homebox/backend/internal/data/ent/group/where.go
2023-03-05 21:21:05 -09:00

458 lines
14 KiB
Go

// Code generated by ent, DO NOT EDIT.
package group
import (
"time"
"entgo.io/ent/dialect/sql"
"entgo.io/ent/dialect/sql/sqlgraph"
"github.com/google/uuid"
"github.com/hay-kot/homebox/backend/internal/data/ent/predicate"
)
// ID filters vertices based on their ID field.
func ID(id uuid.UUID) predicate.Group {
return predicate.Group(sql.FieldEQ(FieldID, id))
}
// IDEQ applies the EQ predicate on the ID field.
func IDEQ(id uuid.UUID) predicate.Group {
return predicate.Group(sql.FieldEQ(FieldID, id))
}
// IDNEQ applies the NEQ predicate on the ID field.
func IDNEQ(id uuid.UUID) predicate.Group {
return predicate.Group(sql.FieldNEQ(FieldID, id))
}
// IDIn applies the In predicate on the ID field.
func IDIn(ids ...uuid.UUID) predicate.Group {
return predicate.Group(sql.FieldIn(FieldID, ids...))
}
// IDNotIn applies the NotIn predicate on the ID field.
func IDNotIn(ids ...uuid.UUID) predicate.Group {
return predicate.Group(sql.FieldNotIn(FieldID, ids...))
}
// IDGT applies the GT predicate on the ID field.
func IDGT(id uuid.UUID) predicate.Group {
return predicate.Group(sql.FieldGT(FieldID, id))
}
// IDGTE applies the GTE predicate on the ID field.
func IDGTE(id uuid.UUID) predicate.Group {
return predicate.Group(sql.FieldGTE(FieldID, id))
}
// IDLT applies the LT predicate on the ID field.
func IDLT(id uuid.UUID) predicate.Group {
return predicate.Group(sql.FieldLT(FieldID, id))
}
// IDLTE applies the LTE predicate on the ID field.
func IDLTE(id uuid.UUID) predicate.Group {
return predicate.Group(sql.FieldLTE(FieldID, id))
}
// CreatedAt applies equality check predicate on the "created_at" field. It's identical to CreatedAtEQ.
func CreatedAt(v time.Time) predicate.Group {
return predicate.Group(sql.FieldEQ(FieldCreatedAt, v))
}
// UpdatedAt applies equality check predicate on the "updated_at" field. It's identical to UpdatedAtEQ.
func UpdatedAt(v time.Time) predicate.Group {
return predicate.Group(sql.FieldEQ(FieldUpdatedAt, v))
}
// Name applies equality check predicate on the "name" field. It's identical to NameEQ.
func Name(v string) predicate.Group {
return predicate.Group(sql.FieldEQ(FieldName, v))
}
// CreatedAtEQ applies the EQ predicate on the "created_at" field.
func CreatedAtEQ(v time.Time) predicate.Group {
return predicate.Group(sql.FieldEQ(FieldCreatedAt, v))
}
// CreatedAtNEQ applies the NEQ predicate on the "created_at" field.
func CreatedAtNEQ(v time.Time) predicate.Group {
return predicate.Group(sql.FieldNEQ(FieldCreatedAt, v))
}
// CreatedAtIn applies the In predicate on the "created_at" field.
func CreatedAtIn(vs ...time.Time) predicate.Group {
return predicate.Group(sql.FieldIn(FieldCreatedAt, vs...))
}
// CreatedAtNotIn applies the NotIn predicate on the "created_at" field.
func CreatedAtNotIn(vs ...time.Time) predicate.Group {
return predicate.Group(sql.FieldNotIn(FieldCreatedAt, vs...))
}
// CreatedAtGT applies the GT predicate on the "created_at" field.
func CreatedAtGT(v time.Time) predicate.Group {
return predicate.Group(sql.FieldGT(FieldCreatedAt, v))
}
// CreatedAtGTE applies the GTE predicate on the "created_at" field.
func CreatedAtGTE(v time.Time) predicate.Group {
return predicate.Group(sql.FieldGTE(FieldCreatedAt, v))
}
// CreatedAtLT applies the LT predicate on the "created_at" field.
func CreatedAtLT(v time.Time) predicate.Group {
return predicate.Group(sql.FieldLT(FieldCreatedAt, v))
}
// CreatedAtLTE applies the LTE predicate on the "created_at" field.
func CreatedAtLTE(v time.Time) predicate.Group {
return predicate.Group(sql.FieldLTE(FieldCreatedAt, v))
}
// UpdatedAtEQ applies the EQ predicate on the "updated_at" field.
func UpdatedAtEQ(v time.Time) predicate.Group {
return predicate.Group(sql.FieldEQ(FieldUpdatedAt, v))
}
// UpdatedAtNEQ applies the NEQ predicate on the "updated_at" field.
func UpdatedAtNEQ(v time.Time) predicate.Group {
return predicate.Group(sql.FieldNEQ(FieldUpdatedAt, v))
}
// UpdatedAtIn applies the In predicate on the "updated_at" field.
func UpdatedAtIn(vs ...time.Time) predicate.Group {
return predicate.Group(sql.FieldIn(FieldUpdatedAt, vs...))
}
// UpdatedAtNotIn applies the NotIn predicate on the "updated_at" field.
func UpdatedAtNotIn(vs ...time.Time) predicate.Group {
return predicate.Group(sql.FieldNotIn(FieldUpdatedAt, vs...))
}
// UpdatedAtGT applies the GT predicate on the "updated_at" field.
func UpdatedAtGT(v time.Time) predicate.Group {
return predicate.Group(sql.FieldGT(FieldUpdatedAt, v))
}
// UpdatedAtGTE applies the GTE predicate on the "updated_at" field.
func UpdatedAtGTE(v time.Time) predicate.Group {
return predicate.Group(sql.FieldGTE(FieldUpdatedAt, v))
}
// UpdatedAtLT applies the LT predicate on the "updated_at" field.
func UpdatedAtLT(v time.Time) predicate.Group {
return predicate.Group(sql.FieldLT(FieldUpdatedAt, v))
}
// UpdatedAtLTE applies the LTE predicate on the "updated_at" field.
func UpdatedAtLTE(v time.Time) predicate.Group {
return predicate.Group(sql.FieldLTE(FieldUpdatedAt, v))
}
// NameEQ applies the EQ predicate on the "name" field.
func NameEQ(v string) predicate.Group {
return predicate.Group(sql.FieldEQ(FieldName, v))
}
// NameNEQ applies the NEQ predicate on the "name" field.
func NameNEQ(v string) predicate.Group {
return predicate.Group(sql.FieldNEQ(FieldName, v))
}
// NameIn applies the In predicate on the "name" field.
func NameIn(vs ...string) predicate.Group {
return predicate.Group(sql.FieldIn(FieldName, vs...))
}
// NameNotIn applies the NotIn predicate on the "name" field.
func NameNotIn(vs ...string) predicate.Group {
return predicate.Group(sql.FieldNotIn(FieldName, vs...))
}
// NameGT applies the GT predicate on the "name" field.
func NameGT(v string) predicate.Group {
return predicate.Group(sql.FieldGT(FieldName, v))
}
// NameGTE applies the GTE predicate on the "name" field.
func NameGTE(v string) predicate.Group {
return predicate.Group(sql.FieldGTE(FieldName, v))
}
// NameLT applies the LT predicate on the "name" field.
func NameLT(v string) predicate.Group {
return predicate.Group(sql.FieldLT(FieldName, v))
}
// NameLTE applies the LTE predicate on the "name" field.
func NameLTE(v string) predicate.Group {
return predicate.Group(sql.FieldLTE(FieldName, v))
}
// NameContains applies the Contains predicate on the "name" field.
func NameContains(v string) predicate.Group {
return predicate.Group(sql.FieldContains(FieldName, v))
}
// NameHasPrefix applies the HasPrefix predicate on the "name" field.
func NameHasPrefix(v string) predicate.Group {
return predicate.Group(sql.FieldHasPrefix(FieldName, v))
}
// NameHasSuffix applies the HasSuffix predicate on the "name" field.
func NameHasSuffix(v string) predicate.Group {
return predicate.Group(sql.FieldHasSuffix(FieldName, v))
}
// NameEqualFold applies the EqualFold predicate on the "name" field.
func NameEqualFold(v string) predicate.Group {
return predicate.Group(sql.FieldEqualFold(FieldName, v))
}
// NameContainsFold applies the ContainsFold predicate on the "name" field.
func NameContainsFold(v string) predicate.Group {
return predicate.Group(sql.FieldContainsFold(FieldName, v))
}
// CurrencyEQ applies the EQ predicate on the "currency" field.
func CurrencyEQ(v Currency) predicate.Group {
return predicate.Group(sql.FieldEQ(FieldCurrency, v))
}
// CurrencyNEQ applies the NEQ predicate on the "currency" field.
func CurrencyNEQ(v Currency) predicate.Group {
return predicate.Group(sql.FieldNEQ(FieldCurrency, v))
}
// CurrencyIn applies the In predicate on the "currency" field.
func CurrencyIn(vs ...Currency) predicate.Group {
return predicate.Group(sql.FieldIn(FieldCurrency, vs...))
}
// CurrencyNotIn applies the NotIn predicate on the "currency" field.
func CurrencyNotIn(vs ...Currency) predicate.Group {
return predicate.Group(sql.FieldNotIn(FieldCurrency, vs...))
}
// HasUsers applies the HasEdge predicate on the "users" edge.
func HasUsers() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, UsersTable, UsersColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasUsersWith applies the HasEdge predicate on the "users" edge with a given conditions (other predicates).
func HasUsersWith(preds ...predicate.User) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(UsersInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, UsersTable, UsersColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasLocations applies the HasEdge predicate on the "locations" edge.
func HasLocations() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, LocationsTable, LocationsColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasLocationsWith applies the HasEdge predicate on the "locations" edge with a given conditions (other predicates).
func HasLocationsWith(preds ...predicate.Location) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(LocationsInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, LocationsTable, LocationsColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasItems applies the HasEdge predicate on the "items" edge.
func HasItems() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, ItemsTable, ItemsColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasItemsWith applies the HasEdge predicate on the "items" edge with a given conditions (other predicates).
func HasItemsWith(preds ...predicate.Item) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(ItemsInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, ItemsTable, ItemsColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasLabels applies the HasEdge predicate on the "labels" edge.
func HasLabels() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, LabelsTable, LabelsColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasLabelsWith applies the HasEdge predicate on the "labels" edge with a given conditions (other predicates).
func HasLabelsWith(preds ...predicate.Label) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(LabelsInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, LabelsTable, LabelsColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasDocuments applies the HasEdge predicate on the "documents" edge.
func HasDocuments() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, DocumentsTable, DocumentsColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasDocumentsWith applies the HasEdge predicate on the "documents" edge with a given conditions (other predicates).
func HasDocumentsWith(preds ...predicate.Document) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(DocumentsInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, DocumentsTable, DocumentsColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasInvitationTokens applies the HasEdge predicate on the "invitation_tokens" edge.
func HasInvitationTokens() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, InvitationTokensTable, InvitationTokensColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasInvitationTokensWith applies the HasEdge predicate on the "invitation_tokens" edge with a given conditions (other predicates).
func HasInvitationTokensWith(preds ...predicate.GroupInvitationToken) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(InvitationTokensInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, InvitationTokensTable, InvitationTokensColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// HasNotifiers applies the HasEdge predicate on the "notifiers" edge.
func HasNotifiers() predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, NotifiersTable, NotifiersColumn),
)
sqlgraph.HasNeighbors(s, step)
})
}
// HasNotifiersWith applies the HasEdge predicate on the "notifiers" edge with a given conditions (other predicates).
func HasNotifiersWith(preds ...predicate.Notifier) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
step := sqlgraph.NewStep(
sqlgraph.From(Table, FieldID),
sqlgraph.To(NotifiersInverseTable, FieldID),
sqlgraph.Edge(sqlgraph.O2M, false, NotifiersTable, NotifiersColumn),
)
sqlgraph.HasNeighborsWith(s, step, func(s *sql.Selector) {
for _, p := range preds {
p(s)
}
})
})
}
// And groups predicates with the AND operator between them.
func And(predicates ...predicate.Group) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for _, p := range predicates {
p(s1)
}
s.Where(s1.P())
})
}
// Or groups predicates with the OR operator between them.
func Or(predicates ...predicate.Group) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for i, p := range predicates {
if i > 0 {
s1.Or()
}
p(s1)
}
s.Where(s1.P())
})
}
// Not applies the not operator on the given predicate.
func Not(p predicate.Group) predicate.Group {
return predicate.Group(func(s *sql.Selector) {
p(s.Not())
})
}