mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-10-29 23:53:32 +00:00
c5e97ed154
page->freelist is for the use of slab. Using page->index is the same set of bits as page->freelist, and by using an integer instead of a pointer, we can avoid casts. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: <x86@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com>
954 lines
26 KiB
C
954 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* sparse memory mappings.
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/export.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/bootmem_info.h>
|
|
|
|
#include "internal.h"
|
|
#include <asm/dma.h>
|
|
|
|
/*
|
|
* Permanent SPARSEMEM data:
|
|
*
|
|
* 1) mem_section - memory sections, mem_map's for valid memory
|
|
*/
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
struct mem_section **mem_section;
|
|
#else
|
|
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
|
|
____cacheline_internodealigned_in_smp;
|
|
#endif
|
|
EXPORT_SYMBOL(mem_section);
|
|
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
/*
|
|
* If we did not store the node number in the page then we have to
|
|
* do a lookup in the section_to_node_table in order to find which
|
|
* node the page belongs to.
|
|
*/
|
|
#if MAX_NUMNODES <= 256
|
|
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
|
#else
|
|
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
|
#endif
|
|
|
|
int page_to_nid(const struct page *page)
|
|
{
|
|
return section_to_node_table[page_to_section(page)];
|
|
}
|
|
EXPORT_SYMBOL(page_to_nid);
|
|
|
|
static void set_section_nid(unsigned long section_nr, int nid)
|
|
{
|
|
section_to_node_table[section_nr] = nid;
|
|
}
|
|
#else /* !NODE_NOT_IN_PAGE_FLAGS */
|
|
static inline void set_section_nid(unsigned long section_nr, int nid)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
|
|
{
|
|
struct mem_section *section = NULL;
|
|
unsigned long array_size = SECTIONS_PER_ROOT *
|
|
sizeof(struct mem_section);
|
|
|
|
if (slab_is_available()) {
|
|
section = kzalloc_node(array_size, GFP_KERNEL, nid);
|
|
} else {
|
|
section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
|
|
nid);
|
|
if (!section)
|
|
panic("%s: Failed to allocate %lu bytes nid=%d\n",
|
|
__func__, array_size, nid);
|
|
}
|
|
|
|
return section;
|
|
}
|
|
|
|
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
|
|
{
|
|
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
|
|
struct mem_section *section;
|
|
|
|
/*
|
|
* An existing section is possible in the sub-section hotplug
|
|
* case. First hot-add instantiates, follow-on hot-add reuses
|
|
* the existing section.
|
|
*
|
|
* The mem_hotplug_lock resolves the apparent race below.
|
|
*/
|
|
if (mem_section[root])
|
|
return 0;
|
|
|
|
section = sparse_index_alloc(nid);
|
|
if (!section)
|
|
return -ENOMEM;
|
|
|
|
mem_section[root] = section;
|
|
|
|
return 0;
|
|
}
|
|
#else /* !SPARSEMEM_EXTREME */
|
|
static inline int sparse_index_init(unsigned long section_nr, int nid)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* During early boot, before section_mem_map is used for an actual
|
|
* mem_map, we use section_mem_map to store the section's NUMA
|
|
* node. This keeps us from having to use another data structure. The
|
|
* node information is cleared just before we store the real mem_map.
|
|
*/
|
|
static inline unsigned long sparse_encode_early_nid(int nid)
|
|
{
|
|
return ((unsigned long)nid << SECTION_NID_SHIFT);
|
|
}
|
|
|
|
static inline int sparse_early_nid(struct mem_section *section)
|
|
{
|
|
return (section->section_mem_map >> SECTION_NID_SHIFT);
|
|
}
|
|
|
|
/* Validate the physical addressing limitations of the model */
|
|
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
|
|
unsigned long *end_pfn)
|
|
{
|
|
unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
|
|
|
|
/*
|
|
* Sanity checks - do not allow an architecture to pass
|
|
* in larger pfns than the maximum scope of sparsemem:
|
|
*/
|
|
if (*start_pfn > max_sparsemem_pfn) {
|
|
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
|
|
"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
|
|
*start_pfn, *end_pfn, max_sparsemem_pfn);
|
|
WARN_ON_ONCE(1);
|
|
*start_pfn = max_sparsemem_pfn;
|
|
*end_pfn = max_sparsemem_pfn;
|
|
} else if (*end_pfn > max_sparsemem_pfn) {
|
|
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
|
|
"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
|
|
*start_pfn, *end_pfn, max_sparsemem_pfn);
|
|
WARN_ON_ONCE(1);
|
|
*end_pfn = max_sparsemem_pfn;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* There are a number of times that we loop over NR_MEM_SECTIONS,
|
|
* looking for section_present() on each. But, when we have very
|
|
* large physical address spaces, NR_MEM_SECTIONS can also be
|
|
* very large which makes the loops quite long.
|
|
*
|
|
* Keeping track of this gives us an easy way to break out of
|
|
* those loops early.
|
|
*/
|
|
unsigned long __highest_present_section_nr;
|
|
static void __section_mark_present(struct mem_section *ms,
|
|
unsigned long section_nr)
|
|
{
|
|
if (section_nr > __highest_present_section_nr)
|
|
__highest_present_section_nr = section_nr;
|
|
|
|
ms->section_mem_map |= SECTION_MARKED_PRESENT;
|
|
}
|
|
|
|
#define for_each_present_section_nr(start, section_nr) \
|
|
for (section_nr = next_present_section_nr(start-1); \
|
|
((section_nr != -1) && \
|
|
(section_nr <= __highest_present_section_nr)); \
|
|
section_nr = next_present_section_nr(section_nr))
|
|
|
|
static inline unsigned long first_present_section_nr(void)
|
|
{
|
|
return next_present_section_nr(-1);
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static void subsection_mask_set(unsigned long *map, unsigned long pfn,
|
|
unsigned long nr_pages)
|
|
{
|
|
int idx = subsection_map_index(pfn);
|
|
int end = subsection_map_index(pfn + nr_pages - 1);
|
|
|
|
bitmap_set(map, idx, end - idx + 1);
|
|
}
|
|
|
|
void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
|
|
{
|
|
int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
|
|
unsigned long nr, start_sec = pfn_to_section_nr(pfn);
|
|
|
|
if (!nr_pages)
|
|
return;
|
|
|
|
for (nr = start_sec; nr <= end_sec; nr++) {
|
|
struct mem_section *ms;
|
|
unsigned long pfns;
|
|
|
|
pfns = min(nr_pages, PAGES_PER_SECTION
|
|
- (pfn & ~PAGE_SECTION_MASK));
|
|
ms = __nr_to_section(nr);
|
|
subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
|
|
|
|
pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
|
|
pfns, subsection_map_index(pfn),
|
|
subsection_map_index(pfn + pfns - 1));
|
|
|
|
pfn += pfns;
|
|
nr_pages -= pfns;
|
|
}
|
|
}
|
|
#else
|
|
void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* Record a memory area against a node. */
|
|
static void __init memory_present(int nid, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
if (unlikely(!mem_section)) {
|
|
unsigned long size, align;
|
|
|
|
size = sizeof(struct mem_section *) * NR_SECTION_ROOTS;
|
|
align = 1 << (INTERNODE_CACHE_SHIFT);
|
|
mem_section = memblock_alloc(size, align);
|
|
if (!mem_section)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
|
|
__func__, size, align);
|
|
}
|
|
#endif
|
|
|
|
start &= PAGE_SECTION_MASK;
|
|
mminit_validate_memmodel_limits(&start, &end);
|
|
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
|
|
unsigned long section = pfn_to_section_nr(pfn);
|
|
struct mem_section *ms;
|
|
|
|
sparse_index_init(section, nid);
|
|
set_section_nid(section, nid);
|
|
|
|
ms = __nr_to_section(section);
|
|
if (!ms->section_mem_map) {
|
|
ms->section_mem_map = sparse_encode_early_nid(nid) |
|
|
SECTION_IS_ONLINE;
|
|
__section_mark_present(ms, section);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark all memblocks as present using memory_present().
|
|
* This is a convenience function that is useful to mark all of the systems
|
|
* memory as present during initialization.
|
|
*/
|
|
static void __init memblocks_present(void)
|
|
{
|
|
unsigned long start, end;
|
|
int i, nid;
|
|
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
|
|
memory_present(nid, start, end);
|
|
}
|
|
|
|
/*
|
|
* Subtle, we encode the real pfn into the mem_map such that
|
|
* the identity pfn - section_mem_map will return the actual
|
|
* physical page frame number.
|
|
*/
|
|
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
|
|
{
|
|
unsigned long coded_mem_map =
|
|
(unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
|
|
BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
|
|
BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
|
|
return coded_mem_map;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
/*
|
|
* Decode mem_map from the coded memmap
|
|
*/
|
|
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
|
|
{
|
|
/* mask off the extra low bits of information */
|
|
coded_mem_map &= SECTION_MAP_MASK;
|
|
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
static void __meminit sparse_init_one_section(struct mem_section *ms,
|
|
unsigned long pnum, struct page *mem_map,
|
|
struct mem_section_usage *usage, unsigned long flags)
|
|
{
|
|
ms->section_mem_map &= ~SECTION_MAP_MASK;
|
|
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
|
|
| SECTION_HAS_MEM_MAP | flags;
|
|
ms->usage = usage;
|
|
}
|
|
|
|
static unsigned long usemap_size(void)
|
|
{
|
|
return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
|
|
}
|
|
|
|
size_t mem_section_usage_size(void)
|
|
{
|
|
return sizeof(struct mem_section_usage) + usemap_size();
|
|
}
|
|
|
|
static inline phys_addr_t pgdat_to_phys(struct pglist_data *pgdat)
|
|
{
|
|
#ifndef CONFIG_NUMA
|
|
VM_BUG_ON(pgdat != &contig_page_data);
|
|
return __pa_symbol(&contig_page_data);
|
|
#else
|
|
return __pa(pgdat);
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static struct mem_section_usage * __init
|
|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
|
|
unsigned long size)
|
|
{
|
|
struct mem_section_usage *usage;
|
|
unsigned long goal, limit;
|
|
int nid;
|
|
/*
|
|
* A page may contain usemaps for other sections preventing the
|
|
* page being freed and making a section unremovable while
|
|
* other sections referencing the usemap remain active. Similarly,
|
|
* a pgdat can prevent a section being removed. If section A
|
|
* contains a pgdat and section B contains the usemap, both
|
|
* sections become inter-dependent. This allocates usemaps
|
|
* from the same section as the pgdat where possible to avoid
|
|
* this problem.
|
|
*/
|
|
goal = pgdat_to_phys(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
|
|
limit = goal + (1UL << PA_SECTION_SHIFT);
|
|
nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
|
|
again:
|
|
usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
|
|
if (!usage && limit) {
|
|
limit = 0;
|
|
goto again;
|
|
}
|
|
return usage;
|
|
}
|
|
|
|
static void __init check_usemap_section_nr(int nid,
|
|
struct mem_section_usage *usage)
|
|
{
|
|
unsigned long usemap_snr, pgdat_snr;
|
|
static unsigned long old_usemap_snr;
|
|
static unsigned long old_pgdat_snr;
|
|
struct pglist_data *pgdat = NODE_DATA(nid);
|
|
int usemap_nid;
|
|
|
|
/* First call */
|
|
if (!old_usemap_snr) {
|
|
old_usemap_snr = NR_MEM_SECTIONS;
|
|
old_pgdat_snr = NR_MEM_SECTIONS;
|
|
}
|
|
|
|
usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
|
|
pgdat_snr = pfn_to_section_nr(pgdat_to_phys(pgdat) >> PAGE_SHIFT);
|
|
if (usemap_snr == pgdat_snr)
|
|
return;
|
|
|
|
if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
|
|
/* skip redundant message */
|
|
return;
|
|
|
|
old_usemap_snr = usemap_snr;
|
|
old_pgdat_snr = pgdat_snr;
|
|
|
|
usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
|
|
if (usemap_nid != nid) {
|
|
pr_info("node %d must be removed before remove section %ld\n",
|
|
nid, usemap_snr);
|
|
return;
|
|
}
|
|
/*
|
|
* There is a circular dependency.
|
|
* Some platforms allow un-removable section because they will just
|
|
* gather other removable sections for dynamic partitioning.
|
|
* Just notify un-removable section's number here.
|
|
*/
|
|
pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
|
|
usemap_snr, pgdat_snr, nid);
|
|
}
|
|
#else
|
|
static struct mem_section_usage * __init
|
|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
|
|
unsigned long size)
|
|
{
|
|
return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
|
|
}
|
|
|
|
static void __init check_usemap_section_nr(int nid,
|
|
struct mem_section_usage *usage)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static unsigned long __init section_map_size(void)
|
|
{
|
|
return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
|
|
}
|
|
|
|
#else
|
|
static unsigned long __init section_map_size(void)
|
|
{
|
|
return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
|
|
}
|
|
|
|
struct page __init *__populate_section_memmap(unsigned long pfn,
|
|
unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long size = section_map_size();
|
|
struct page *map = sparse_buffer_alloc(size);
|
|
phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
|
|
|
|
if (map)
|
|
return map;
|
|
|
|
map = memmap_alloc(size, size, addr, nid, false);
|
|
if (!map)
|
|
panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
|
|
__func__, size, PAGE_SIZE, nid, &addr);
|
|
|
|
return map;
|
|
}
|
|
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
static void *sparsemap_buf __meminitdata;
|
|
static void *sparsemap_buf_end __meminitdata;
|
|
|
|
static inline void __meminit sparse_buffer_free(unsigned long size)
|
|
{
|
|
WARN_ON(!sparsemap_buf || size == 0);
|
|
memblock_free(sparsemap_buf, size);
|
|
}
|
|
|
|
static void __init sparse_buffer_init(unsigned long size, int nid)
|
|
{
|
|
phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
|
|
WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
|
|
/*
|
|
* Pre-allocated buffer is mainly used by __populate_section_memmap
|
|
* and we want it to be properly aligned to the section size - this is
|
|
* especially the case for VMEMMAP which maps memmap to PMDs
|
|
*/
|
|
sparsemap_buf = memmap_alloc(size, section_map_size(), addr, nid, true);
|
|
sparsemap_buf_end = sparsemap_buf + size;
|
|
}
|
|
|
|
static void __init sparse_buffer_fini(void)
|
|
{
|
|
unsigned long size = sparsemap_buf_end - sparsemap_buf;
|
|
|
|
if (sparsemap_buf && size > 0)
|
|
sparse_buffer_free(size);
|
|
sparsemap_buf = NULL;
|
|
}
|
|
|
|
void * __meminit sparse_buffer_alloc(unsigned long size)
|
|
{
|
|
void *ptr = NULL;
|
|
|
|
if (sparsemap_buf) {
|
|
ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
|
|
if (ptr + size > sparsemap_buf_end)
|
|
ptr = NULL;
|
|
else {
|
|
/* Free redundant aligned space */
|
|
if ((unsigned long)(ptr - sparsemap_buf) > 0)
|
|
sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
|
|
sparsemap_buf = ptr + size;
|
|
}
|
|
}
|
|
return ptr;
|
|
}
|
|
|
|
void __weak __meminit vmemmap_populate_print_last(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
|
|
* And number of present sections in this node is map_count.
|
|
*/
|
|
static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count)
|
|
{
|
|
struct mem_section_usage *usage;
|
|
unsigned long pnum;
|
|
struct page *map;
|
|
|
|
usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
|
|
mem_section_usage_size() * map_count);
|
|
if (!usage) {
|
|
pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
|
|
goto failed;
|
|
}
|
|
sparse_buffer_init(map_count * section_map_size(), nid);
|
|
for_each_present_section_nr(pnum_begin, pnum) {
|
|
unsigned long pfn = section_nr_to_pfn(pnum);
|
|
|
|
if (pnum >= pnum_end)
|
|
break;
|
|
|
|
map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
|
|
nid, NULL);
|
|
if (!map) {
|
|
pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
|
|
__func__, nid);
|
|
pnum_begin = pnum;
|
|
sparse_buffer_fini();
|
|
goto failed;
|
|
}
|
|
check_usemap_section_nr(nid, usage);
|
|
sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
|
|
SECTION_IS_EARLY);
|
|
usage = (void *) usage + mem_section_usage_size();
|
|
}
|
|
sparse_buffer_fini();
|
|
return;
|
|
failed:
|
|
/* We failed to allocate, mark all the following pnums as not present */
|
|
for_each_present_section_nr(pnum_begin, pnum) {
|
|
struct mem_section *ms;
|
|
|
|
if (pnum >= pnum_end)
|
|
break;
|
|
ms = __nr_to_section(pnum);
|
|
ms->section_mem_map = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate the accumulated non-linear sections, allocate a mem_map
|
|
* for each and record the physical to section mapping.
|
|
*/
|
|
void __init sparse_init(void)
|
|
{
|
|
unsigned long pnum_end, pnum_begin, map_count = 1;
|
|
int nid_begin;
|
|
|
|
memblocks_present();
|
|
|
|
pnum_begin = first_present_section_nr();
|
|
nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
|
|
|
|
/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
|
|
set_pageblock_order();
|
|
|
|
for_each_present_section_nr(pnum_begin + 1, pnum_end) {
|
|
int nid = sparse_early_nid(__nr_to_section(pnum_end));
|
|
|
|
if (nid == nid_begin) {
|
|
map_count++;
|
|
continue;
|
|
}
|
|
/* Init node with sections in range [pnum_begin, pnum_end) */
|
|
sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
|
|
nid_begin = nid;
|
|
pnum_begin = pnum_end;
|
|
map_count = 1;
|
|
}
|
|
/* cover the last node */
|
|
sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
|
|
vmemmap_populate_print_last();
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
|
|
/* Mark all memory sections within the pfn range as online */
|
|
void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
unsigned long section_nr = pfn_to_section_nr(pfn);
|
|
struct mem_section *ms;
|
|
|
|
/* onlining code should never touch invalid ranges */
|
|
if (WARN_ON(!valid_section_nr(section_nr)))
|
|
continue;
|
|
|
|
ms = __nr_to_section(section_nr);
|
|
ms->section_mem_map |= SECTION_IS_ONLINE;
|
|
}
|
|
}
|
|
|
|
/* Mark all memory sections within the pfn range as offline */
|
|
void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
unsigned long section_nr = pfn_to_section_nr(pfn);
|
|
struct mem_section *ms;
|
|
|
|
/*
|
|
* TODO this needs some double checking. Offlining code makes
|
|
* sure to check pfn_valid but those checks might be just bogus
|
|
*/
|
|
if (WARN_ON(!valid_section_nr(section_nr)))
|
|
continue;
|
|
|
|
ms = __nr_to_section(section_nr);
|
|
ms->section_mem_map &= ~SECTION_IS_ONLINE;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static struct page * __meminit populate_section_memmap(unsigned long pfn,
|
|
unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
|
|
{
|
|
return __populate_section_memmap(pfn, nr_pages, nid, altmap);
|
|
}
|
|
|
|
static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long start = (unsigned long) pfn_to_page(pfn);
|
|
unsigned long end = start + nr_pages * sizeof(struct page);
|
|
|
|
vmemmap_free(start, end, altmap);
|
|
}
|
|
static void free_map_bootmem(struct page *memmap)
|
|
{
|
|
unsigned long start = (unsigned long)memmap;
|
|
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
|
|
|
|
vmemmap_free(start, end, NULL);
|
|
}
|
|
|
|
static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
|
|
{
|
|
DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
|
|
DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
|
|
struct mem_section *ms = __pfn_to_section(pfn);
|
|
unsigned long *subsection_map = ms->usage
|
|
? &ms->usage->subsection_map[0] : NULL;
|
|
|
|
subsection_mask_set(map, pfn, nr_pages);
|
|
if (subsection_map)
|
|
bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
|
|
|
|
if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
|
|
"section already deactivated (%#lx + %ld)\n",
|
|
pfn, nr_pages))
|
|
return -EINVAL;
|
|
|
|
bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
|
|
return 0;
|
|
}
|
|
|
|
static bool is_subsection_map_empty(struct mem_section *ms)
|
|
{
|
|
return bitmap_empty(&ms->usage->subsection_map[0],
|
|
SUBSECTIONS_PER_SECTION);
|
|
}
|
|
|
|
static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
|
|
{
|
|
struct mem_section *ms = __pfn_to_section(pfn);
|
|
DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
|
|
unsigned long *subsection_map;
|
|
int rc = 0;
|
|
|
|
subsection_mask_set(map, pfn, nr_pages);
|
|
|
|
subsection_map = &ms->usage->subsection_map[0];
|
|
|
|
if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
|
|
rc = -EINVAL;
|
|
else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
|
|
rc = -EEXIST;
|
|
else
|
|
bitmap_or(subsection_map, map, subsection_map,
|
|
SUBSECTIONS_PER_SECTION);
|
|
|
|
return rc;
|
|
}
|
|
#else
|
|
struct page * __meminit populate_section_memmap(unsigned long pfn,
|
|
unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
|
|
{
|
|
return kvmalloc_node(array_size(sizeof(struct page),
|
|
PAGES_PER_SECTION), GFP_KERNEL, nid);
|
|
}
|
|
|
|
static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
kvfree(pfn_to_page(pfn));
|
|
}
|
|
|
|
static void free_map_bootmem(struct page *memmap)
|
|
{
|
|
unsigned long maps_section_nr, removing_section_nr, i;
|
|
unsigned long magic, nr_pages;
|
|
struct page *page = virt_to_page(memmap);
|
|
|
|
nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
|
|
>> PAGE_SHIFT;
|
|
|
|
for (i = 0; i < nr_pages; i++, page++) {
|
|
magic = page->index;
|
|
|
|
BUG_ON(magic == NODE_INFO);
|
|
|
|
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
|
|
removing_section_nr = page_private(page);
|
|
|
|
/*
|
|
* When this function is called, the removing section is
|
|
* logical offlined state. This means all pages are isolated
|
|
* from page allocator. If removing section's memmap is placed
|
|
* on the same section, it must not be freed.
|
|
* If it is freed, page allocator may allocate it which will
|
|
* be removed physically soon.
|
|
*/
|
|
if (maps_section_nr != removing_section_nr)
|
|
put_page_bootmem(page);
|
|
}
|
|
}
|
|
|
|
static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static bool is_subsection_map_empty(struct mem_section *ms)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
/*
|
|
* To deactivate a memory region, there are 3 cases to handle across
|
|
* two configurations (SPARSEMEM_VMEMMAP={y,n}):
|
|
*
|
|
* 1. deactivation of a partial hot-added section (only possible in
|
|
* the SPARSEMEM_VMEMMAP=y case).
|
|
* a) section was present at memory init.
|
|
* b) section was hot-added post memory init.
|
|
* 2. deactivation of a complete hot-added section.
|
|
* 3. deactivation of a complete section from memory init.
|
|
*
|
|
* For 1, when subsection_map does not empty we will not be freeing the
|
|
* usage map, but still need to free the vmemmap range.
|
|
*
|
|
* For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
|
|
*/
|
|
static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
struct mem_section *ms = __pfn_to_section(pfn);
|
|
bool section_is_early = early_section(ms);
|
|
struct page *memmap = NULL;
|
|
bool empty;
|
|
|
|
if (clear_subsection_map(pfn, nr_pages))
|
|
return;
|
|
|
|
empty = is_subsection_map_empty(ms);
|
|
if (empty) {
|
|
unsigned long section_nr = pfn_to_section_nr(pfn);
|
|
|
|
/*
|
|
* When removing an early section, the usage map is kept (as the
|
|
* usage maps of other sections fall into the same page). It
|
|
* will be re-used when re-adding the section - which is then no
|
|
* longer an early section. If the usage map is PageReserved, it
|
|
* was allocated during boot.
|
|
*/
|
|
if (!PageReserved(virt_to_page(ms->usage))) {
|
|
kfree(ms->usage);
|
|
ms->usage = NULL;
|
|
}
|
|
memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
|
|
/*
|
|
* Mark the section invalid so that valid_section()
|
|
* return false. This prevents code from dereferencing
|
|
* ms->usage array.
|
|
*/
|
|
ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
|
|
}
|
|
|
|
/*
|
|
* The memmap of early sections is always fully populated. See
|
|
* section_activate() and pfn_valid() .
|
|
*/
|
|
if (!section_is_early)
|
|
depopulate_section_memmap(pfn, nr_pages, altmap);
|
|
else if (memmap)
|
|
free_map_bootmem(memmap);
|
|
|
|
if (empty)
|
|
ms->section_mem_map = (unsigned long)NULL;
|
|
}
|
|
|
|
static struct page * __meminit section_activate(int nid, unsigned long pfn,
|
|
unsigned long nr_pages, struct vmem_altmap *altmap)
|
|
{
|
|
struct mem_section *ms = __pfn_to_section(pfn);
|
|
struct mem_section_usage *usage = NULL;
|
|
struct page *memmap;
|
|
int rc = 0;
|
|
|
|
if (!ms->usage) {
|
|
usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
|
|
if (!usage)
|
|
return ERR_PTR(-ENOMEM);
|
|
ms->usage = usage;
|
|
}
|
|
|
|
rc = fill_subsection_map(pfn, nr_pages);
|
|
if (rc) {
|
|
if (usage)
|
|
ms->usage = NULL;
|
|
kfree(usage);
|
|
return ERR_PTR(rc);
|
|
}
|
|
|
|
/*
|
|
* The early init code does not consider partially populated
|
|
* initial sections, it simply assumes that memory will never be
|
|
* referenced. If we hot-add memory into such a section then we
|
|
* do not need to populate the memmap and can simply reuse what
|
|
* is already there.
|
|
*/
|
|
if (nr_pages < PAGES_PER_SECTION && early_section(ms))
|
|
return pfn_to_page(pfn);
|
|
|
|
memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
|
|
if (!memmap) {
|
|
section_deactivate(pfn, nr_pages, altmap);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
return memmap;
|
|
}
|
|
|
|
/**
|
|
* sparse_add_section - add a memory section, or populate an existing one
|
|
* @nid: The node to add section on
|
|
* @start_pfn: start pfn of the memory range
|
|
* @nr_pages: number of pfns to add in the section
|
|
* @altmap: device page map
|
|
*
|
|
* This is only intended for hotplug.
|
|
*
|
|
* Note that only VMEMMAP supports sub-section aligned hotplug,
|
|
* the proper alignment and size are gated by check_pfn_span().
|
|
*
|
|
*
|
|
* Return:
|
|
* * 0 - On success.
|
|
* * -EEXIST - Section has been present.
|
|
* * -ENOMEM - Out of memory.
|
|
*/
|
|
int __meminit sparse_add_section(int nid, unsigned long start_pfn,
|
|
unsigned long nr_pages, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long section_nr = pfn_to_section_nr(start_pfn);
|
|
struct mem_section *ms;
|
|
struct page *memmap;
|
|
int ret;
|
|
|
|
ret = sparse_index_init(section_nr, nid);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
memmap = section_activate(nid, start_pfn, nr_pages, altmap);
|
|
if (IS_ERR(memmap))
|
|
return PTR_ERR(memmap);
|
|
|
|
/*
|
|
* Poison uninitialized struct pages in order to catch invalid flags
|
|
* combinations.
|
|
*/
|
|
page_init_poison(memmap, sizeof(struct page) * nr_pages);
|
|
|
|
ms = __nr_to_section(section_nr);
|
|
set_section_nid(section_nr, nid);
|
|
__section_mark_present(ms, section_nr);
|
|
|
|
/* Align memmap to section boundary in the subsection case */
|
|
if (section_nr_to_pfn(section_nr) != start_pfn)
|
|
memmap = pfn_to_page(section_nr_to_pfn(section_nr));
|
|
sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* A further optimization is to have per section refcounted
|
|
* num_poisoned_pages. But that would need more space per memmap, so
|
|
* for now just do a quick global check to speed up this routine in the
|
|
* absence of bad pages.
|
|
*/
|
|
if (atomic_long_read(&num_poisoned_pages) == 0)
|
|
return;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
if (PageHWPoison(&memmap[i])) {
|
|
num_poisoned_pages_dec();
|
|
ClearPageHWPoison(&memmap[i]);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
|
|
unsigned long nr_pages, unsigned long map_offset,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
|
|
nr_pages - map_offset);
|
|
section_deactivate(pfn, nr_pages, altmap);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|