); do
                  local file_num=$((start_num + $i))
                  local file_path="$MNT/file_${file_num}"
                  xfs_io -f -c "pwrite -S 0xab 0 2000" $file_path > /dev/null
                  if [ $? -ne 0 ]; then
                      echo "Failed creating file $file_path"
                      break
                  fi
              done
          ) &
          worker_pids[$n]=$!
      done

      wait ${worker_pids[@]}

      sync
      echo
      echo "btree node/leaf count: $(btrfs inspect-internal dump-tree -t 5 $DEV | egrep '^(node|leaf) ' | wc -l)"
  }

  initial_file_count=500000
  add_files $initial_file_count 0 4

  echo
  echo "Creating first snapshot..."
  btrfs subvolume snapshot -r $MNT $MNT/snap1

  echo
  echo "Adding more files..."
  add_files $((initial_file_count / 4)) $initial_file_count 4

  echo
  echo "Updating 1/50th of the initial files..."
  for ((i = 1; i < $initial_file_count; i += 50)); do
      xfs_io -c "pwrite -S 0xcd 0 20" $MNT/file_$i > /dev/null
  done

  echo
  echo "Creating second snapshot..."
  btrfs subvolume snapshot -r $MNT $MNT/snap2

  umount $MNT

  echo 3 > /proc/sys/vm/drop_caches
  blockdev --flushbufs $DEV &> /dev/null
  hdparm -F $DEV &> /dev/null

  mount $MOUNT_OPTIONS $DEV $MNT

  echo
  echo "Testing full send..."
  start=$(date +%s)
  btrfs send $MNT/snap1 > /dev/null
  end=$(date +%s)
  echo
  echo "Full send took $((end - start)) seconds"

  umount $MNT

The durations of the full send operation in seconds were the following:

Before this change:  217 seconds
After this change:   205 seconds (-5.7%)

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:17 +02:00
Filipe Manana eafa4fd0ad btrfs: fix exhaustion of the system chunk array due to concurrent allocations
When we are running out of space for updating the chunk tree, that is,
when we are low on available space in the system space info, if we have
many task concurrently allocating block groups, via fallocate for example,
many of them can end up all allocating new system chunks when only one is
needed. In extreme cases this can lead to exhaustion of the system chunk
array, which has a size limit of 2048 bytes, and results in a transaction
abort with errno EFBIG, producing a trace in dmesg like the following,
which was triggered on a PowerPC machine with a node/leaf size of 64K:

  [1359.518899] ------------[ cut here ]------------
  [1359.518980] BTRFS: Transaction aborted (error -27)
  [1359.519135] WARNING: CPU: 3 PID: 16463 at ../fs/btrfs/block-group.c:1968 btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs]
  [1359.519152] Modules linked in: (...)
  [1359.519239] Supported: Yes, External
  [1359.519252] CPU: 3 PID: 16463 Comm: stress-ng Tainted: G               X    5.3.18-47-default #1 SLE15-SP3
  [1359.519274] NIP:  c008000000e36fe8 LR: c008000000e36fe4 CTR: 00000000006de8e8
  [1359.519293] REGS: c00000056890b700 TRAP: 0700   Tainted: G               X     (5.3.18-47-default)
  [1359.519317] MSR:  800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE>  CR: 48008222  XER: 00000007
  [1359.519356] CFAR: c00000000013e170 IRQMASK: 0
  [1359.519356] GPR00: c008000000e36fe4 c00000056890b990 c008000000e83200 0000000000000026
  [1359.519356] GPR04: 0000000000000000 0000000000000000 0000d52a3b027651 0000000000000007
  [1359.519356] GPR08: 0000000000000003 0000000000000001 0000000000000007 0000000000000000
  [1359.519356] GPR12: 0000000000008000 c00000063fe44600 000000001015e028 000000001015dfd0
  [1359.519356] GPR16: 000000000000404f 0000000000000001 0000000000010000 0000dd1e287affff
  [1359.519356] GPR20: 0000000000000001 c000000637c9a000 ffffffffffffffe5 0000000000000000
  [1359.519356] GPR24: 0000000000000004 0000000000000000 0000000000000100 ffffffffffffffc0
  [1359.519356] GPR28: c000000637c9a000 c000000630e09230 c000000630e091d8 c000000562188b08
  [1359.519561] NIP [c008000000e36fe8] btrfs_create_pending_block_groups+0x340/0x3c0 [btrfs]
  [1359.519613] LR [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs]
  [1359.519626] Call Trace:
  [1359.519671] [c00000056890b990] [c008000000e36fe4] btrfs_create_pending_block_groups+0x33c/0x3c0 [btrfs] (unreliable)
  [1359.519729] [c00000056890ba90] [c008000000d68d44] __btrfs_end_transaction+0xbc/0x2f0 [btrfs]
  [1359.519782] [c00000056890bae0] [c008000000e309ac] btrfs_alloc_data_chunk_ondemand+0x154/0x610 [btrfs]
  [1359.519844] [c00000056890bba0] [c008000000d8a0fc] btrfs_fallocate+0xe4/0x10e0 [btrfs]
  [1359.519891] [c00000056890bd00] [c0000000004a23b4] vfs_fallocate+0x174/0x350
  [1359.519929] [c00000056890bd50] [c0000000004a3cf8] ksys_fallocate+0x68/0xf0
  [1359.519957] [c00000056890bda0] [c0000000004a3da8] sys_fallocate+0x28/0x40
  [1359.519988] [c00000056890bdc0] [c000000000038968] system_call_exception+0xe8/0x170
  [1359.520021] [c00000056890be20] [c00000000000cb70] system_call_common+0xf0/0x278
  [1359.520037] Instruction dump:
  [1359.520049] 7d0049ad 40c2fff4 7c0004ac 71490004 40820024 2f83fffb 419e0048 3c620000
  [1359.520082] e863bcb8 7ec4b378 48010d91 e8410018 <0fe00000> 3c820000 e884bcc8 7ec6b378
  [1359.520122] ---[ end trace d6c186e151022e20 ]---

The following steps explain how we can end up in this situation:

1) Task A is at check_system_chunk(), either because it is allocating a
   new data or metadata block group, at btrfs_chunk_alloc(), or because
   it is removing a block group or turning a block group RO. It does not
   matter why;

2) Task A sees that there is not enough free space in the system
   space_info object, that is 'left' is < 'thresh'. And at this point
   the system space_info has a value of 0 for its 'bytes_may_use'
   counter;

3) As a consequence task A calls btrfs_alloc_chunk() in order to allocate
   a new system block group (chunk) and then reserves 'thresh' bytes in
   the chunk block reserve with the call to btrfs_block_rsv_add(). This
   changes the chunk block reserve's 'reserved' and 'size' counters by an
   amount of 'thresh', and changes the 'bytes_may_use' counter of the
   system space_info object from 0 to 'thresh'.

   Also during its call to btrfs_alloc_chunk(), we end up increasing the
   value of the 'total_bytes' counter of the system space_info object by
   8MiB (the size of a system chunk stripe). This happens through the
   call chain:

   btrfs_alloc_chunk()
       create_chunk()
           btrfs_make_block_group()
               btrfs_update_space_info()

4) After it finishes the first phase of the block group allocation, at
   btrfs_chunk_alloc(), task A unlocks the chunk mutex;

5) At this point the new system block group was added to the transaction
   handle's list of new block groups, but its block group item, device
   items and chunk item were not yet inserted in the extent, device and
   chunk trees, respectively. That only happens later when we call
   btrfs_finish_chunk_alloc() through a call to
   btrfs_create_pending_block_groups();

   Note that only when we update the chunk tree, through the call to
   btrfs_finish_chunk_alloc(), we decrement the 'reserved' counter
   of the chunk block reserve as we COW/allocate extent buffers,
   through:

   btrfs_alloc_tree_block()
      btrfs_use_block_rsv()
         btrfs_block_rsv_use_bytes()

   And the system space_info's 'bytes_may_use' is decremented everytime
   we allocate an extent buffer for COW operations on the chunk tree,
   through:

   btrfs_alloc_tree_block()
      btrfs_reserve_extent()
         find_free_extent()
            btrfs_add_reserved_bytes()

   If we end up COWing less chunk btree nodes/leaves than expected, which
   is the typical case since the amount of space we reserve is always
   pessimistic to account for the worst possible case, we release the
   unused space through:

   btrfs_create_pending_block_groups()
      btrfs_trans_release_chunk_metadata()
         btrfs_block_rsv_release()
            block_rsv_release_bytes()
                btrfs_space_info_free_bytes_may_use()

   But before task A gets into btrfs_create_pending_block_groups()...

6) Many other tasks start allocating new block groups through fallocate,
   each one does the first phase of block group allocation in a
   serialized way, since btrfs_chunk_alloc() takes the chunk mutex
   before calling check_system_chunk() and btrfs_alloc_chunk().

   However before everyone enters the final phase of the block group
   allocation, that is, before calling btrfs_create_pending_block_groups(),
   new tasks keep coming to allocate new block groups and while at
   check_system_chunk(), the system space_info's 'bytes_may_use' keeps
   increasing each time a task reserves space in the chunk block reserve.
   This means that eventually some other task can end up not seeing enough
   free space in the system space_info and decide to allocate yet another
   system chunk.

   This may repeat several times if yet more new tasks keep allocating
   new block groups before task A, and all the other tasks, finish the
   creation of the pending block groups, which is when reserved space
   in excess is released. Eventually this can result in exhaustion of
   system chunk array in the superblock, with btrfs_add_system_chunk()
   returning EFBIG, resulting later in a transaction abort.

   Even when we don't reach the extreme case of exhausting the system
   array, most, if not all, unnecessarily created system block groups
   end up being unused since when finishing creation of the first
   pending system block group, the creation of the following ones end
   up not needing to COW nodes/leaves of the chunk tree, so we never
   allocate and deallocate from them, resulting in them never being
   added to the list of unused block groups - as a consequence they
   don't get deleted by the cleaner kthread - the only exceptions are
   if we unmount and mount the filesystem again, which adds any unused
   block groups to the list of unused block groups, if a scrub is
   run, which also adds unused block groups to the unused list, and
   under some circumstances when using a zoned filesystem or async
   discard, which may also add unused block groups to the unused list.

So fix this by:

*) Tracking the number of reserved bytes for the chunk tree per
   transaction, which is the sum of reserved chunk bytes by each
   transaction handle currently being used;

*) When there is not enough free space in the system space_info,
   if there are other transaction handles which reserved chunk space,
   wait for some of them to complete in order to have enough excess
   reserved space released, and then try again. Otherwise proceed with
   the creation of a new system chunk.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:17 +02:00
Filipe Manana b7a7a83463 btrfs: make reflinks respect O_SYNC O_DSYNC and S_SYNC flags
If we reflink to or from a file opened with O_SYNC/O_DSYNC or to/from a
file that has the S_SYNC attribute set, we totally ignore that and do not
durably persist the reflink changes. Since a reflink can change the data
readable from a file (and mtime/ctime, or a file size), it makes sense to
durably persist (fsync) the source and destination files/ranges.

This was previously discussed at:

https://lore.kernel.org/linux-btrfs/20200903035225.GJ6090@magnolia/

The recently introduced test case generic/628, from fstests, exercises
these scenarios and currently fails without this change.

So make sure we fsync the source and destination files/ranges when either
of them was opened with O_SYNC/O_DSYNC or has the S_SYNC attribute set,
just like XFS already does.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:17 +02:00
Arnd Bergmann bb05b298af btrfs: zoned: bail out in btrfs_alloc_chunk for bad input
gcc complains that the ctl->max_chunk_size member might be used
uninitialized when none of the three conditions for initializing it in
init_alloc_chunk_ctl_policy_zoned() are true:

In function ‘init_alloc_chunk_ctl_policy_zoned’,
    inlined from ‘init_alloc_chunk_ctl’ at fs/btrfs/volumes.c:5023:3,
    inlined from ‘btrfs_alloc_chunk’ at fs/btrfs/volumes.c:5340:2:
include/linux/compiler-gcc.h:48:45: error: ‘ctl.max_chunk_size’ may be used uninitialized [-Werror=maybe-uninitialized]
 4998 |         ctl->max_chunk_size = min(limit, ctl->max_chunk_size);
      |                               ^~~
fs/btrfs/volumes.c: In function ‘btrfs_alloc_chunk’:
fs/btrfs/volumes.c:5316:32: note: ‘ctl’ declared here
 5316 |         struct alloc_chunk_ctl ctl;
      |                                ^~~

If we ever get into this condition, something is seriously
wrong, as validity is checked in the callers

  btrfs_alloc_chunk
    init_alloc_chunk_ctl
      init_alloc_chunk_ctl_policy_zoned

so the same logic as in init_alloc_chunk_ctl_policy_regular()
and a few other places should be applied. This avoids both further
data corruption, and the compile-time warning.

Fixes: 1cd6121f2a ("btrfs: zoned: implement zoned chunk allocator")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:17 +02:00
BingJing Chang 3227788cd3 btrfs: fix a potential hole punching failure
In commit d77815461f ("btrfs: Avoid trucating page or punching hole
in a already existed hole."), existing holes can be skipped by calling
find_first_non_hole() to adjust start and len. However, if the given len
is invalid and large, when an EXTENT_MAP_HOLE extent is found, len will
not be set to zero because (em->start + em->len) is less than
(start + len). Then the ret will be 1 but len will not be set to 0.
The propagated non-zero ret will result in fallocate failure.

In the while-loop of btrfs_replace_file_extents(), len is not updated
every time before it calls find_first_non_hole(). That is, after
btrfs_drop_extents() successfully drops the last non-hole file extent,
it may fail with ENOSPC when attempting to drop a file extent item
representing a hole. The problem can happen. After it calls
find_first_non_hole(), the cur_offset will be adjusted to be larger
than or equal to end. However, since the len is not set to zero, the
break-loop condition (ret && !len) will not be met. After it leaves the
while-loop, fallocate will return 1, which is an unexpected return
value.

We're not able to construct a reproducible way to let
btrfs_drop_extents() fail with ENOSPC after it drops the last non-hole
file extent but with remaining holes left. However, it's quite easy to
fix. We just need to update and check the len every time before we call
find_first_non_hole(). To make the while loop more readable, we also
pull the variable updates to the bottom of loop like this:
  while (cur_offset < end) {
	  ...
	  // update cur_offset & len
	  // advance cur_offset & len in hole-punching case if needed
  }

Reported-by: Robbie Ko <robbieko@synology.com>
Fixes: d77815461f ("btrfs: Avoid trucating page or punching hole in a already existed hole.")
CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Chung-Chiang Cheng <cccheng@synology.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: BingJing Chang <bingjingc@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:17 +02:00
Naohiro Aota e75f9fd194 btrfs: zoned: move log tree node allocation out of log_root_tree->log_mutex
Commit 6e37d24599 ("btrfs: zoned: fix deadlock on log sync") pointed out
a deadlock warning and removed mutex_{lock,unlock} of fs_info::tree_root->log_mutex.
While it looks like it always cause a deadlock, we didn't see actual
deadlock in fstests runs. The reason is log_root_tree->log_mutex !=
fs_info->tree_root->log_mutex, not taking the same lock. So, the warning
was actually a false-positive.

Since btrfs_alloc_log_tree_node() is protected only by
fs_info->tree_root->log_mutex, we can (and should) move the code out of
the lock scope of log_root_tree->log_mutex and silence the warning.

Fixes: 6e37d24599 ("btrfs: zoned: fix deadlock on log sync")
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-04-19 17:25:17 +02:00