This allows LLAMA models that were previously incompatible with K quants to function mostly as normal. This happens when a model has a vocab != 32000, e.g 32001 which means it's not divisible by 256 or 64. Since the problematic dimensions only apply for tok_embeddings.weight
and output.weight
(dimentions 4096 x n_vocab), we can simply quantize these layers to Q8_0 whereas the majority of the hidden layers are still K-quanted since they have compatible dimensions.
This commit is contained in:
parent
061f5f8d21
commit
1854168841
1 changed files with 8 additions and 4 deletions
12
llama.cpp
12
llama.cpp
|
@ -2428,15 +2428,15 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
} else {
|
} else {
|
||||||
new_type = quantized_type;
|
new_type = quantized_type;
|
||||||
#ifdef GGML_USE_K_QUANTS
|
#ifdef GGML_USE_K_QUANTS
|
||||||
|
bool convert_incompatible_tensor = false;
|
||||||
if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
|
if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
|
||||||
quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
|
quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
|
||||||
int nx = tensor.ne.at(0);
|
int nx = tensor.ne.at(0);
|
||||||
int ny = tensor.ne.at(1);
|
int ny = tensor.ne.at(1);
|
||||||
if (nx % QK_K != 0 || ny % QK_K != 0) {
|
if (nx % QK_K != 0 || ny % QK_K != 0) {
|
||||||
fprintf(stderr, "\n\n========================= Tensor sizes %d x %d are not divisible by %d\n",nx,ny,QK_K);
|
fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
|
||||||
fprintf(stderr, "This is required to be able to use k-quants for now!\n");
|
fprintf(stderr, "Q8_0 will be used for this tensor instead.\n");
|
||||||
fprintf(stderr, "========================================================================================\n\n");
|
convert_incompatible_tensor = true;
|
||||||
throw std::runtime_error("Unsupported tensor size encountered\n");
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (tensor.name == "output.weight") {
|
if (tensor.name == "output.weight") {
|
||||||
|
@ -2464,6 +2464,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||||
}
|
}
|
||||||
|
if(convert_incompatible_tensor)
|
||||||
|
{
|
||||||
|
new_type = GGML_TYPE_Q8_0; //fall back to Q8_0 instead of just failing.
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
float * f32_data;
|
float * f32_data;
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue