Commit graph

2541 commits

Author SHA1 Message Date
Yafang Shao
912310dd84 bpf: Fix an error in verifying a field in a union
[ Upstream commit 33937607ef ]

We are utilizing BPF LSM to monitor BPF operations within our container
environment. When we add support for raw_tracepoint, it hits below
error.

; (const void *)attr->raw_tracepoint.name);
27: (79) r3 = *(u64 *)(r2 +0)
access beyond the end of member map_type (mend:4) in struct (anon) with off 0 size 8

It can be reproduced with below BPF prog.

SEC("lsm/bpf")
int BPF_PROG(bpf_audit, int cmd, union bpf_attr *attr, unsigned int size)
{
	switch (cmd) {
	case BPF_RAW_TRACEPOINT_OPEN:
		bpf_printk("raw_tracepoint is %s", attr->raw_tracepoint.name);
		break;
	default:
		break;
	}
	return 0;
}

The reason is that when accessing a field in a union, such as bpf_attr,
if the field is located within a nested struct that is not the first
member of the union, it can result in incorrect field verification.

  union bpf_attr {
      struct {
          __u32 map_type; <<<< Actually it will find that field.
          __u32 key_size;
          __u32 value_size;
         ...
      };
      ...
      struct {
          __u64 name;    <<<< We want to verify this field.
          __u32 prog_fd;
      } raw_tracepoint;
  };

Considering the potential deep nesting levels, finding a perfect
solution to address this issue has proven challenging. Therefore, I
propose a solution where we simply skip the verification process if the
field in question is located within a union.

Fixes: 7e3617a72d ("bpf: Add array support to btf_struct_access")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230713025642.27477-4-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-09-13 09:42:30 +02:00
Hou Tao
7a1178a367 bpf, cpumap: Make sure kthread is running before map update returns
commit 640a604585 upstream.

The following warning was reported when running stress-mode enabled
xdp_redirect_cpu with some RT threads:

  ------------[ cut here ]------------
  WARNING: CPU: 4 PID: 65 at kernel/bpf/cpumap.c:135
  CPU: 4 PID: 65 Comm: kworker/4:1 Not tainted 6.5.0-rc2+ #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
  Workqueue: events cpu_map_kthread_stop
  RIP: 0010:put_cpu_map_entry+0xda/0x220
  ......
  Call Trace:
   <TASK>
   ? show_regs+0x65/0x70
   ? __warn+0xa5/0x240
   ......
   ? put_cpu_map_entry+0xda/0x220
   cpu_map_kthread_stop+0x41/0x60
   process_one_work+0x6b0/0xb80
   worker_thread+0x96/0x720
   kthread+0x1a5/0x1f0
   ret_from_fork+0x3a/0x70
   ret_from_fork_asm+0x1b/0x30
   </TASK>

The root cause is the same as commit 4369016497 ("bpf: cpumap: Fix memory
leak in cpu_map_update_elem"). The kthread is stopped prematurely by
kthread_stop() in cpu_map_kthread_stop(), and kthread() doesn't call
cpu_map_kthread_run() at all but XDP program has already queued some
frames or skbs into ptr_ring. So when __cpu_map_ring_cleanup() checks
the ptr_ring, it will find it was not emptied and report a warning.

An alternative fix is to use __cpu_map_ring_cleanup() to drop these
pending frames or skbs when kthread_stop() returns -EINTR, but it may
confuse the user, because these frames or skbs have been handled
correctly by XDP program. So instead of dropping these frames or skbs,
just make sure the per-cpu kthread is running before
__cpu_map_entry_alloc() returns.

After apply the fix, the error handle for kthread_stop() will be
unnecessary because it will always return 0, so just remove it.

Fixes: 6710e11269 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Reviewed-by: Pu Lehui <pulehui@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230729095107.1722450-2-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-08-11 12:08:23 +02:00
Hou Tao
cbd0004518 bpf, cpumap: Handle skb as well when clean up ptr_ring
[ Upstream commit 7c62b75cd1 ]

The following warning was reported when running xdp_redirect_cpu with
both skb-mode and stress-mode enabled:

  ------------[ cut here ]------------
  Incorrect XDP memory type (-2128176192) usage
  WARNING: CPU: 7 PID: 1442 at net/core/xdp.c:405
  Modules linked in:
  CPU: 7 PID: 1442 Comm: kworker/7:0 Tainted: G  6.5.0-rc2+ #1
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
  Workqueue: events __cpu_map_entry_free
  RIP: 0010:__xdp_return+0x1e4/0x4a0
  ......
  Call Trace:
   <TASK>
   ? show_regs+0x65/0x70
   ? __warn+0xa5/0x240
   ? __xdp_return+0x1e4/0x4a0
   ......
   xdp_return_frame+0x4d/0x150
   __cpu_map_entry_free+0xf9/0x230
   process_one_work+0x6b0/0xb80
   worker_thread+0x96/0x720
   kthread+0x1a5/0x1f0
   ret_from_fork+0x3a/0x70
   ret_from_fork_asm+0x1b/0x30
   </TASK>

The reason for the warning is twofold. One is due to the kthread
cpu_map_kthread_run() is stopped prematurely. Another one is
__cpu_map_ring_cleanup() doesn't handle skb mode and treats skbs in
ptr_ring as XDP frames.

Prematurely-stopped kthread will be fixed by the preceding patch and
ptr_ring will be empty when __cpu_map_ring_cleanup() is called. But
as the comments in __cpu_map_ring_cleanup() said, handling and freeing
skbs in ptr_ring as well to "catch any broken behaviour gracefully".

Fixes: 11941f8a85 ("bpf: cpumap: Implement generic cpumap")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230729095107.1722450-3-houtao@huaweicloud.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-11 12:08:15 +02:00
Andrii Nakryiko
4c8f30a2ad bpf: aggressively forget precise markings during state checkpointing
[ Upstream commit 7a830b53c1 ]

Exploit the property of about-to-be-checkpointed state to be able to
forget all precise markings up to that point even more aggressively. We
now clear all potentially inherited precise markings right before
checkpointing and branching off into child state. If any of children
states require precise knowledge of any SCALAR register, those will be
propagated backwards later on before this state is finalized, preserving
correctness.

There is a single selftests BPF program change, but tremendous one: 25x
reduction in number of verified instructions and states in
trace_virtqueue_add_sgs.

Cilium results are more modest, but happen across wider range of programs.

SELFTESTS RESULTS
=================

$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results.csv ~/imprecise-aggressive-results.csv | grep -v '+0'
File                 Program                  Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
-------------------  -----------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
loop6.bpf.linked1.o  trace_virtqueue_add_sgs           398057            15114   -382943 (-96.20%)              8717               336      -8381 (-96.15%)
-------------------  -----------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

CILIUM RESULTS
==============

$ ./veristat -C -e file,prog,insns,states ~/imprecise-early-results-cilium.csv ~/imprecise-aggressive-results-cilium.csv | grep -v '+0'
File           Program                           Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
-------------  --------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
bpf_host.o     tail_handle_nat_fwd_ipv4                    23426            23221       -205 (-0.88%)              1537              1515         -22 (-1.43%)
bpf_host.o     tail_handle_nat_fwd_ipv6                    13009            12904       -105 (-0.81%)               719               708         -11 (-1.53%)
bpf_host.o     tail_nodeport_nat_ingress_ipv6               5261             5196        -65 (-1.24%)               247               243          -4 (-1.62%)
bpf_host.o     tail_nodeport_nat_ipv6_egress                3446             3406        -40 (-1.16%)               203               198          -5 (-2.46%)
bpf_lxc.o      tail_handle_nat_fwd_ipv4                    23426            23221       -205 (-0.88%)              1537              1515         -22 (-1.43%)
bpf_lxc.o      tail_handle_nat_fwd_ipv6                    13009            12904       -105 (-0.81%)               719               708         -11 (-1.53%)
bpf_lxc.o      tail_ipv4_ct_egress                          5074             4897       -177 (-3.49%)               255               248          -7 (-2.75%)
bpf_lxc.o      tail_ipv4_ct_ingress                         5100             4923       -177 (-3.47%)               255               248          -7 (-2.75%)
bpf_lxc.o      tail_ipv4_ct_ingress_policy_only             5100             4923       -177 (-3.47%)               255               248          -7 (-2.75%)
bpf_lxc.o      tail_ipv6_ct_egress                          4558             4536        -22 (-0.48%)               188               187          -1 (-0.53%)
bpf_lxc.o      tail_ipv6_ct_ingress                         4578             4556        -22 (-0.48%)               188               187          -1 (-0.53%)
bpf_lxc.o      tail_ipv6_ct_ingress_policy_only             4578             4556        -22 (-0.48%)               188               187          -1 (-0.53%)
bpf_lxc.o      tail_nodeport_nat_ingress_ipv6               5261             5196        -65 (-1.24%)               247               243          -4 (-1.62%)
bpf_overlay.o  tail_nodeport_nat_ingress_ipv6               5261             5196        -65 (-1.24%)               247               243          -4 (-1.62%)
bpf_overlay.o  tail_nodeport_nat_ipv6_egress                3482             3442        -40 (-1.15%)               204               201          -3 (-1.47%)
bpf_xdp.o      tail_nodeport_nat_egress_ipv4               17200            15619      -1581 (-9.19%)              1111              1010        -101 (-9.09%)
-------------  --------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-27 08:50:51 +02:00
Andrii Nakryiko
8b57a37d0e bpf: stop setting precise in current state
[ Upstream commit f63181b6ae ]

Setting reg->precise to true in current state is not necessary from
correctness standpoint, but it does pessimise the whole precision (or
rather "imprecision", because that's what we want to keep as much as
possible) tracking. Why is somewhat subtle and my best attempt to
explain this is recorded in an extensive comment for __mark_chain_precise()
function. Some more careful thinking and code reading is probably required
still to grok this completely, unfortunately. Whiteboarding and a bunch
of extra handwaiving in person would be even more helpful, but is deemed
impractical in Git commit.

Next patch pushes this imprecision property even further, building on top of
the insights described in this patch.

End results are pretty nice, we get reduction in number of total instructions
and states verified due to a better states reuse, as some of the states are now
more generic and permissive due to less unnecessary precise=true requirements.

SELFTESTS RESULTS
=================

$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results.csv ~/imprecise-early-results.csv | grep -v '+0'
File                                     Program                 Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
---------------------------------------  ----------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
bpf_iter_ksym.bpf.linked1.o              dump_ksym                           347              285       -62 (-17.87%)                20                19          -1 (-5.00%)
pyperf600_bpf_loop.bpf.linked1.o         on_event                           3678             3736        +58 (+1.58%)               276               285          +9 (+3.26%)
setget_sockopt.bpf.linked1.o             skops_sockopt                      4038             3947        -91 (-2.25%)               347               343          -4 (-1.15%)
test_l4lb.bpf.linked1.o                  balancer_ingress                   4559             2611     -1948 (-42.73%)               118               105        -13 (-11.02%)
test_l4lb_noinline.bpf.linked1.o         balancer_ingress                   6279             6268        -11 (-0.18%)               237               236          -1 (-0.42%)
test_misc_tcp_hdr_options.bpf.linked1.o  misc_estab                         1307             1303         -4 (-0.31%)               100                99          -1 (-1.00%)
test_sk_lookup.bpf.linked1.o             ctx_narrow_access                   456              447         -9 (-1.97%)                39                38          -1 (-2.56%)
test_sysctl_loop1.bpf.linked1.o          sysctl_tcp_mem                     1389             1384         -5 (-0.36%)                26                25          -1 (-3.85%)
test_tc_dtime.bpf.linked1.o              egress_fwdns_prio101                518              485        -33 (-6.37%)                51                46          -5 (-9.80%)
test_tc_dtime.bpf.linked1.o              egress_host                         519              468        -51 (-9.83%)                50                44         -6 (-12.00%)
test_tc_dtime.bpf.linked1.o              ingress_fwdns_prio101               842             1000      +158 (+18.76%)                73                88        +15 (+20.55%)
xdp_synproxy_kern.bpf.linked1.o          syncookie_tc                     405757           373173     -32584 (-8.03%)             25735             22882      -2853 (-11.09%)
xdp_synproxy_kern.bpf.linked1.o          syncookie_xdp                    479055           371590   -107465 (-22.43%)             29145             22207      -6938 (-23.81%)
---------------------------------------  ----------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

Slight regression in test_tc_dtime.bpf.linked1.o/ingress_fwdns_prio101
is left for a follow up, there might be some more precision-related bugs
in existing BPF verifier logic.

CILIUM RESULTS
==============

$ ./veristat -C -e file,prog,insns,states ~/subprog-precise-results-cilium.csv ~/imprecise-early-results-cilium.csv | grep -v '+0'
File           Program                         Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
-------------  ------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
bpf_host.o     cil_from_host                               762              556      -206 (-27.03%)                43                37         -6 (-13.95%)
bpf_host.o     tail_handle_nat_fwd_ipv4                  23541            23426       -115 (-0.49%)              1538              1537          -1 (-0.07%)
bpf_host.o     tail_nodeport_nat_egress_ipv4             33592            33566        -26 (-0.08%)              2163              2161          -2 (-0.09%)
bpf_lxc.o      tail_handle_nat_fwd_ipv4                  23541            23426       -115 (-0.49%)              1538              1537          -1 (-0.07%)
bpf_overlay.o  tail_nodeport_nat_egress_ipv4             33581            33543        -38 (-0.11%)              2160              2157          -3 (-0.14%)
bpf_xdp.o      tail_handle_nat_fwd_ipv4                  21659            20920       -739 (-3.41%)              1440              1376         -64 (-4.44%)
bpf_xdp.o      tail_handle_nat_fwd_ipv6                  17084            17039        -45 (-0.26%)               907               905          -2 (-0.22%)
bpf_xdp.o      tail_lb_ipv4                              73442            73430        -12 (-0.02%)              4370              4369          -1 (-0.02%)
bpf_xdp.o      tail_lb_ipv6                             152114           151895       -219 (-0.14%)              6493              6479         -14 (-0.22%)
bpf_xdp.o      tail_nodeport_nat_egress_ipv4             17377            17200       -177 (-1.02%)              1125              1111         -14 (-1.24%)
bpf_xdp.o      tail_nodeport_nat_ingress_ipv6             6405             6397         -8 (-0.12%)               309               308          -1 (-0.32%)
bpf_xdp.o      tail_rev_nodeport_lb4                      7126             6934       -192 (-2.69%)               414               402         -12 (-2.90%)
bpf_xdp.o      tail_rev_nodeport_lb6                     18059            17905       -154 (-0.85%)              1105              1096          -9 (-0.81%)
-------------  ------------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-27 08:50:50 +02:00
Andrii Nakryiko
56675ddcb0 bpf: allow precision tracking for programs with subprogs
[ Upstream commit be2ef81615 ]

Stop forcing precise=true for SCALAR registers when BPF program has any
subprograms. Current restriction means that any BPF program, as soon as
it uses subprograms, will end up not getting any of the precision
tracking benefits in reduction of number of verified states.

This patch keeps the fallback mark_all_scalars_precise() behavior if
precise marking has to cross function frames. E.g., if subprogram
requires R1 (first input arg) to be marked precise, ideally we'd need to
backtrack to the parent function and keep marking R1 and its
dependencies as precise. But right now we give up and force all the
SCALARs in any of the current and parent states to be forced to
precise=true. We can lift that restriction in the future.

But this patch fixes two issues identified when trying to enable
precision tracking for subprogs.

First, prevent "escaping" from top-most state in a global subprog. While
with entry-level BPF program we never end up requesting precision for
R1-R5 registers, because R2-R5 are not initialized (and so not readable
in correct BPF program), and R1 is PTR_TO_CTX, not SCALAR, and so is
implicitly precise. With global subprogs, though, it's different, as
global subprog a) can have up to 5 SCALAR input arguments, which might
get marked as precise=true and b) it is validated in isolation from its
main entry BPF program. b) means that we can end up exhausting parent
state chain and still not mark all registers in reg_mask as precise,
which would lead to verifier bug warning.

To handle that, we need to consider two cases. First, if the very first
state is not immediately "checkpointed" (i.e., stored in state lookup
hashtable), it will get correct first_insn_idx and last_insn_idx
instruction set during state checkpointing. As such, this case is
already handled and __mark_chain_precision() already handles that by
just doing nothing when we reach to the very first parent state.
st->parent will be NULL and we'll just stop. Perhaps some extra check
for reg_mask and stack_mask is due here, but this patch doesn't address
that issue.

More problematic second case is when global function's initial state is
immediately checkpointed before we manage to process the very first
instruction. This is happening because when there is a call to global
subprog from the main program the very first subprog's instruction is
marked as pruning point, so before we manage to process first
instruction we have to check and checkpoint state. This patch adds
a special handling for such "empty" state, which is identified by having
st->last_insn_idx set to -1. In such case, we check that we are indeed
validating global subprog, and with some sanity checking we mark input
args as precise if requested.

Note that we also initialize state->first_insn_idx with correct start
insn_idx offset. For main program zero is correct value, but for any
subprog it's quite confusing to not have first_insn_idx set. This
doesn't have any functional impact, but helps with debugging and state
printing. We also explicitly initialize state->last_insns_idx instead of
relying on is_state_visited() to do this with env->prev_insns_idx, which
will be -1 on the very first instruction. This concludes necessary
changes to handle specifically global subprog's precision tracking.

Second identified problem was missed handling of BPF helper functions
that call into subprogs (e.g., bpf_loop and few others). From precision
tracking and backtracking logic's standpoint those are effectively calls
into subprogs and should be called as BPF_PSEUDO_CALL calls.

This patch takes the least intrusive way and just checks against a short
list of current BPF helpers that do call subprogs, encapsulated in
is_callback_calling_function() function. But to prevent accidentally
forgetting to add new BPF helpers to this "list", we also do a sanity
check in __check_func_call, which has to be called for each such special
BPF helper, to validate that BPF helper is indeed recognized as
callback-calling one. This should catch any missed checks in the future.
Adding some special flags to be added in function proto definitions
seemed like an overkill in this case.

With the above changes, it's possible to remove forceful setting of
reg->precise to true in __mark_reg_unknown, which turns on precision
tracking both inside subprogs and entry progs that have subprogs. No
warnings or errors were detected across all the selftests, but also when
validating with veristat against internal Meta BPF objects and Cilium
objects. Further, in some BPF programs there are noticeable reduction in
number of states and instructions validated due to more effective
precision tracking, especially benefiting syncookie test.

$ ./veristat -C -e file,prog,insns,states ~/baseline-results.csv ~/subprog-precise-results.csv  | grep -v '+0'
File                                      Program                     Total insns (A)  Total insns (B)  Total insns (DIFF)  Total states (A)  Total states (B)  Total states (DIFF)
----------------------------------------  --------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------
pyperf600_bpf_loop.bpf.linked1.o          on_event                               3966             3678       -288 (-7.26%)               306               276         -30 (-9.80%)
pyperf_global.bpf.linked1.o               on_event                               7563             7530        -33 (-0.44%)               520               517          -3 (-0.58%)
pyperf_subprogs.bpf.linked1.o             on_event                              36358            36934       +576 (+1.58%)              2499              2531         +32 (+1.28%)
setget_sockopt.bpf.linked1.o              skops_sockopt                          3965             4038        +73 (+1.84%)               343               347          +4 (+1.17%)
test_cls_redirect_subprogs.bpf.linked1.o  cls_redirect                          64965            64901        -64 (-0.10%)              4619              4612          -7 (-0.15%)
test_misc_tcp_hdr_options.bpf.linked1.o   misc_estab                             1491             1307      -184 (-12.34%)               110               100         -10 (-9.09%)
test_pkt_access.bpf.linked1.o             test_pkt_access                         354              349         -5 (-1.41%)                25                24          -1 (-4.00%)
test_sock_fields.bpf.linked1.o            egress_read_sock_fields                 435              375       -60 (-13.79%)                22                20          -2 (-9.09%)
test_sysctl_loop2.bpf.linked1.o           sysctl_tcp_mem                         1508             1501         -7 (-0.46%)                29                28          -1 (-3.45%)
test_tc_dtime.bpf.linked1.o               egress_fwdns_prio100                    468              435        -33 (-7.05%)                45                41          -4 (-8.89%)
test_tc_dtime.bpf.linked1.o               ingress_fwdns_prio100                   398              408        +10 (+2.51%)                42                39          -3 (-7.14%)
test_tc_dtime.bpf.linked1.o               ingress_fwdns_prio101                  1096              842      -254 (-23.18%)                97                73        -24 (-24.74%)
test_tcp_hdr_options.bpf.linked1.o        estab                                  2758             2408      -350 (-12.69%)               208               181        -27 (-12.98%)
test_urandom_usdt.bpf.linked1.o           urand_read_with_sema                    466              448        -18 (-3.86%)                31                28          -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o           urand_read_without_sema                 466              448        -18 (-3.86%)                31                28          -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o           urandlib_read_with_sema                 466              448        -18 (-3.86%)                31                28          -3 (-9.68%)
test_urandom_usdt.bpf.linked1.o           urandlib_read_without_sema              466              448        -18 (-3.86%)                31                28          -3 (-9.68%)
test_xdp_noinline.bpf.linked1.o           balancer_ingress_v6                    4302             4294         -8 (-0.19%)               257               256          -1 (-0.39%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_tc                         583722           405757   -177965 (-30.49%)             35846             25735     -10111 (-28.21%)
xdp_synproxy_kern.bpf.linked1.o           syncookie_xdp                        609123           479055   -130068 (-21.35%)             35452             29145      -6307 (-17.79%)
----------------------------------------  --------------------------  ---------------  ---------------  ------------------  ----------------  ----------------  -------------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221104163649.121784-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-07-27 08:50:50 +02:00
Kumar Kartikeya Dwivedi
8620c53ced bpf: Repeat check_max_stack_depth for async callbacks
[ Upstream commit b5e9ad522c ]

While the check_max_stack_depth function explores call chains emanating
from the main prog, which is typically enough to cover all possible call
chains, it doesn't explore those rooted at async callbacks unless the
async callback will have been directly called, since unlike non-async
callbacks it skips their instruction exploration as they don't
contribute to stack depth.

It could be the case that the async callback leads to a callchain which
exceeds the stack depth, but this is never reachable while only
exploring the entry point from main subprog. Hence, repeat the check for
the main subprog *and* all async callbacks marked by the symbolic
execution pass of the verifier, as execution of the program may begin at
any of them.

Consider functions with following stack depths:
main: 256
async: 256
foo: 256

main:
    rX = async
    bpf_timer_set_callback(...)

async:
    foo()

Here, async is not descended as it does not contribute to stack depth of
main (since it is referenced using bpf_pseudo_func and not
bpf_pseudo_call). However, when async is invoked asynchronously, it will
end up breaching the MAX_BPF_STACK limit by calling foo.

Hence, in addition to main, we also need to explore call chains
beginning at all async callback subprogs in a program.

Fixes: 7ddc80a476 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27 08:50:44 +02:00
Kumar Kartikeya Dwivedi
d55ff358b0 bpf: Fix subprog idx logic in check_max_stack_depth
[ Upstream commit ba7b3e7d5f ]

The assignment to idx in check_max_stack_depth happens once we see a
bpf_pseudo_call or bpf_pseudo_func. This is not an issue as the rest of
the code performs a few checks and then pushes the frame to the frame
stack, except the case of async callbacks. If the async callback case
causes the loop iteration to be skipped, the idx assignment will be
incorrect on the next iteration of the loop. The value stored in the
frame stack (as the subprogno of the current subprog) will be incorrect.

This leads to incorrect checks and incorrect tail_call_reachable
marking. Save the target subprog in a new variable and only assign to
idx once we are done with the is_async_cb check which may skip pushing
of frame to the frame stack and subsequent stack depth checks and tail
call markings.

Fixes: 7ddc80a476 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27 08:50:44 +02:00
Martin KaFai Lau
c006fe361c bpf: Address KCSAN report on bpf_lru_list
[ Upstream commit ee9fd0ac30 ]

KCSAN reported a data-race when accessing node->ref.
Although node->ref does not have to be accurate,
take this chance to use a more common READ_ONCE() and WRITE_ONCE()
pattern instead of data_race().

There is an existing bpf_lru_node_is_ref() and bpf_lru_node_set_ref().
This patch also adds bpf_lru_node_clear_ref() to do the
WRITE_ONCE(node->ref, 0) also.

==================================================================
BUG: KCSAN: data-race in __bpf_lru_list_rotate / __htab_lru_percpu_map_update_elem

write to 0xffff888137038deb of 1 bytes by task 11240 on cpu 1:
__bpf_lru_node_move kernel/bpf/bpf_lru_list.c:113 [inline]
__bpf_lru_list_rotate_active kernel/bpf/bpf_lru_list.c:149 [inline]
__bpf_lru_list_rotate+0x1bf/0x750 kernel/bpf/bpf_lru_list.c:240
bpf_lru_list_pop_free_to_local kernel/bpf/bpf_lru_list.c:329 [inline]
bpf_common_lru_pop_free kernel/bpf/bpf_lru_list.c:447 [inline]
bpf_lru_pop_free+0x638/0xe20 kernel/bpf/bpf_lru_list.c:499
prealloc_lru_pop kernel/bpf/hashtab.c:290 [inline]
__htab_lru_percpu_map_update_elem+0xe7/0x820 kernel/bpf/hashtab.c:1316
bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313
bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200
generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687
bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534
__sys_bpf+0x338/0x810
__do_sys_bpf kernel/bpf/syscall.c:5096 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5094 [inline]
__x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd

read to 0xffff888137038deb of 1 bytes by task 11241 on cpu 0:
bpf_lru_node_set_ref kernel/bpf/bpf_lru_list.h:70 [inline]
__htab_lru_percpu_map_update_elem+0x2f1/0x820 kernel/bpf/hashtab.c:1332
bpf_percpu_hash_update+0x5e/0x90 kernel/bpf/hashtab.c:2313
bpf_map_update_value+0x2a9/0x370 kernel/bpf/syscall.c:200
generic_map_update_batch+0x3ae/0x4f0 kernel/bpf/syscall.c:1687
bpf_map_do_batch+0x2d9/0x3d0 kernel/bpf/syscall.c:4534
__sys_bpf+0x338/0x810
__do_sys_bpf kernel/bpf/syscall.c:5096 [inline]
__se_sys_bpf kernel/bpf/syscall.c:5094 [inline]
__x64_sys_bpf+0x43/0x50 kernel/bpf/syscall.c:5094
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd

value changed: 0x01 -> 0x00

Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 11241 Comm: syz-executor.3 Not tainted 6.3.0-rc7-syzkaller-00136-g6a66fdd29ea1 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023
==================================================================

Reported-by: syzbot+ebe648a84e8784763f82@syzkaller.appspotmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230511043748.1384166-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27 08:50:34 +02:00
Kui-Feng Lee
10fa03a9c1 bpf: Print a warning only if writing to unprivileged_bpf_disabled.
[ Upstream commit fedf99200a ]

Only print the warning message if you are writing to
"/proc/sys/kernel/unprivileged_bpf_disabled".

The kernel may print an annoying warning when you read
"/proc/sys/kernel/unprivileged_bpf_disabled" saying

  WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible
  via Spectre v2 BHB attacks!

However, this message is only meaningful when the feature is
disabled or enabled.

Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230502181418.308479-1-kuifeng@meta.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-27 08:50:34 +02:00
Pu Lehui
b11a9b4f28 bpf: cpumap: Fix memory leak in cpu_map_update_elem
[ Upstream commit 4369016497 ]

Syzkaller reported a memory leak as follows:

BUG: memory leak
unreferenced object 0xff110001198ef748 (size 192):
  comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
  hex dump (first 32 bytes):
    00 00 00 00 4a 19 00 00 80 ad e3 e4 fe ff c0 00  ....J...........
    00 b2 d3 0c 01 00 11 ff 28 f5 8e 19 01 00 11 ff  ........(.......
  backtrace:
    [<ffffffffadd28087>] __cpu_map_entry_alloc+0xf7/0xb00
    [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
    [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
    [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
    [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
    [<ffffffffb029cc80>] do_syscall_64+0x30/0x40
    [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6

BUG: memory leak
unreferenced object 0xff110001198ef528 (size 192):
  comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
  hex dump (first 32 bytes):
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
    00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
  backtrace:
    [<ffffffffadd281f0>] __cpu_map_entry_alloc+0x260/0xb00
    [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
    [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
    [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
    [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
    [<ffffffffb029cc80>] do_syscall_64+0x30/0x40
    [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6

BUG: memory leak
unreferenced object 0xff1100010fd93d68 (size 8):
  comm "syz-executor.3", pid 17672, jiffies 4298118891 (age 9.906s)
  hex dump (first 8 bytes):
    00 00 00 00 00 00 00 00                          ........
  backtrace:
    [<ffffffffade5db3e>] kvmalloc_node+0x11e/0x170
    [<ffffffffadd28280>] __cpu_map_entry_alloc+0x2f0/0xb00
    [<ffffffffadd28d8e>] cpu_map_update_elem+0x2fe/0x3d0
    [<ffffffffadc6d0fd>] bpf_map_update_value.isra.0+0x2bd/0x520
    [<ffffffffadc7349b>] map_update_elem+0x4cb/0x720
    [<ffffffffadc7d983>] __se_sys_bpf+0x8c3/0xb90
    [<ffffffffb029cc80>] do_syscall_64+0x30/0x40
    [<ffffffffb0400099>] entry_SYSCALL_64_after_hwframe+0x61/0xc6

In the cpu_map_update_elem flow, when kthread_stop is called before
calling the threadfn of rcpu->kthread, since the KTHREAD_SHOULD_STOP bit
of kthread has been set by kthread_stop, the threadfn of rcpu->kthread
will never be executed, and rcpu->refcnt will never be 0, which will
lead to the allocated rcpu, rcpu->queue and rcpu->queue->queue cannot be
released.

Calling kthread_stop before executing kthread's threadfn will return
-EINTR. We can complete the release of memory resources in this state.

Fixes: 6710e11269 ("bpf: introduce new bpf cpu map type BPF_MAP_TYPE_CPUMAP")
Signed-off-by: Pu Lehui <pulehui@huawei.com>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230711115848.2701559-1-pulehui@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:49:26 +02:00
Kumar Kartikeya Dwivedi
b2e74dedb0 bpf: Fix max stack depth check for async callbacks
[ Upstream commit 5415ccd50a ]

The check_max_stack_depth pass happens after the verifier's symbolic
execution, and attempts to walk the call graph of the BPF program,
ensuring that the stack usage stays within bounds for all possible call
chains. There are two cases to consider: bpf_pseudo_func and
bpf_pseudo_call. In the former case, the callback pointer is loaded into
a register, and is assumed that it is passed to some helper later which
calls it (however there is no way to be sure), but the check remains
conservative and accounts the stack usage anyway. For this particular
case, asynchronous callbacks are skipped as they execute asynchronously
when their corresponding event fires.

The case of bpf_pseudo_call is simpler and we know that the call is
definitely made, hence the stack depth of the subprog is accounted for.

However, the current check still skips an asynchronous callback even if
a bpf_pseudo_call was made for it. This is erroneous, as it will miss
accounting for the stack usage of the asynchronous callback, which can
be used to breach the maximum stack depth limit.

Fix this by only skipping asynchronous callbacks when the instruction is
not a pseudo call to the subprog.

Fixes: 7ddc80a476 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230705144730.235802-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-23 13:49:22 +02:00
SeongJae Park
6baa6e4836 bpf, btf: Warn but return no error for NULL btf from __register_btf_kfunc_id_set()
[ Upstream commit 3de4d22cc9 ]

__register_btf_kfunc_id_set() assumes .BTF to be part of the module's .ko
file if CONFIG_DEBUG_INFO_BTF is enabled. If that's not the case, the
function prints an error message and return an error. As a result, such
modules cannot be loaded.

However, the section could be stripped out during a build process. It would
be better to let the modules loaded, because their basic functionalities
have no problem [0], though the BTF functionalities will not be supported.
Make the function to lower the level of the message from error to warn, and
return no error.

  [0] https://lore.kernel.org/bpf/20220219082037.ow2kbq5brktf4f2u@apollo.legion

Fixes: c446fdacb1 ("bpf: fix register_btf_kfunc_id_set for !CONFIG_DEBUG_INFO_BTF")
Reported-by: Alexander Egorenkov <Alexander.Egorenkov@ibm.com>
Suggested-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: SeongJae Park <sj@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/87y228q66f.fsf@oc8242746057.ibm.com
Link: https://lore.kernel.org/bpf/20220219082037.ow2kbq5brktf4f2u@apollo.legion
Link: https://lore.kernel.org/bpf/20230701171447.56464-1-sj@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-19 16:22:05 +02:00
Yafang Shao
20109ddd5b bpf: Fix memleak due to fentry attach failure
[ Upstream commit 108598c39e ]

If it fails to attach fentry, the allocated bpf trampoline image will be
left in the system. That can be verified by checking /proc/kallsyms.

This meamleak can be verified by a simple bpf program as follows:

  SEC("fentry/trap_init")
  int fentry_run()
  {
      return 0;
  }

It will fail to attach trap_init because this function is freed after
kernel init, and then we can find the trampoline image is left in the
system by checking /proc/kallsyms.

  $ tail /proc/kallsyms
  ffffffffc0613000 t bpf_trampoline_6442453466_1  [bpf]
  ffffffffc06c3000 t bpf_trampoline_6442453466_1  [bpf]

  $ bpftool btf dump file /sys/kernel/btf/vmlinux | grep "FUNC 'trap_init'"
  [2522] FUNC 'trap_init' type_id=119 linkage=static

  $ echo $((6442453466 & 0x7fffffff))
  2522

Note that there are two left bpf trampoline images, that is because the
libbpf will fallback to raw tracepoint if -EINVAL is returned.

Fixes: e21aa34178 ("bpf: Fix fexit trampoline.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Link: https://lore.kernel.org/bpf/20230515130849.57502-2-laoar.shao@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-19 16:21:05 +02:00
Yafang Shao
8ea165e1f8 bpf: Remove bpf trampoline selector
[ Upstream commit 47e79cbeea ]

After commit e21aa34178 ("bpf: Fix fexit trampoline."), the selector is only
used to indicate how many times the bpf trampoline image are updated and been
displayed in the trampoline ksym name. After the trampoline is freed, the
selector will start from 0 again. So the selector is a useless value to the
user. We can remove it.

If the user want to check whether the bpf trampoline image has been updated
or not, the user can compare the address. Each time the trampoline image is
updated, the address will change consequently. Jiri also pointed out another
issue that perf is still using the old name "bpf_trampoline_%lu", so this
change can fix the issue in perf.

Fixes: e21aa34178 ("bpf: Fix fexit trampoline.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Song Liu <song@kernel.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Link: https://lore.kernel.org/bpf/ZFvOOlrmHiY9AgXE@krava
Link: https://lore.kernel.org/bpf/20230515130849.57502-3-laoar.shao@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-19 16:21:05 +02:00
Stanislav Fomichev
c6a9fc82fe bpf: Don't EFAULT for {g,s}setsockopt with wrong optlen
[ Upstream commit 29ebbba7d4 ]

With the way the hooks implemented right now, we have a special
condition: optval larger than PAGE_SIZE will expose only first 4k into
BPF; any modifications to the optval are ignored. If the BPF program
doesn't handle this condition by resetting optlen to 0,
the userspace will get EFAULT.

The intention of the EFAULT was to make it apparent to the
developers that the program is doing something wrong.
However, this inadvertently might affect production workloads
with the BPF programs that are not too careful (i.e., returning EFAULT
for perfectly valid setsockopt/getsockopt calls).

Let's try to minimize the chance of BPF program screwing up userspace
by ignoring the output of those BPF programs (instead of returning
EFAULT to the userspace). pr_info_once those cases to
the dmesg to help with figuring out what's going wrong.

Fixes: 0d01da6afc ("bpf: implement getsockopt and setsockopt hooks")
Suggested-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230511170456.1759459-2-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-07-19 16:21:05 +02:00
Jiri Olsa
1b7b048c22 bpf: Force kprobe multi expected_attach_type for kprobe_multi link
[ Upstream commit db8eae6bc5 ]

We currently allow to create perf link for program with
expected_attach_type == BPF_TRACE_KPROBE_MULTI.

This will cause crash when we call helpers like get_attach_cookie or
get_func_ip in such program, because it will call the kprobe_multi's
version (current->bpf_ctx context setup) of those helpers while it
expects perf_link's current->bpf_ctx context setup.

Making sure that we use BPF_TRACE_KPROBE_MULTI expected_attach_type
only for programs attaching through kprobe_multi link.

Fixes: ca74823c6e ("bpf: Add cookie support to programs attached with kprobe multi link")
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230618131414.75649-1-jolsa@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 11:12:33 +02:00
Florent Revest
fc3afb3378 bpf/btf: Accept function names that contain dots
[ Upstream commit 9724160b39 ]

When building a kernel with LLVM=1, LLVM_IAS=0 and CONFIG_KASAN=y, LLVM
leaves DWARF tags for the "asan.module_ctor" & co symbols. In turn,
pahole creates BTF_KIND_FUNC entries for these and this makes the BTF
metadata validation fail because they contain a dot.

In a dramatic turn of event, this BTF verification failure can cause
the netfilter_bpf initialization to fail, causing netfilter_core to
free the netfilter_helper hashmap and netfilter_ftp to trigger a
use-after-free. The risk of u-a-f in netfilter will be addressed
separately but the existence of "asan.module_ctor" debug info under some
build conditions sounds like a good enough reason to accept functions
that contain dots in BTF.

Although using only LLVM=1 is the recommended way to compile clang-based
kernels, users can certainly do LLVM=1, LLVM_IAS=0 as well and we still
try to support that combination according to Nick. To clarify:

  - > v5.10 kernel, LLVM=1 (LLVM_IAS=0 is not the default) is recommended,
    but user can still have LLVM=1, LLVM_IAS=0 to trigger the issue

  - <= 5.10 kernel, LLVM=1 (LLVM_IAS=0 is the default) is recommended in
    which case GNU as will be used

Fixes: 1dc9285184 ("bpf: kernel side support for BTF Var and DataSec")
Signed-off-by: Florent Revest <revest@chromium.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Cc: Yonghong Song <yhs@meta.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/bpf/20230615145607.3469985-1-revest@chromium.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 11:12:33 +02:00
Maxim Mikityanskiy
d9a0b1a53c bpf: Fix verifier id tracking of scalars on spill
[ Upstream commit 713274f1f2 ]

The following scenario describes a bug in the verifier where it
incorrectly concludes about equivalent scalar IDs which could lead to
verifier bypass in privileged mode:

1. Prepare a 32-bit rogue number.
2. Put the rogue number into the upper half of a 64-bit register, and
   roll a random (unknown to the verifier) bit in the lower half. The
   rest of the bits should be zero (although variations are possible).
3. Assign an ID to the register by MOVing it to another arbitrary
   register.
4. Perform a 32-bit spill of the register, then perform a 32-bit fill to
   another register. Due to a bug in the verifier, the ID will be
   preserved, although the new register will contain only the lower 32
   bits, i.e. all zeros except one random bit.

At this point there are two registers with different values but the same
ID, which means the integrity of the verifier state has been corrupted.

5. Compare the new 32-bit register with 0. In the branch where it's
   equal to 0, the verifier will believe that the original 64-bit
   register is also 0, because it has the same ID, but its actual value
   still contains the rogue number in the upper half.
   Some optimizations of the verifier prevent the actual bypass, so
   extra care is needed: the comparison must be between two registers,
   and both branches must be reachable (this is why one random bit is
   needed). Both branches are still suitable for the bypass.
6. Right shift the original register by 32 bits to pop the rogue number.
7. Use the rogue number as an offset with any pointer. The verifier will
   believe that the offset is 0, while in reality it's the given number.

The fix is similar to the 32-bit BPF_MOV handling in check_alu_op for
SCALAR_VALUE. If the spill is narrowing the actual register value, don't
keep the ID, make sure it's reset to 0.

Fixes: 354e8f1970 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Andrii Nakryiko <andrii@kernel.org> # Checked veristat delta
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230607123951.558971-2-maxtram95@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 11:12:28 +02:00
Eduard Zingerman
461fc3391c bpf: track immediate values written to stack by BPF_ST instruction
[ Upstream commit ecdf985d76 ]

For aligned stack writes using BPF_ST instruction track stored values
in a same way BPF_STX is handled, e.g. make sure that the following
commands produce similar verifier knowledge:

  fp[-8] = 42;             r1 = 42;
                       fp[-8] = r1;

This covers two cases:
 - non-null values written to stack are stored as spill of fake
   registers;
 - null values written to stack are stored as STACK_ZERO marks.

Previously both cases above used STACK_MISC marks instead.

Some verifier test cases relied on the old logic to obtain STACK_MISC
marks for some stack values. These test cases are updated in the same
commit to avoid failures during bisect.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: 713274f1f2 ("bpf: Fix verifier id tracking of scalars on spill")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 11:12:28 +02:00
Krister Johansen
1dfca388fc bpf: ensure main program has an extable
commit 0108a4e9f3 upstream.

When subprograms are in use, the main program is not jit'd after the
subprograms because jit_subprogs sets a value for prog->bpf_func upon
success.  Subsequent calls to the JIT are bypassed when this value is
non-NULL.  This leads to a situation where the main program and its
func[0] counterpart are both in the bpf kallsyms tree, but only func[0]
has an extable.  Extables are only created during JIT.  Now there are
two nearly identical program ksym entries in the tree, but only one has
an extable.  Depending upon how the entries are placed, there's a chance
that a fault will call search_extable on the aux with the NULL entry.

Since jit_subprogs already copies state from func[0] to the main
program, include the extable pointer in this state duplication.
Additionally, ensure that the copy of the main program in func[0] is not
added to the bpf_prog_kallsyms table. Instead, let the main program get
added later in bpf_prog_load().  This ensures there is only a single
copy of the main program in the kallsyms table, and that its tag matches
the tag observed by tooling like bpftool.

Cc: stable@vger.kernel.org
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/6de9b2f4b4724ef56efbb0339daaa66c8b68b1e7.1686616663.git.kjlx@templeofstupid.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-06-28 11:12:26 +02:00
Kamalesh Babulal
7a2e2ca9ad cgroup: bpf: use cgroup_lock()/cgroup_unlock() wrappers
[ Upstream commit 4cdb91b0de ]

Replace mutex_[un]lock() with cgroup_[un]lock() wrappers to stay
consistent across cgroup core and other subsystem code, while
operating on the cgroup_mutex.

Signed-off-by: Kamalesh Babulal <kamalesh.babulal@oracle.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
Stable-dep-of: 2bd1103392 ("cgroup: always put cset in cgroup_css_set_put_fork")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-21 16:00:51 +02:00
Rhys Rustad-Elliott
3849e7fcea bpf: Fix elem_size not being set for inner maps
[ Upstream commit cba41bb78d ]

Commit d937bc3449 ("bpf: make uniform use of array->elem_size
everywhere in arraymap.c") changed array_map_gen_lookup to use
array->elem_size instead of round_up(map->value_size, 8) as the element
size when generating code to access a value in an array map.

array->elem_size, however, is not set by bpf_map_meta_alloc when
initializing an BPF_MAP_TYPE_ARRAY_OF_MAPS or BPF_MAP_TYPE_HASH_OF_MAPS.
This results in array_map_gen_lookup incorrectly outputting code that
always accesses index 0 in the array (as the index will be calculated
via a multiplication with the element size, which is incorrectly set to
0).

Set elem_size on the bpf_array object when allocating an array or hash
of maps to fix this.

Fixes: d937bc3449 ("bpf: make uniform use of array->elem_size everywhere in arraymap.c")
Signed-off-by: Rhys Rustad-Elliott <me@rhysre.net>
Link: https://lore.kernel.org/r/20230602190110.47068-2-me@rhysre.net
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-14 11:15:17 +02:00
Anton Protopopov
1a9e80f757 bpf: fix a memory leak in the LRU and LRU_PERCPU hash maps
commit b34ffb0c6d upstream.

The LRU and LRU_PERCPU maps allocate a new element on update before locking the
target hash table bucket. Right after that the maps try to lock the bucket.
If this fails, then maps return -EBUSY to the caller without releasing the
allocated element. This makes the element untracked: it doesn't belong to
either of free lists, and it doesn't belong to the hash table, so can't be
re-used; this eventually leads to the permanent -ENOMEM on LRU map updates,
which is unexpected. Fix this by returning the element to the local free list
if bucket locking fails.

Fixes: 20b6cc34ea ("bpf: Avoid hashtab deadlock with map_locked")
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230522154558.2166815-1-aspsk@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-30 14:03:21 +01:00
Will Deacon
177ee41f61 bpf: Fix mask generation for 32-bit narrow loads of 64-bit fields
commit 0613d8ca9a upstream.

A narrow load from a 64-bit context field results in a 64-bit load
followed potentially by a 64-bit right-shift and then a bitwise AND
operation to extract the relevant data.

In the case of a 32-bit access, an immediate mask of 0xffffffff is used
to construct a 64-bit BPP_AND operation which then sign-extends the mask
value and effectively acts as a glorified no-op. For example:

0:	61 10 00 00 00 00 00 00	r0 = *(u32 *)(r1 + 0)

results in the following code generation for a 64-bit field:

	ldr	x7, [x7]	// 64-bit load
	mov	x10, #0xffffffffffffffff
	and	x7, x7, x10

Fix the mask generation so that narrow loads always perform a 32-bit AND
operation:

	ldr	x7, [x7]	// 64-bit load
	mov	w10, #0xffffffff
	and	w7, w7, w10

Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Krzesimir Nowak <krzesimir@kinvolk.io>
Cc: Andrey Ignatov <rdna@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Fixes: 31fd85816d ("bpf: permits narrower load from bpf program context fields")
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230518102528.1341-1-will@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-30 14:03:21 +01:00
Yafang
60039bf72f bpf: Add preempt_count_{sub,add} into btf id deny list
[ Upstream commit c11bd04648 ]

The recursion check in __bpf_prog_enter* and __bpf_prog_exit*
leave preempt_count_{sub,add} unprotected. When attaching trampoline to
them we get panic as follows,

[  867.843050] BUG: TASK stack guard page was hit at 0000000009d325cf (stack is 0000000046a46a15..00000000537e7b28)
[  867.843064] stack guard page: 0000 [#1] PREEMPT SMP NOPTI
[  867.843067] CPU: 8 PID: 11009 Comm: trace Kdump: loaded Not tainted 6.2.0+ #4
[  867.843100] Call Trace:
[  867.843101]  <TASK>
[  867.843104]  asm_exc_int3+0x3a/0x40
[  867.843108] RIP: 0010:preempt_count_sub+0x1/0xa0
[  867.843135]  __bpf_prog_enter_recur+0x17/0x90
[  867.843148]  bpf_trampoline_6442468108_0+0x2e/0x1000
[  867.843154]  ? preempt_count_sub+0x1/0xa0
[  867.843157]  preempt_count_sub+0x5/0xa0
[  867.843159]  ? migrate_enable+0xac/0xf0
[  867.843164]  __bpf_prog_exit_recur+0x2d/0x40
[  867.843168]  bpf_trampoline_6442468108_0+0x55/0x1000
...
[  867.843788]  preempt_count_sub+0x5/0xa0
[  867.843793]  ? migrate_enable+0xac/0xf0
[  867.843829]  __bpf_prog_exit_recur+0x2d/0x40
[  867.843837] BUG: IRQ stack guard page was hit at 0000000099bd8228 (stack is 00000000b23e2bc4..000000006d95af35)
[  867.843841] BUG: IRQ stack guard page was hit at 000000005ae07924 (stack is 00000000ffd69623..0000000014eb594c)
[  867.843843] BUG: IRQ stack guard page was hit at 00000000028320f0 (stack is 00000000034b6438..0000000078d1bcec)
[  867.843842]  bpf_trampoline_6442468108_0+0x55/0x1000
...

That is because in __bpf_prog_exit_recur, the preempt_count_{sub,add} are
called after prog->active is decreased.

Fixing this by adding these two functions into btf ids deny list.

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Yafang <laoar.shao@gmail.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20230413025248.79764-1-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-24 17:32:38 +01:00
Kumar Kartikeya Dwivedi
4e7a81b5e7 bpf: Annotate data races in bpf_local_storage
[ Upstream commit 0a09a2f933 ]

There are a few cases where hlist_node is checked to be unhashed without
holding the lock protecting its modification. In this case, one must use
hlist_unhashed_lockless to avoid load tearing and KCSAN reports. Fix
this by using lockless variant in places not protected by the lock.

Since this is not prompted by any actual KCSAN reports but only from
code review, I have not included a fixes tag.

Cc: Martin KaFai Lau <martin.lau@kernel.org>
Cc: KP Singh <kpsingh@kernel.org>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230221200646.2500777-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-24 17:32:36 +01:00
Stanislav Fomichev
551a26668c bpf: Don't EFAULT for getsockopt with optval=NULL
[ Upstream commit 00e74ae086 ]

Some socket options do getsockopt with optval=NULL to estimate the size
of the final buffer (which is returned via optlen). This breaks BPF
getsockopt assumptions about permitted optval buffer size. Let's enforce
these assumptions only when non-NULL optval is provided.

Fixes: 0d01da6afc ("bpf: implement getsockopt and setsockopt hooks")
Reported-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/ZD7Js4fj5YyI2oLd@google.com/T/#mb68daf700f87a9244a15d01d00c3f0e5b08f49f7
Link: https://lore.kernel.org/bpf/20230418225343.553806-2-sdf@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:26 +09:00
Alexei Starovoitov
c3fb321447 bpf: Fix race between btf_put and btf_idr walk.
[ Upstream commit acf1c3d68e ]

Florian and Eduard reported hard dead lock:
[   58.433327]  _raw_spin_lock_irqsave+0x40/0x50
[   58.433334]  btf_put+0x43/0x90
[   58.433338]  bpf_find_btf_id+0x157/0x240
[   58.433353]  btf_parse_fields+0x921/0x11c0

This happens since btf->refcount can be 1 at the time of btf_put() and
btf_put() will call btf_free_id() which will try to grab btf_idr_lock
and will dead lock.
Avoid the issue by doing btf_put() without locking.

Fixes: 3d78417b60 ("bpf: Add bpf_btf_find_by_name_kind() helper.")
Fixes: 1e89106da2 ("bpf: Add bpf_core_add_cands() and wire it into bpf_core_apply_relo_insn().")
Reported-by: Florian Westphal <fw@strlen.de>
Reported-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/bpf/20230421014901.70908-1-alexei.starovoitov@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:26 +09:00
Feng Zhou
52c3d68d99 bpf/btf: Fix is_int_ptr()
[ Upstream commit 91f2dc6838 ]

When tracing a kernel function with arg type is u32*, btf_ctx_access()
would report error: arg2 type INT is not a struct.

The commit bb6728d756 ("bpf: Allow access to int pointer arguments
in tracing programs") added support for int pointer, but did not skip
modifiers before checking it's type. This patch fixes it.

Fixes: bb6728d756 ("bpf: Allow access to int pointer arguments in tracing programs")
Co-developed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Feng Zhou <zhoufeng.zf@bytedance.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/bpf/20230410085908.98493-2-zhoufeng.zf@bytedance.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:21 +09:00
Daniel Borkmann
f9361cf40b bpf: Fix __reg_bound_offset 64->32 var_off subreg propagation
[ Upstream commit 7be14c1c90 ]

Xu reports that after commit 3f50f132d8 ("bpf: Verifier, do explicit ALU32
bounds tracking"), the following BPF program is rejected by the verifier:

   0: (61) r2 = *(u32 *)(r1 +0)          ; R2_w=pkt(off=0,r=0,imm=0)
   1: (61) r3 = *(u32 *)(r1 +4)          ; R3_w=pkt_end(off=0,imm=0)
   2: (bf) r1 = r2
   3: (07) r1 += 1
   4: (2d) if r1 > r3 goto pc+8
   5: (71) r1 = *(u8 *)(r2 +0)           ; R1_w=scalar(umax=255,var_off=(0x0; 0xff))
   6: (18) r0 = 0x7fffffffffffff10
   8: (0f) r1 += r0                      ; R1_w=scalar(umin=0x7fffffffffffff10,umax=0x800000000000000f)
   9: (18) r0 = 0x8000000000000000
  11: (07) r0 += 1
  12: (ad) if r0 < r1 goto pc-2
  13: (b7) r0 = 0
  14: (95) exit

And the verifier log says:

  func#0 @0
  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (61) r2 = *(u32 *)(r1 +0)          ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
  1: (61) r3 = *(u32 *)(r1 +4)          ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
  2: (bf) r1 = r2                       ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
  3: (07) r1 += 1                       ; R1_w=pkt(off=1,r=0,imm=0)
  4: (2d) if r1 > r3 goto pc+8          ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
  5: (71) r1 = *(u8 *)(r2 +0)           ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
  6: (18) r0 = 0x7fffffffffffff10       ; R0_w=9223372036854775568
  8: (0f) r1 += r0                      ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
  9: (18) r0 = 0x8000000000000000       ; R0_w=-9223372036854775808
  11: (07) r0 += 1                      ; R0_w=-9223372036854775807
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
  13: (b7) r0 = 0                       ; R0_w=0
  14: (95) exit

  from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775806
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775810,var_off=(0x8000000000000000; 0xffffffff))
  13: safe

  [...]

  from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775794
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775822,umax=9223372036854775822,var_off=(0x8000000000000000; 0xffffffff))
  13: safe

  from 12 to 11: R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775793
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
  13: safe

  from 12 to 11: R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775792
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775792 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
  13: safe

  [...]

The 64bit umin=9223372036854775810 bound continuously bumps by +1 while
umax=9223372036854775823 stays as-is until the verifier complexity limit
is reached and the program gets finally rejected. During this simulation,
the umin also eventually surpasses umax. Looking at the first 'from 12
to 11' output line from the loop, R1 has the following state:

  R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
              umax=0x800000000000000f (9223372036854775823),
          var_off=(0x8000000000000000;
                           0xffffffff))

The var_off has technically not an inconsistent state but it's very
imprecise and far off surpassing 64bit umax bounds whereas the expected
output with refined known bits in var_off should have been like:

  R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
              umax=0x800000000000000f (9223372036854775823),
          var_off=(0x8000000000000000;
                                  0xf))

In the above log, var_off stays as var_off=(0x8000000000000000; 0xffffffff)
and does not converge into a narrower mask where more bits become known,
eventually transforming R1 into a constant upon umin=9223372036854775823,
umax=9223372036854775823 case where the verifier would have terminated and
let the program pass.

The __reg_combine_64_into_32() marks the subregister unknown and propagates
64bit {s,u}min/{s,u}max bounds to their 32bit equivalents iff they are within
the 32bit universe. The question came up whether __reg_combine_64_into_32()
should special case the situation that when 64bit {s,u}min bounds have
the same value as 64bit {s,u}max bounds to then assign the latter as
well to the 32bit reg->{s,u}32_{min,max}_value. As can be seen from the
above example however, that is just /one/ special case and not a /generic/
solution given above example would still not be addressed this way and
remain at an imprecise var_off=(0x8000000000000000; 0xffffffff).

The improvement is needed in __reg_bound_offset() to refine var32_off with
the updated var64_off instead of the prior reg->var_off. The reg_bounds_sync()
code first refines information about the register's min/max bounds via
__update_reg_bounds() from the current var_off, then in __reg_deduce_bounds()
from sign bit and with the potentially learned bits from bounds it'll
update the var_off tnum in __reg_bound_offset(). For example, intersecting
with the old var_off might have improved bounds slightly, e.g. if umax
was 0x7f...f and var_off was (0; 0xf...fc), then new var_off will then
result in (0; 0x7f...fc). The intersected var64_off holds then the
universe which is a superset of var32_off. The point for the latter is
not to broaden, but to further refine known bits based on the intersection
of var_off with 32 bit bounds, so that we later construct the final var_off
from upper and lower 32 bits. The final __update_reg_bounds() can then
potentially still slightly refine bounds if more bits became known from the
new var_off.

After the improvement, we can see R1 converging successively:

  func#0 @0
  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (61) r2 = *(u32 *)(r1 +0)          ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
  1: (61) r3 = *(u32 *)(r1 +4)          ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
  2: (bf) r1 = r2                       ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
  3: (07) r1 += 1                       ; R1_w=pkt(off=1,r=0,imm=0)
  4: (2d) if r1 > r3 goto pc+8          ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
  5: (71) r1 = *(u8 *)(r2 +0)           ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
  6: (18) r0 = 0x7fffffffffffff10       ; R0_w=9223372036854775568
  8: (0f) r1 += r0                      ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
  9: (18) r0 = 0x8000000000000000       ; R0_w=-9223372036854775808
  11: (07) r0 += 1                      ; R0_w=-9223372036854775807
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
  13: (b7) r0 = 0                       ; R0_w=0
  14: (95) exit

  from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775806
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775806 R1_w=-9223372036854775806
  13: safe

  from 12 to 11: R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775811,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775805
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775805 R1_w=-9223372036854775805
  13: safe

  [...]

  from 12 to 11: R0_w=-9223372036854775798 R1=scalar(umin=9223372036854775819,umax=9223372036854775823,var_off=(0x8000000000000008; 0x7),s32_min=8,s32_max=15,u32_min=8,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775797
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775797 R1=-9223372036854775797
  13: safe

  from 12 to 11: R0_w=-9223372036854775797 R1=scalar(umin=9223372036854775820,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775796
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775796 R1=-9223372036854775796
  13: safe

  from 12 to 11: R0_w=-9223372036854775796 R1=scalar(umin=9223372036854775821,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775795
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775795 R1=-9223372036854775795
  13: safe

  from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x800000000000000e; 0x1),s32_min=14,s32_max=15,u32_min=14,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775794
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775794 R1=-9223372036854775794
  13: safe

  from 12 to 11: R0_w=-9223372036854775794 R1=-9223372036854775793 R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775793
  12: (ad) if r0 < r1 goto pc-2
  last_idx 12 first_idx 12
  parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=scalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  last_idx 11 first_idx 11
  regs=1 stack=0 before 11: (07) r0 += 1
  parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=scalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  last_idx 12 first_idx 0
  regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=1 stack=0 before 11: (07) r0 += 1
  regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=1 stack=0 before 11: (07) r0 += 1
  regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=1 stack=0 before 11: (07) r0 += 1
  regs=1 stack=0 before 9: (18) r0 = 0x8000000000000000
  last_idx 12 first_idx 12
  parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=Pscalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  last_idx 11 first_idx 11
  regs=2 stack=0 before 11: (07) r0 += 1
  parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=Pscalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  last_idx 12 first_idx 0
  regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=2 stack=0 before 11: (07) r0 += 1
  regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=2 stack=0 before 11: (07) r0 += 1
  regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=2 stack=0 before 11: (07) r0 += 1
  regs=2 stack=0 before 9: (18) r0 = 0x8000000000000000
  regs=2 stack=0 before 8: (0f) r1 += r0
  regs=3 stack=0 before 6: (18) r0 = 0x7fffffffffffff10
  regs=2 stack=0 before 5: (71) r1 = *(u8 *)(r2 +0)
  13: safe

  from 4 to 13: safe
  verification time 322 usec
  stack depth 0
  processed 56 insns (limit 1000000) max_states_per_insn 1 total_states 3 peak_states 3 mark_read 1

This also fixes up a test case along with this improvement where we match
on the verifier log. The updated log now has a refined var_off, too.

Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Xu Kuohai <xukuohai@huaweicloud.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230314203424.4015351-2-xukuohai@huaweicloud.com
Link: https://lore.kernel.org/bpf/20230322213056.2470-1-daniel@iogearbox.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:19 +09:00
Luis Gerhorst
157c84b793 bpf: Remove misleading spec_v1 check on var-offset stack read
[ Upstream commit 082cdc69a4 ]

For every BPF_ADD/SUB involving a pointer, adjust_ptr_min_max_vals()
ensures that the resulting pointer has a constant offset if
bypass_spec_v1 is false. This is ensured by calling sanitize_check_bounds()
which in turn calls check_stack_access_for_ptr_arithmetic(). There,
-EACCESS is returned if the register's offset is not constant, thereby
rejecting the program.

In summary, an unprivileged user must never be able to create stack
pointers with a variable offset. That is also the case, because a
respective check in check_stack_write() is missing. If they were able
to create a variable-offset pointer, users could still use it in a
stack-write operation to trigger unsafe speculative behavior [1].

Because unprivileged users must already be prevented from creating
variable-offset stack pointers, viable options are to either remove
this check (replacing it with a clarifying comment), or to turn it
into a "verifier BUG"-message, also adding a similar check in
check_stack_write() (for consistency, as a second-level defense).
This patch implements the first option to reduce verifier bloat.

This check was introduced by commit 01f810ace9 ("bpf: Allow
variable-offset stack access") which correctly notes that
"variable-offset reads and writes are disallowed (they were already
disallowed for the indirect access case) because the speculative
execution checking code doesn't support them". However, it does not
further discuss why the check in check_stack_read() is necessary.
The code which made this check obsolete was also introduced in this
commit.

I have compiled ~650 programs from the Linux selftests, Linux samples,
Cilium, and libbpf/examples projects and confirmed that none of these
trigger the check in check_stack_read() [2]. Instead, all of these
programs are, as expected, already rejected when constructing the
variable-offset pointers. Note that the check in
check_stack_access_for_ptr_arithmetic() also prints "off=%d" while the
code removed by this patch does not (the error removed does not appear
in the "verification_error" values). For reproducibility, the
repository linked includes the raw data and scripts used to create
the plot.

  [1] https://arxiv.org/pdf/1807.03757.pdf
  [2] 53dc19fcf4/data/plots/23-02-26_23-56_bpftool/bpftool/0004-errors.pdf

Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230315165358.23701-1-gerhorst@cs.fau.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:18 +09:00
Andrii Nakryiko
a62ba7e0d2 bpf: fix precision propagation verbose logging
[ Upstream commit 34f0677e7a ]

Fix wrong order of frame index vs register/slot index in precision
propagation verbose (level 2) output. It's wrong and very confusing as is.

Fixes: 529409ea92 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230313184017.4083374-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:17 +09:00
Andrii Nakryiko
0049d2edda bpf: take into account liveness when propagating precision
[ Upstream commit 52c2b005a3 ]

When doing state comparison, if old state has register that is not
marked as REG_LIVE_READ, then we just skip comparison, regardless what's
the state of corresponing register in current state. This is because not
REG_LIVE_READ register is irrelevant for further program execution and
correctness. All good here.

But when we get to precision propagation, after two states were declared
equivalent, we don't take into account old register's liveness, and thus
attempt to propagate precision for register in current state even if
that register in old state was not REG_LIVE_READ anymore. This is bad,
because register in current state could be anything at all and this
could cause -EFAULT due to internal logic bugs.

Fix by taking into account REG_LIVE_READ liveness mark to keep the logic
in state comparison in sync with precision propagation.

Fixes: a3ce685dd0 ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230309224131.57449-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:03:17 +09:00
Daniel Borkmann
89603f4c91 bpf: Fix incorrect verifier pruning due to missing register precision taints
[ Upstream commit 71b547f561 ]

Juan Jose et al reported an issue found via fuzzing where the verifier's
pruning logic prematurely marks a program path as safe.

Consider the following program:

   0: (b7) r6 = 1024
   1: (b7) r7 = 0
   2: (b7) r8 = 0
   3: (b7) r9 = -2147483648
   4: (97) r6 %= 1025
   5: (05) goto pc+0
   6: (bd) if r6 <= r9 goto pc+2
   7: (97) r6 %= 1
   8: (b7) r9 = 0
   9: (bd) if r6 <= r9 goto pc+1
  10: (b7) r6 = 0
  11: (b7) r0 = 0
  12: (63) *(u32 *)(r10 -4) = r0
  13: (18) r4 = 0xffff888103693400 // map_ptr(ks=4,vs=48)
  15: (bf) r1 = r4
  16: (bf) r2 = r10
  17: (07) r2 += -4
  18: (85) call bpf_map_lookup_elem#1
  19: (55) if r0 != 0x0 goto pc+1
  20: (95) exit
  21: (77) r6 >>= 10
  22: (27) r6 *= 8192
  23: (bf) r1 = r0
  24: (0f) r0 += r6
  25: (79) r3 = *(u64 *)(r0 +0)
  26: (7b) *(u64 *)(r1 +0) = r3
  27: (95) exit

The verifier treats this as safe, leading to oob read/write access due
to an incorrect verifier conclusion:

  func#0 @0
  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (b7) r6 = 1024                     ; R6_w=1024
  1: (b7) r7 = 0                        ; R7_w=0
  2: (b7) r8 = 0                        ; R8_w=0
  3: (b7) r9 = -2147483648              ; R9_w=-2147483648
  4: (97) r6 %= 1025                    ; R6_w=scalar()
  5: (05) goto pc+0
  6: (bd) if r6 <= r9 goto pc+2         ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff00000000; 0xffffffff)) R9_w=-2147483648
  7: (97) r6 %= 1                       ; R6_w=scalar()
  8: (b7) r9 = 0                        ; R9=0
  9: (bd) if r6 <= r9 goto pc+1         ; R6=scalar(umin=1) R9=0
  10: (b7) r6 = 0                       ; R6_w=0
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 9
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff8ad3886c2a00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1   ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
  19: (55) if r0 != 0x0 goto pc+1       ; R0=0
  20: (95) exit

  from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
  21: (77) r6 >>= 10                    ; R6_w=0
  22: (27) r6 *= 8192                   ; R6_w=0
  23: (bf) r1 = r0                      ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
  24: (0f) r0 += r6
  last_idx 24 first_idx 19
  regs=40 stack=0 before 23: (bf) r1 = r0
  regs=40 stack=0 before 22: (27) r6 *= 8192
  regs=40 stack=0 before 21: (77) r6 >>= 10
  regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
  parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
  last_idx 18 first_idx 9
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  regs=40 stack=0 before 10: (b7) r6 = 0
  25: (79) r3 = *(u64 *)(r0 +0)         ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
  26: (7b) *(u64 *)(r1 +0) = r3         ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
  27: (95) exit

  from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 11
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff8ad3886c2a00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1
  frame 0: propagating r6
  last_idx 19 first_idx 11
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
  last_idx 9 first_idx 9
  regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
  parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=0 R10=fp0
  last_idx 8 first_idx 0
  regs=40 stack=0 before 8: (b7) r9 = 0
  regs=40 stack=0 before 7: (97) r6 %= 1
  regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=40 stack=0 before 5: (05) goto pc+0
  regs=40 stack=0 before 4: (97) r6 %= 1025
  regs=40 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  19: safe
  frame 0: propagating r6
  last_idx 9 first_idx 0
  regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=40 stack=0 before 5: (05) goto pc+0
  regs=40 stack=0 before 4: (97) r6 %= 1025
  regs=40 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024

  from 6 to 9: safe
  verification time 110 usec
  stack depth 4
  processed 36 insns (limit 1000000) max_states_per_insn 0 total_states 3 peak_states 3 mark_read 2

The verifier considers this program as safe by mistakenly pruning unsafe
code paths. In the above func#0, code lines 0-10 are of interest. In line
0-3 registers r6 to r9 are initialized with known scalar values. In line 4
the register r6 is reset to an unknown scalar given the verifier does not
track modulo operations. Due to this, the verifier can also not determine
precisely which branches in line 6 and 9 are taken, therefore it needs to
explore them both.

As can be seen, the verifier starts with exploring the false/fall-through
paths first. The 'from 19 to 21' path has both r6=0 and r9=0 and the pointer
arithmetic on r0 += r6 is therefore considered safe. Given the arithmetic,
r6 is correctly marked for precision tracking where backtracking kicks in
where it walks back the current path all the way where r6 was set to 0 in
the fall-through branch.

Next, the pruning logics pops the path 'from 9 to 11' from the stack. Also
here, the state of the registers is the same, that is, r6=0 and r9=0, so
that at line 19 the path can be pruned as it is considered safe. It is
interesting to note that the conditional in line 9 turned r6 into a more
precise state, that is, in the fall-through path at the beginning of line
10, it is R6=scalar(umin=1), and in the branch-taken path (which is analyzed
here) at the beginning of line 11, r6 turned into a known const r6=0 as
r9=0 prior to that and therefore (unsigned) r6 <= 0 concludes that r6 must
be 0 (**):

  [...]                                 ; R6_w=scalar()
  9: (bd) if r6 <= r9 goto pc+1         ; R6=scalar(umin=1) R9=0
  [...]

  from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
  [...]

The next path is 'from 6 to 9'. The verifier considers the old and current
state equivalent, and therefore prunes the search incorrectly. Looking into
the two states which are being compared by the pruning logic at line 9, the
old state consists of R6_rwD=Pscalar() R9_rwD=0 R10=fp0 and the new state
consists of R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968)
R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0. While r6 had the reg->precise flag
correctly set in the old state, r9 did not. Both r6'es are considered as
equivalent given the old one is a superset of the current, more precise one,
however, r9's actual values (0 vs 0x80000000) mismatch. Given the old r9
did not have reg->precise flag set, the verifier does not consider the
register as contributing to the precision state of r6, and therefore it
considered both r9 states as equivalent. However, for this specific pruned
path (which is also the actual path taken at runtime), register r6 will be
0x400 and r9 0x80000000 when reaching line 21, thus oob-accessing the map.

The purpose of precision tracking is to initially mark registers (including
spilled ones) as imprecise to help verifier's pruning logic finding equivalent
states it can then prune if they don't contribute to the program's safety
aspects. For example, if registers are used for pointer arithmetic or to pass
constant length to a helper, then the verifier sets reg->precise flag and
backtracks the BPF program instruction sequence and chain of verifier states
to ensure that the given register or stack slot including their dependencies
are marked as precisely tracked scalar. This also includes any other registers
and slots that contribute to a tracked state of given registers/stack slot.
This backtracking relies on recorded jmp_history and is able to traverse
entire chain of parent states. This process ends only when all the necessary
registers/slots and their transitive dependencies are marked as precise.

The backtrack_insn() is called from the current instruction up to the first
instruction, and its purpose is to compute a bitmask of registers and stack
slots that need precision tracking in the parent's verifier state. For example,
if a current instruction is r6 = r7, then r6 needs precision after this
instruction and r7 needs precision before this instruction, that is, in the
parent state. Hence for the latter r7 is marked and r6 unmarked.

For the class of jmp/jmp32 instructions, backtrack_insn() today only looks
at call and exit instructions and for all other conditionals the masks
remain as-is. However, in the given situation register r6 has a dependency
on r9 (as described above in **), so also that one needs to be marked for
precision tracking. In other words, if an imprecise register influences a
precise one, then the imprecise register should also be marked precise.
Meaning, in the parent state both dest and src register need to be tracked
for precision and therefore the marking must be more conservative by setting
reg->precise flag for both. The precision propagation needs to cover both
for the conditional: if the src reg was marked but not the dst reg and vice
versa.

After the fix the program is correctly rejected:

  func#0 @0
  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (b7) r6 = 1024                     ; R6_w=1024
  1: (b7) r7 = 0                        ; R7_w=0
  2: (b7) r8 = 0                        ; R8_w=0
  3: (b7) r9 = -2147483648              ; R9_w=-2147483648
  4: (97) r6 %= 1025                    ; R6_w=scalar()
  5: (05) goto pc+0
  6: (bd) if r6 <= r9 goto pc+2         ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff80000000; 0x7fffffff),u32_min=-2147483648) R9_w=-2147483648
  7: (97) r6 %= 1                       ; R6_w=scalar()
  8: (b7) r9 = 0                        ; R9=0
  9: (bd) if r6 <= r9 goto pc+1         ; R6=scalar(umin=1) R9=0
  10: (b7) r6 = 0                       ; R6_w=0
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 9
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff9290dc5bfe00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1   ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
  19: (55) if r0 != 0x0 goto pc+1       ; R0=0
  20: (95) exit

  from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
  21: (77) r6 >>= 10                    ; R6_w=0
  22: (27) r6 *= 8192                   ; R6_w=0
  23: (bf) r1 = r0                      ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
  24: (0f) r0 += r6
  last_idx 24 first_idx 19
  regs=40 stack=0 before 23: (bf) r1 = r0
  regs=40 stack=0 before 22: (27) r6 *= 8192
  regs=40 stack=0 before 21: (77) r6 >>= 10
  regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
  parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
  last_idx 18 first_idx 9
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  regs=40 stack=0 before 10: (b7) r6 = 0
  25: (79) r3 = *(u64 *)(r0 +0)         ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
  26: (7b) *(u64 *)(r1 +0) = r3         ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
  27: (95) exit

  from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 11
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff9290dc5bfe00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1
  frame 0: propagating r6
  last_idx 19 first_idx 11
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
  last_idx 9 first_idx 9
  regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
  parent didn't have regs=240 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=P0 R10=fp0
  last_idx 8 first_idx 0
  regs=240 stack=0 before 8: (b7) r9 = 0
  regs=40 stack=0 before 7: (97) r6 %= 1
  regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=240 stack=0 before 5: (05) goto pc+0
  regs=240 stack=0 before 4: (97) r6 %= 1025
  regs=240 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  19: safe

  from 6 to 9: R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
  9: (bd) if r6 <= r9 goto pc+1
  last_idx 9 first_idx 0
  regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=240 stack=0 before 5: (05) goto pc+0
  regs=240 stack=0 before 4: (97) r6 %= 1025
  regs=240 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  last_idx 9 first_idx 0
  regs=200 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=240 stack=0 before 5: (05) goto pc+0
  regs=240 stack=0 before 4: (97) r6 %= 1025
  regs=240 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  11: R6=scalar(umax=18446744071562067968) R9=-2147483648
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 11
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff9290dc5bfe00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1   ; R0_w=map_value_or_null(id=3,off=0,ks=4,vs=48,imm=0)
  19: (55) if r0 != 0x0 goto pc+1       ; R0_w=0
  20: (95) exit

  from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=scalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
  21: (77) r6 >>= 10                    ; R6_w=scalar(umax=18014398507384832,var_off=(0x0; 0x3fffffffffffff))
  22: (27) r6 *= 8192                   ; R6_w=scalar(smax=9223372036854767616,umax=18446744073709543424,var_off=(0x0; 0xffffffffffffe000),s32_max=2147475456,u32_max=-8192)
  23: (bf) r1 = r0                      ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
  24: (0f) r0 += r6
  last_idx 24 first_idx 21
  regs=40 stack=0 before 23: (bf) r1 = r0
  regs=40 stack=0 before 22: (27) r6 *= 8192
  regs=40 stack=0 before 21: (77) r6 >>= 10
  parent didn't have regs=40 stack=0 marks: R0_rw=map_value(off=0,ks=4,vs=48,imm=0) R6_r=Pscalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
  last_idx 19 first_idx 11
  regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
  last_idx 9 first_idx 0
  regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
  regs=240 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=240 stack=0 before 5: (05) goto pc+0
  regs=240 stack=0 before 4: (97) r6 %= 1025
  regs=240 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  math between map_value pointer and register with unbounded min value is not allowed
  verification time 886 usec
  stack depth 4
  processed 49 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 2

Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Reported-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reported-by: Meador Inge <meadori@google.com>
Reported-by: Simon Scannell <simonscannell@google.com>
Reported-by: Nenad Stojanovski <thenenadx@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Co-developed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reviewed-by: Meador Inge <meadori@google.com>
Reviewed-by: Simon Scannell <simonscannell@google.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-04-26 14:28:35 +02:00
Daniel Borkmann
9cda812c76 bpf: Adjust insufficient default bpf_jit_limit
[ Upstream commit 10ec8ca8ec ]

We've seen recent AWS EKS (Kubernetes) user reports like the following:

  After upgrading EKS nodes from v20230203 to v20230217 on our 1.24 EKS
  clusters after a few days a number of the nodes have containers stuck
  in ContainerCreating state or liveness/readiness probes reporting the
  following error:

    Readiness probe errored: rpc error: code = Unknown desc = failed to
    exec in container: failed to start exec "4a11039f730203ffc003b7[...]":
    OCI runtime exec failed: exec failed: unable to start container process:
    unable to init seccomp: error loading seccomp filter into kernel:
    error loading seccomp filter: errno 524: unknown

  However, we had not been seeing this issue on previous AMIs and it only
  started to occur on v20230217 (following the upgrade from kernel 5.4 to
  5.10) with no other changes to the underlying cluster or workloads.

  We tried the suggestions from that issue (sysctl net.core.bpf_jit_limit=452534528)
  which helped to immediately allow containers to be created and probes to
  execute but after approximately a day the issue returned and the value
  returned by cat /proc/vmallocinfo | grep bpf_jit | awk '{s+=$2} END {print s}'
  was steadily increasing.

I tested bpf tree to observe bpf_jit_charge_modmem, bpf_jit_uncharge_modmem
their sizes passed in as well as bpf_jit_current under tcpdump BPF filter,
seccomp BPF and native (e)BPF programs, and the behavior all looks sane
and expected, that is nothing "leaking" from an upstream perspective.

The bpf_jit_limit knob was originally added in order to avoid a situation
where unprivileged applications loading BPF programs (e.g. seccomp BPF
policies) consuming all the module memory space via BPF JIT such that loading
of kernel modules would be prevented. The default limit was defined back in
2018 and while good enough back then, we are generally seeing far more BPF
consumers today.

Adjust the limit for the BPF JIT pool from originally 1/4 to now 1/2 of the
module memory space to better reflect today's needs and avoid more users
running into potentially hard to debug issues.

Fixes: fdadd04931 ("bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64K")
Reported-by: Stephen Haynes <sh@synk.net>
Reported-by: Lefteris Alexakis <lefteris.alexakis@kpn.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://github.com/awslabs/amazon-eks-ami/issues/1179
Link: https://github.com/awslabs/amazon-eks-ami/issues/1219
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20230320143725.8394-1-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-03-30 12:49:08 +02:00
Lorenz Bauer
f0c8306c1a btf: fix resolving BTF_KIND_VAR after ARRAY, STRUCT, UNION, PTR
[ Upstream commit 9b459804ff ]

btf_datasec_resolve contains a bug that causes the following BTF
to fail loading:

    [1] DATASEC a size=2 vlen=2
        type_id=4 offset=0 size=1
        type_id=7 offset=1 size=1
    [2] INT (anon) size=1 bits_offset=0 nr_bits=8 encoding=(none)
    [3] PTR (anon) type_id=2
    [4] VAR a type_id=3 linkage=0
    [5] INT (anon) size=1 bits_offset=0 nr_bits=8 encoding=(none)
    [6] TYPEDEF td type_id=5
    [7] VAR b type_id=6 linkage=0

This error message is printed during btf_check_all_types:

    [1] DATASEC a size=2 vlen=2
        type_id=7 offset=1 size=1 Invalid type

By tracing btf_*_resolve we can pinpoint the problem:

    btf_datasec_resolve(depth: 1, type_id: 1, mode: RESOLVE_TBD) = 0
        btf_var_resolve(depth: 2, type_id: 4, mode: RESOLVE_TBD) = 0
            btf_ptr_resolve(depth: 3, type_id: 3, mode: RESOLVE_PTR) = 0
        btf_var_resolve(depth: 2, type_id: 4, mode: RESOLVE_PTR) = 0
    btf_datasec_resolve(depth: 1, type_id: 1, mode: RESOLVE_PTR) = -22

The last invocation of btf_datasec_resolve should invoke btf_var_resolve
by means of env_stack_push, instead it returns EINVAL. The reason is that
env_stack_push is never executed for the second VAR.

    if (!env_type_is_resolve_sink(env, var_type) &&
        !env_type_is_resolved(env, var_type_id)) {
        env_stack_set_next_member(env, i + 1);
        return env_stack_push(env, var_type, var_type_id);
    }

env_type_is_resolve_sink() changes its behaviour based on resolve_mode.
For RESOLVE_PTR, we can simplify the if condition to the following:

    (btf_type_is_modifier() || btf_type_is_ptr) && !env_type_is_resolved()

Since we're dealing with a VAR the clause evaluates to false. This is
not sufficient to trigger the bug however. The log output and EINVAL
are only generated if btf_type_id_size() fails.

    if (!btf_type_id_size(btf, &type_id, &type_size)) {
        btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
        return -EINVAL;
    }

Most types are sized, so for example a VAR referring to an INT is not a
problem. The bug is only triggered if a VAR points at a modifier. Since
we skipped btf_var_resolve that modifier was also never resolved, which
means that btf_resolved_type_id returns 0 aka VOID for the modifier.
This in turn causes btf_type_id_size to return NULL, triggering EINVAL.

To summarise, the following conditions are necessary:

- VAR pointing at PTR, STRUCT, UNION or ARRAY
- Followed by a VAR pointing at TYPEDEF, VOLATILE, CONST, RESTRICT or
  TYPE_TAG

The fix is to reset resolve_mode to RESOLVE_TBD before attempting to
resolve a VAR from a DATASEC.

Fixes: 1dc9285184 ("bpf: kernel side support for BTF Var and DataSec")
Signed-off-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/r/20230306112138.155352-2-lmb@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-03-17 08:50:26 +01:00
Andrii Nakryiko
bb1cc7fc3e bpf: Fix global subprog context argument resolution logic
[ Upstream commit d384dce281 ]

KPROBE program's user-facing context type is defined as typedef
bpf_user_pt_regs_t. This leads to a problem when trying to passing
kprobe/uprobe/usdt context argument into global subprog, as kernel
always strip away mods and typedefs of user-supplied type, but takes
expected type from bpf_ctx_convert as is, which causes mismatch.

Current way to work around this is to define a fake struct with the same
name as expected typedef:

  struct bpf_user_pt_regs_t {};

  __noinline my_global_subprog(struct bpf_user_pt_regs_t *ctx) { ... }

This patch fixes the issue by resolving expected type, if it's not
a struct. It still leaves the above work-around working for backwards
compatibility.

Fixes: 91cc1a9974 ("bpf: Annotate context types")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230216045954.3002473-2-andrii@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-03-10 09:33:06 +01:00
Hou Tao
678ea18d62 bpf: Zeroing allocated object from slab in bpf memory allocator
[ Upstream commit 997849c4b9 ]

Currently the freed element in bpf memory allocator may be immediately
reused, for htab map the reuse will reinitialize special fields in map
value (e.g., bpf_spin_lock), but lookup procedure may still access
these special fields, and it may lead to hard-lockup as shown below:

 NMI backtrace for cpu 16
 CPU: 16 PID: 2574 Comm: htab.bin Tainted: G             L     6.1.0+ #1
 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
 RIP: 0010:queued_spin_lock_slowpath+0x283/0x2c0
 ......
 Call Trace:
  <TASK>
  copy_map_value_locked+0xb7/0x170
  bpf_map_copy_value+0x113/0x3c0
  __sys_bpf+0x1c67/0x2780
  __x64_sys_bpf+0x1c/0x20
  do_syscall_64+0x30/0x60
  entry_SYSCALL_64_after_hwframe+0x46/0xb0
 ......
  </TASK>

For htab map, just like the preallocated case, these is no need to
initialize these special fields in map value again once these fields
have been initialized. For preallocated htab map, these fields are
initialized through __GFP_ZERO in bpf_map_area_alloc(), so do the
similar thing for non-preallocated htab in bpf memory allocator. And
there is no need to use __GFP_ZERO for per-cpu bpf memory allocator,
because __alloc_percpu_gfp() does it implicitly.

Fixes: 0fd7c5d433 ("bpf: Optimize call_rcu in non-preallocated hash map.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230215082132.3856544-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-03-10 09:33:06 +01:00
Linus Torvalds
de41a146f9 bpf: add missing header file include
commit f3dd0c5337 upstream.

Commit 74e19ef0ff ("uaccess: Add speculation barrier to
copy_from_user()") built fine on x86-64 and arm64, and that's the extent
of my local build testing.

It turns out those got the <linux/nospec.h> include incidentally through
other header files (<linux/kvm_host.h> in particular), but that was not
true of other architectures, resulting in build errors

  kernel/bpf/core.c: In function ‘___bpf_prog_run’:
  kernel/bpf/core.c:1913:3: error: implicit declaration of function ‘barrier_nospec’

so just make sure to explicitly include the proper <linux/nospec.h>
header file to make everybody see it.

Fixes: 74e19ef0ff ("uaccess: Add speculation barrier to copy_from_user()")
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Viresh Kumar <viresh.kumar@linaro.org>
Reported-by: Huacai Chen <chenhuacai@loongson.cn>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-25 11:25:43 +01:00
Dave Hansen
684db631a1 uaccess: Add speculation barrier to copy_from_user()
commit 74e19ef0ff upstream.

The results of "access_ok()" can be mis-speculated.  The result is that
you can end speculatively:

	if (access_ok(from, size))
		// Right here

even for bad from/size combinations.  On first glance, it would be ideal
to just add a speculation barrier to "access_ok()" so that its results
can never be mis-speculated.

But there are lots of system calls just doing access_ok() via
"copy_to_user()" and friends (example: fstat() and friends).  Those are
generally not problematic because they do not _consume_ data from
userspace other than the pointer.  They are also very quick and common
system calls that should not be needlessly slowed down.

"copy_from_user()" on the other hand uses a user-controller pointer and
is frequently followed up with code that might affect caches.  Take
something like this:

	if (!copy_from_user(&kernelvar, uptr, size))
		do_something_with(kernelvar);

If userspace passes in an evil 'uptr' that *actually* points to a kernel
addresses, and then do_something_with() has cache (or other)
side-effects, it could allow userspace to infer kernel data values.

Add a barrier to the common copy_from_user() code to prevent
mis-speculated values which happen after the copy.

Also add a stub for architectures that do not define barrier_nospec().
This makes the macro usable in generic code.

Since the barrier is now usable in generic code, the x86 #ifdef in the
BPF code can also go away.

Reported-by: Jordy Zomer <jordyzomer@google.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>   # BPF bits
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-25 11:25:41 +01:00
Hao Sun
74eec8266f bpf: Skip invalid kfunc call in backtrack_insn
commit d3178e8a43 upstream.

The verifier skips invalid kfunc call in check_kfunc_call(), which
would be captured in fixup_kfunc_call() if such insn is not eliminated
by dead code elimination. However, this can lead to the following
warning in backtrack_insn(), also see [1]:

  ------------[ cut here ]------------
  verifier backtracking bug
  WARNING: CPU: 6 PID: 8646 at kernel/bpf/verifier.c:2756 backtrack_insn
  kernel/bpf/verifier.c:2756
	__mark_chain_precision kernel/bpf/verifier.c:3065
	mark_chain_precision kernel/bpf/verifier.c:3165
	adjust_reg_min_max_vals kernel/bpf/verifier.c:10715
	check_alu_op kernel/bpf/verifier.c:10928
	do_check kernel/bpf/verifier.c:13821 [inline]
	do_check_common kernel/bpf/verifier.c:16289
  [...]

So make backtracking conservative with this by returning ENOTSUPP.

  [1] https://lore.kernel.org/bpf/CACkBjsaXNceR8ZjkLG=dT3P=4A8SBsg0Z5h5PWLryF5=ghKq=g@mail.gmail.com/

Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230104014709.9375-1-sunhao.th@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-02-09 11:28:27 +01:00
Kui-Feng Lee
3331d34160 bpf: Fix the kernel crash caused by bpf_setsockopt().
[ Upstream commit 5416c9aea8 ]

The kernel crash was caused by a BPF program attached to the
"lsm_cgroup/socket_sock_rcv_skb" hook, which performed a call to
`bpf_setsockopt()` in order to set the TCP_NODELAY flag as an
example. Flags like TCP_NODELAY can prompt the kernel to flush a
socket's outgoing queue, and this hook
"lsm_cgroup/socket_sock_rcv_skb" is frequently triggered by
softirqs. The issue was that in certain circumstances, when
`tcp_write_xmit()` was called to flush the queue, it would also allow
BH (bottom-half) to run. This could lead to our program attempting to
flush the same socket recursively, which caused a `skbuff` to be
unlinked twice.

`security_sock_rcv_skb()` is triggered by `tcp_filter()`. This occurs
before the sock ownership is checked in `tcp_v4_rcv()`. Consequently,
if a bpf program runs on `security_sock_rcv_skb()` while under softirq
conditions, it may not possess the lock needed for `bpf_setsockopt()`,
thus presenting an issue.

The patch fixes this issue by ensuring that a BPF program attached to
the "lsm_cgroup/socket_sock_rcv_skb" hook is not allowed to call
`bpf_setsockopt()`.

The differences from v1 are
 - changing commit log to explain holding the lock of the sock,
 - emphasizing that TCP_NODELAY is not the only flag, and
 - adding the fixes tag.

v1: https://lore.kernel.org/bpf/20230125000244.1109228-1-kuifeng@meta.com/

Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Fixes: 9113d7e48e ("bpf: expose bpf_{g,s}etsockopt to lsm cgroup")
Link: https://lore.kernel.org/r/20230127001732.4162630-1-kuifeng@meta.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-09 11:28:02 +01:00
Jiri Olsa
d5c7a2ab5e bpf: Add missing btf_put to register_btf_id_dtor_kfuncs
[ Upstream commit 74bc3a5acc ]

We take the BTF reference before we register dtors and we need
to put it back when it's done.

We probably won't se a problem with kernel BTF, but module BTF
would stay loaded (because of the extra ref) even when its module
is removed.

Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Fixes: 5ce937d613 ("bpf: Populate pairs of btf_id and destructor kfunc in btf")
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230120122148.1522359-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-09 11:28:01 +01:00
Eduard Zingerman
7c7652ffa9 bpf: Fix to preserve reg parent/live fields when copying range info
[ Upstream commit 71f656a501 ]

Register range information is copied in several places. The intent is
to transfer range/id information from one register/stack spill to
another. Currently this is done using direct register assignment, e.g.:

static void find_equal_scalars(..., struct bpf_reg_state *known_reg)
{
	...
	struct bpf_reg_state *reg;
	...
			*reg = *known_reg;
	...
}

However, such assignments also copy the following bpf_reg_state fields:

struct bpf_reg_state {
	...
	struct bpf_reg_state *parent;
	...
	enum bpf_reg_liveness live;
	...
};

Copying of these fields is accidental and incorrect, as could be
demonstrated by the following example:

     0: call ktime_get_ns()
     1: r6 = r0
     2: call ktime_get_ns()
     3: r7 = r0
     4: if r0 > r6 goto +1             ; r0 & r6 are unbound thus generated
                                       ; branch states are identical
     5: *(u64 *)(r10 - 8) = 0xdeadbeef ; 64-bit write to fp[-8]
    --- checkpoint ---
     6: r1 = 42                        ; r1 marked as written
     7: *(u8 *)(r10 - 8) = r1          ; 8-bit write, fp[-8] parent & live
                                       ; overwritten
     8: r2 = *(u64 *)(r10 - 8)
     9: r0 = 0
    10: exit

This example is unsafe because 64-bit write to fp[-8] at (5) is
conditional, thus not all bytes of fp[-8] are guaranteed to be set
when it is read at (8). However, currently the example passes
verification.

First, the execution path 1-10 is examined by verifier.
Suppose that a new checkpoint is created by is_state_visited() at (6).
After checkpoint creation:
- r1.parent points to checkpoint.r1,
- fp[-8].parent points to checkpoint.fp[-8].
At (6) the r1.live is set to REG_LIVE_WRITTEN.
At (7) the fp[-8].parent is set to r1.parent and fp[-8].live is set to
REG_LIVE_WRITTEN, because of the following code called in
check_stack_write_fixed_off():

static void save_register_state(struct bpf_func_state *state,
				int spi, struct bpf_reg_state *reg,
				int size)
{
	...
	state->stack[spi].spilled_ptr = *reg;  // <--- parent & live copied
	if (size == BPF_REG_SIZE)
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
	...
}

Note the intent to mark stack spill as written only if 8 bytes are
spilled to a slot, however this intent is spoiled by a 'live' field copy.
At (8) the checkpoint.fp[-8] should be marked as REG_LIVE_READ but
this does not happen:
- fp[-8] in a current state is already marked as REG_LIVE_WRITTEN;
- fp[-8].parent points to checkpoint.r1, parentage chain is used by
  mark_reg_read() to mark checkpoint states.
At (10) the verification is finished for path 1-10 and jump 4-6 is
examined. The checkpoint.fp[-8] never gets REG_LIVE_READ mark and this
spill is pruned from the cached states by clean_live_states(). Hence
verifier state obtained via path 1-4,6 is deemed identical to one
obtained via path 1-6 and program marked as safe.

Note: the example should be executed with BPF_F_TEST_STATE_FREQ flag
set to force creation of intermediate verifier states.

This commit revisits the locations where bpf_reg_state instances are
copied and replaces the direct copies with a call to a function
copy_register_state(dst, src) that preserves 'parent' and 'live'
fields of the 'dst'.

Fixes: 679c782de1 ("bpf/verifier: per-register parent pointers")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230106142214.1040390-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-09 11:28:01 +01:00
Hou Tao
c32efcf9ff bpf: Fix off-by-one error in bpf_mem_cache_idx()
[ Upstream commit 36024d023d ]

According to the definition of sizes[NUM_CACHES], when the size passed
to bpf_mem_cache_size() is 256, it should return 6 instead 7.

Fixes: 7c8199e24f ("bpf: Introduce any context BPF specific memory allocator.")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20230118084630.3750680-1-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-09 11:28:00 +01:00
Luis Gerhorst
b0c89ef025 bpf: Fix pointer-leak due to insufficient speculative store bypass mitigation
[ Upstream commit e4f4db4779 ]

To mitigate Spectre v4, 2039f26f3a ("bpf: Fix leakage due to
insufficient speculative store bypass mitigation") inserts lfence
instructions after 1) initializing a stack slot and 2) spilling a
pointer to the stack.

However, this does not cover cases where a stack slot is first
initialized with a pointer (subject to sanitization) but then
overwritten with a scalar (not subject to sanitization because
the slot was already initialized). In this case, the second write
may be subject to speculative store bypass (SSB) creating a
speculative pointer-as-scalar type confusion. This allows the
program to subsequently leak the numerical pointer value using,
for example, a branch-based cache side channel.

To fix this, also sanitize scalars if they write a stack slot
that previously contained a pointer. Assuming that pointer-spills
are only generated by LLVM on register-pressure, the performance
impact on most real-world BPF programs should be small.

The following unprivileged BPF bytecode drafts a minimal exploit
and the mitigation:

  [...]
  // r6 = 0 or 1 (skalar, unknown user input)
  // r7 = accessible ptr for side channel
  // r10 = frame pointer (fp), to be leaked
  //
  r9 = r10 # fp alias to encourage ssb
  *(u64 *)(r9 - 8) = r10 // fp[-8] = ptr, to be leaked
  // lfence added here because of pointer spill to stack.
  //
  // Ommitted: Dummy bpf_ringbuf_output() here to train alias predictor
  // for no r9-r10 dependency.
  //
  *(u64 *)(r10 - 8) = r6 // fp[-8] = scalar, overwrites ptr
  // 2039f26f3a: no lfence added because stack slot was not STACK_INVALID,
  // store may be subject to SSB
  //
  // fix: also add an lfence when the slot contained a ptr
  //
  r8 = *(u64 *)(r9 - 8)
  // r8 = architecturally a scalar, speculatively a ptr
  //
  // leak ptr using branch-based cache side channel:
  r8 &= 1 // choose bit to leak
  if r8 == 0 goto SLOW // no mispredict
  // architecturally dead code if input r6 is 0,
  // only executes speculatively iff ptr bit is 1
  r8 = *(u64 *)(r7 + 0) # encode bit in cache (0: slow, 1: fast)
SLOW:
  [...]

After running this, the program can time the access to *(r7 + 0) to
determine whether the chosen pointer bit was 0 or 1. Repeat this 64
times to recover the whole address on amd64.

In summary, sanitization can only be skipped if one scalar is
overwritten with another scalar. Scalar-confusion due to speculative
store bypass can not lead to invalid accesses because the pointer
bounds deducted during verification are enforced using branchless
logic. See 979d63d50c ("bpf: prevent out of bounds speculation on
pointer arithmetic") for details.

Do not make the mitigation depend on !env->allow_{uninit_stack,ptr_leaks}
because speculative leaks are likely unexpected if these were enabled.
For example, leaking the address to a protected log file may be acceptable
while disabling the mitigation might unintentionally leak the address
into the cached-state of a map that is accessible to unprivileged
processes.

Fixes: 2039f26f3a ("bpf: Fix leakage due to insufficient speculative store bypass mitigation")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Henriette Hofmeier <henriette.hofmeier@rub.de>
Link: https://lore.kernel.org/bpf/edc95bad-aada-9cfc-ffe2-fa9bb206583c@cs.fau.de
Link: https://lore.kernel.org/bpf/20230109150544.41465-1-gerhorst@cs.fau.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:34:17 +01:00
Tonghao Zhang
084e6764dc bpf: hash map, avoid deadlock with suitable hash mask
[ Upstream commit 9f907439dc ]

The deadlock still may occur while accessed in NMI and non-NMI
context. Because in NMI, we still may access the same bucket but with
different map_locked index.

For example, on the same CPU, .max_entries = 2, we update the hash map,
with key = 4, while running bpf prog in NMI nmi_handle(), to update
hash map with key = 20, so it will have the same bucket index but have
different map_locked index.

To fix this issue, using min mask to hash again.

Fixes: 20b6cc34ea ("bpf: Avoid hashtab deadlock with map_locked")
Signed-off-by: Tonghao Zhang <tong@infragraf.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Song Liu <song@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Stanislav Fomichev <sdf@google.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Hou Tao <houtao1@huawei.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20230111092903.92389-1-tong@infragraf.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-02-01 08:34:09 +01:00
Paul Moore
8de08b0c44 bpf: restore the ebpf program ID for BPF_AUDIT_UNLOAD and PERF_BPF_EVENT_PROG_UNLOAD
commit ef01f4e25c upstream.

When changing the ebpf program put() routines to support being called
from within IRQ context the program ID was reset to zero prior to
calling the perf event and audit UNLOAD record generators, which
resulted in problems as the ebpf program ID was bogus (always zero).
This patch addresses this problem by removing an unnecessary call to
bpf_prog_free_id() in __bpf_prog_offload_destroy() and adjusting
__bpf_prog_put() to only call bpf_prog_free_id() after audit and perf
have finished their bpf program unload tasks in
bpf_prog_put_deferred().  For the record, no one can determine, or
remember, why it was necessary to free the program ID, and remove it
from the IDR, prior to executing bpf_prog_put_deferred();
regardless, both Stanislav and Alexei agree that the approach in this
patch should be safe.

It is worth noting that when moving the bpf_prog_free_id() call, the
do_idr_lock parameter was forced to true as the ebpf devs determined
this was the correct as the do_idr_lock should always be true.  The
do_idr_lock parameter will be removed in a follow-up patch, but it
was kept here to keep the patch small in an effort to ease any stable
backports.

I also modified the bpf_audit_prog() logic used to associate the
AUDIT_BPF record with other associated records, e.g. @ctx != NULL.
Instead of keying off the operation, it now keys off the execution
context, e.g. '!in_irg && !irqs_disabled()', which is much more
appropriate and should help better connect the UNLOAD operations with
the associated audit state (other audit records).

Cc: stable@vger.kernel.org
Fixes: d809e134be ("bpf: Prepare bpf_prog_put() to be called from irq context.")
Reported-by: Burn Alting <burn.alting@iinet.net.au>
Reported-by: Jiri Olsa <olsajiri@gmail.com>
Suggested-by: Stanislav Fomichev <sdf@google.com>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230106154400.74211-1-paul@paul-moore.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-01-24 07:24:37 +01:00
Kui-Feng Lee
6c27fc1574 bpf: keep a reference to the mm, in case the task is dead.
[ Upstream commit 7ff94f276f ]

Fix the system crash that happens when a task iterator travel through
vma of tasks.

In task iterators, we used to access mm by following the pointer on
the task_struct; however, the death of a task will clear the pointer,
even though we still hold the task_struct.  That can cause an
unexpected crash for a null pointer when an iterator is visiting a
task that dies during the visit.  Keeping a reference of mm on the
iterator ensures we always have a valid pointer to mm.

Co-developed-by: Song Liu <song@kernel.org>
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Reported-by: Nathan Slingerland <slinger@meta.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221216221855.4122288-2-kuifeng@meta.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-01-24 07:24:31 +01:00