refactor: remove empty services (#116)

* remove empty services

* remove old factory

* remove old static files

* cleanup more duplicate service code

* file/folder reorg
This commit is contained in:
Hayden 2022-10-29 20:05:38 -08:00 committed by GitHub
parent 6529549289
commit cd82fe0d89
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
179 changed files with 514 additions and 582 deletions

View file

@ -0,0 +1,141 @@
// Code generated by ent, DO NOT EDIT.
package group
import (
"fmt"
"time"
"github.com/google/uuid"
)
const (
// Label holds the string label denoting the group type in the database.
Label = "group"
// FieldID holds the string denoting the id field in the database.
FieldID = "id"
// FieldCreatedAt holds the string denoting the created_at field in the database.
FieldCreatedAt = "created_at"
// FieldUpdatedAt holds the string denoting the updated_at field in the database.
FieldUpdatedAt = "updated_at"
// FieldName holds the string denoting the name field in the database.
FieldName = "name"
// FieldCurrency holds the string denoting the currency field in the database.
FieldCurrency = "currency"
// EdgeUsers holds the string denoting the users edge name in mutations.
EdgeUsers = "users"
// EdgeLocations holds the string denoting the locations edge name in mutations.
EdgeLocations = "locations"
// EdgeItems holds the string denoting the items edge name in mutations.
EdgeItems = "items"
// EdgeLabels holds the string denoting the labels edge name in mutations.
EdgeLabels = "labels"
// EdgeDocuments holds the string denoting the documents edge name in mutations.
EdgeDocuments = "documents"
// EdgeInvitationTokens holds the string denoting the invitation_tokens edge name in mutations.
EdgeInvitationTokens = "invitation_tokens"
// Table holds the table name of the group in the database.
Table = "groups"
// UsersTable is the table that holds the users relation/edge.
UsersTable = "users"
// UsersInverseTable is the table name for the User entity.
// It exists in this package in order to avoid circular dependency with the "user" package.
UsersInverseTable = "users"
// UsersColumn is the table column denoting the users relation/edge.
UsersColumn = "group_users"
// LocationsTable is the table that holds the locations relation/edge.
LocationsTable = "locations"
// LocationsInverseTable is the table name for the Location entity.
// It exists in this package in order to avoid circular dependency with the "location" package.
LocationsInverseTable = "locations"
// LocationsColumn is the table column denoting the locations relation/edge.
LocationsColumn = "group_locations"
// ItemsTable is the table that holds the items relation/edge.
ItemsTable = "items"
// ItemsInverseTable is the table name for the Item entity.
// It exists in this package in order to avoid circular dependency with the "item" package.
ItemsInverseTable = "items"
// ItemsColumn is the table column denoting the items relation/edge.
ItemsColumn = "group_items"
// LabelsTable is the table that holds the labels relation/edge.
LabelsTable = "labels"
// LabelsInverseTable is the table name for the Label entity.
// It exists in this package in order to avoid circular dependency with the "label" package.
LabelsInverseTable = "labels"
// LabelsColumn is the table column denoting the labels relation/edge.
LabelsColumn = "group_labels"
// DocumentsTable is the table that holds the documents relation/edge.
DocumentsTable = "documents"
// DocumentsInverseTable is the table name for the Document entity.
// It exists in this package in order to avoid circular dependency with the "document" package.
DocumentsInverseTable = "documents"
// DocumentsColumn is the table column denoting the documents relation/edge.
DocumentsColumn = "group_documents"
// InvitationTokensTable is the table that holds the invitation_tokens relation/edge.
InvitationTokensTable = "group_invitation_tokens"
// InvitationTokensInverseTable is the table name for the GroupInvitationToken entity.
// It exists in this package in order to avoid circular dependency with the "groupinvitationtoken" package.
InvitationTokensInverseTable = "group_invitation_tokens"
// InvitationTokensColumn is the table column denoting the invitation_tokens relation/edge.
InvitationTokensColumn = "group_invitation_tokens"
)
// Columns holds all SQL columns for group fields.
var Columns = []string{
FieldID,
FieldCreatedAt,
FieldUpdatedAt,
FieldName,
FieldCurrency,
}
// ValidColumn reports if the column name is valid (part of the table columns).
func ValidColumn(column string) bool {
for i := range Columns {
if column == Columns[i] {
return true
}
}
return false
}
var (
// DefaultCreatedAt holds the default value on creation for the "created_at" field.
DefaultCreatedAt func() time.Time
// DefaultUpdatedAt holds the default value on creation for the "updated_at" field.
DefaultUpdatedAt func() time.Time
// UpdateDefaultUpdatedAt holds the default value on update for the "updated_at" field.
UpdateDefaultUpdatedAt func() time.Time
// NameValidator is a validator for the "name" field. It is called by the builders before save.
NameValidator func(string) error
// DefaultID holds the default value on creation for the "id" field.
DefaultID func() uuid.UUID
)
// Currency defines the type for the "currency" enum field.
type Currency string
// CurrencyUsd is the default value of the Currency enum.
const DefaultCurrency = CurrencyUsd
// Currency values.
const (
CurrencyUsd Currency = "usd"
CurrencyEur Currency = "eur"
CurrencyGbp Currency = "gbp"
CurrencyJpy Currency = "jpy"
)
func (c Currency) String() string {
return string(c)
}
// CurrencyValidator is a validator for the "currency" field enum values. It is called by the builders before save.
func CurrencyValidator(c Currency) error {
switch c {
case CurrencyUsd, CurrencyEur, CurrencyGbp, CurrencyJpy:
return nil
default:
return fmt.Errorf("group: invalid enum value for currency field: %q", c)
}
}

View file

@ -0,0 +1,567 @@
// Code generated by ent, DO NOT EDIT.
package group
import (
"time"
"entgo.io/ent/dialect/sql"
"entgo.io/ent/dialect/sql/sqlgraph"
"github.com/google/uuid"
"github.com/hay-kot/homebox/backend/internal/data/ent/predicate"
)
// ID filters vertices based on their ID field.
func ID(id uuid.UUID) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDEQ applies the EQ predicate on the ID field.
func IDEQ(id uuid.UUID) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDNEQ applies the NEQ predicate on the ID field.
func IDNEQ(id uuid.UUID) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldID), id))
})
}
// IDIn applies the In predicate on the ID field.
func IDIn(ids ...uuid.UUID) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
v := make([]any, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.In(s.C(FieldID), v...))
})
}
// IDNotIn applies the NotIn predicate on the ID field.
func IDNotIn(ids ...uuid.UUID) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
v := make([]any, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.NotIn(s.C(FieldID), v...))
})
}
// IDGT applies the GT predicate on the ID field.
func IDGT(id uuid.UUID) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldID), id))
})
}
// IDGTE applies the GTE predicate on the ID field.
func IDGTE(id uuid.UUID) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldID), id))
})
}
// IDLT applies the LT predicate on the ID field.
func IDLT(id uuid.UUID) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldID), id))
})
}
// IDLTE applies the LTE predicate on the ID field.
func IDLTE(id uuid.UUID) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldID), id))
})
}
// CreatedAt applies equality check predicate on the "created_at" field. It's identical to CreatedAtEQ.
func CreatedAt(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldCreatedAt), v))
})
}
// UpdatedAt applies equality check predicate on the "updated_at" field. It's identical to UpdatedAtEQ.
func UpdatedAt(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldUpdatedAt), v))
})
}
// Name applies equality check predicate on the "name" field. It's identical to NameEQ.
func Name(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldName), v))
})
}
// CreatedAtEQ applies the EQ predicate on the "created_at" field.
func CreatedAtEQ(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldCreatedAt), v))
})
}
// CreatedAtNEQ applies the NEQ predicate on the "created_at" field.
func CreatedAtNEQ(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldCreatedAt), v))
})
}
// CreatedAtIn applies the In predicate on the "created_at" field.
func CreatedAtIn(vs ...time.Time) predicate.Group {
v := make([]any, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.In(s.C(FieldCreatedAt), v...))
})
}
// CreatedAtNotIn applies the NotIn predicate on the "created_at" field.
func CreatedAtNotIn(vs ...time.Time) predicate.Group {
v := make([]any, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NotIn(s.C(FieldCreatedAt), v...))
})
}
// CreatedAtGT applies the GT predicate on the "created_at" field.
func CreatedAtGT(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldCreatedAt), v))
})
}
// CreatedAtGTE applies the GTE predicate on the "created_at" field.
func CreatedAtGTE(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldCreatedAt), v))
})
}
// CreatedAtLT applies the LT predicate on the "created_at" field.
func CreatedAtLT(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldCreatedAt), v))
})
}
// CreatedAtLTE applies the LTE predicate on the "created_at" field.
func CreatedAtLTE(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldCreatedAt), v))
})
}
// UpdatedAtEQ applies the EQ predicate on the "updated_at" field.
func UpdatedAtEQ(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtNEQ applies the NEQ predicate on the "updated_at" field.
func UpdatedAtNEQ(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtIn applies the In predicate on the "updated_at" field.
func UpdatedAtIn(vs ...time.Time) predicate.Group {
v := make([]any, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.In(s.C(FieldUpdatedAt), v...))
})
}
// UpdatedAtNotIn applies the NotIn predicate on the "updated_at" field.
func UpdatedAtNotIn(vs ...time.Time) predicate.Group {
v := make([]any, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NotIn(s.C(FieldUpdatedAt), v...))
})
}
// UpdatedAtGT applies the GT predicate on the "updated_at" field.
func UpdatedAtGT(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtGTE applies the GTE predicate on the "updated_at" field.
func UpdatedAtGTE(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtLT applies the LT predicate on the "updated_at" field.
func UpdatedAtLT(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldUpdatedAt), v))
})
}
// UpdatedAtLTE applies the LTE predicate on the "updated_at" field.
func UpdatedAtLTE(v time.Time) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldUpdatedAt), v))
})
}
// NameEQ applies the EQ predicate on the "name" field.
func NameEQ(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldName), v))
})
}
// NameNEQ applies the NEQ predicate on the "name" field.
func NameNEQ(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldName), v))
})
}
// NameIn applies the In predicate on the "name" field.
func NameIn(vs ...string) predicate.Group {
v := make([]any, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.In(s.C(FieldName), v...))
})
}
// NameNotIn applies the NotIn predicate on the "name" field.
func NameNotIn(vs ...string) predicate.Group {
v := make([]any, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NotIn(s.C(FieldName), v...))
})
}
// NameGT applies the GT predicate on the "name" field.
func NameGT(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldName), v))
})
}
// NameGTE applies the GTE predicate on the "name" field.
func NameGTE(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldName), v))
})
}
// NameLT applies the LT predicate on the "name" field.
func NameLT(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldName), v))
})
}
// NameLTE applies the LTE predicate on the "name" field.
func NameLTE(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldName), v))
})
}
// NameContains applies the Contains predicate on the "name" field.
func NameContains(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.Contains(s.C(FieldName), v))
})
}
// NameHasPrefix applies the HasPrefix predicate on the "name" field.
func NameHasPrefix(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.HasPrefix(s.C(FieldName), v))
})
}
// NameHasSuffix applies the HasSuffix predicate on the "name" field.
func NameHasSuffix(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.HasSuffix(s.C(FieldName), v))
})
}
// NameEqualFold applies the EqualFold predicate on the "name" field.
func NameEqualFold(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EqualFold(s.C(FieldName), v))
})
}
// NameContainsFold applies the ContainsFold predicate on the "name" field.
func NameContainsFold(v string) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.ContainsFold(s.C(FieldName), v))
})
}
// CurrencyEQ applies the EQ predicate on the "currency" field.
func CurrencyEQ(v Currency) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldCurrency), v))
})
}
// CurrencyNEQ applies the NEQ predicate on the "currency" field.
func CurrencyNEQ(v Currency) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldCurrency), v))
})
}
// CurrencyIn applies the In predicate on the "currency" field.
func CurrencyIn(vs ...Currency) predicate.Group {
v := make([]any, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.In(s.C(FieldCurrency), v...))
})
}
// CurrencyNotIn applies the NotIn predicate on the "currency" field.
func CurrencyNotIn(vs ...Currency) predicate.Group {
v := make([]any, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Group(func(s *sql.Selector) {
s.Where(sql.NotIn(s.C(FieldCurrency), v...))
})
}
// HasUsers applies the HasEdge predicate on the "users" edge.
func HasUsers() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(UsersTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, UsersTable, UsersColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasUsersWith applies the HasEdge predicate on the "users" edge with a given conditions (other predicates).
func HasUsersWith(preds ...predicate.User) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(UsersInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, UsersTable, UsersColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasLocations applies the HasEdge predicate on the "locations" edge.
func HasLocations() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(LocationsTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, LocationsTable, LocationsColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasLocationsWith applies the HasEdge predicate on the "locations" edge with a given conditions (other predicates).
func HasLocationsWith(preds ...predicate.Location) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(LocationsInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, LocationsTable, LocationsColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasItems applies the HasEdge predicate on the "items" edge.
func HasItems() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(ItemsTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, ItemsTable, ItemsColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasItemsWith applies the HasEdge predicate on the "items" edge with a given conditions (other predicates).
func HasItemsWith(preds ...predicate.Item) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(ItemsInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, ItemsTable, ItemsColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasLabels applies the HasEdge predicate on the "labels" edge.
func HasLabels() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(LabelsTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, LabelsTable, LabelsColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasLabelsWith applies the HasEdge predicate on the "labels" edge with a given conditions (other predicates).
func HasLabelsWith(preds ...predicate.Label) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(LabelsInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, LabelsTable, LabelsColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasDocuments applies the HasEdge predicate on the "documents" edge.
func HasDocuments() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(DocumentsTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, DocumentsTable, DocumentsColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasDocumentsWith applies the HasEdge predicate on the "documents" edge with a given conditions (other predicates).
func HasDocumentsWith(preds ...predicate.Document) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(DocumentsInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, DocumentsTable, DocumentsColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasInvitationTokens applies the HasEdge predicate on the "invitation_tokens" edge.
func HasInvitationTokens() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(InvitationTokensTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, InvitationTokensTable, InvitationTokensColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasInvitationTokensWith applies the HasEdge predicate on the "invitation_tokens" edge with a given conditions (other predicates).
func HasInvitationTokensWith(preds ...predicate.GroupInvitationToken) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(InvitationTokensInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, InvitationTokensTable, InvitationTokensColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// And groups predicates with the AND operator between them.
func And(predicates ...predicate.Group) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for _, p := range predicates {
p(s1)
}
s.Where(s1.P())
})
}
// Or groups predicates with the OR operator between them.
func Or(predicates ...predicate.Group) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for i, p := range predicates {
if i > 0 {
s1.Or()
}
p(s1)
}
s.Where(s1.P())
})
}
// Not applies the not operator on the given predicate.
func Not(p predicate.Group) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
p(s.Not())
})
}