remove n_rot hparam, as it must always be hparam.n_embd_head()

This commit is contained in:
xaedes 2023-09-17 16:40:40 +02:00
parent 56a03faf5f
commit 1dbd6bc3d5
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1

View file

@ -29,7 +29,6 @@ struct my_llama_hparams {
uint32_t n_head = 32; uint32_t n_head = 32;
uint32_t n_head_kv = 32; uint32_t n_head_kv = 32;
uint32_t n_layer = 32; uint32_t n_layer = 32;
uint32_t n_rot = 64;
uint32_t n_gqa() const { uint32_t n_gqa() const {
return n_head/n_head_kv; return n_head/n_head_kv;
@ -203,7 +202,6 @@ static void print_params(struct my_llama_hparams * params) {
printf("%s: n_ff: %u\n", __func__, params->n_ff); printf("%s: n_ff: %u\n", __func__, params->n_ff);
printf("%s: n_head: %u\n", __func__, params->n_head); printf("%s: n_head: %u\n", __func__, params->n_head);
printf("%s: n_layer: %u\n", __func__, params->n_layer); printf("%s: n_layer: %u\n", __func__, params->n_layer);
printf("%s: n_rot: %u\n", __func__, params->n_rot);
} }
static void print_lora_params(struct my_llama_lora_hparams * params) { static void print_lora_params(struct my_llama_lora_hparams * params) {
@ -247,7 +245,6 @@ static void init_model(struct llama_model * input, struct my_llama_model * model
hparams.n_head = llama_model_n_head(input); hparams.n_head = llama_model_n_head(input);
hparams.n_head_kv = llama_model_n_head_kv(input); hparams.n_head_kv = llama_model_n_head_kv(input);
hparams.n_layer = llama_model_n_layer(input); hparams.n_layer = llama_model_n_layer(input);
hparams.n_rot = llama_model_n_rot(input);
model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD)); model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD));
model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM)); model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM));
@ -535,8 +532,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
const int n_layer = hparams.n_layer; const int n_layer = hparams.n_layer;
const int n_head = hparams.n_head; const int n_head = hparams.n_head;
const int n_head_kv = hparams.n_head_kv; const int n_head_kv = hparams.n_head_kv;
const int n_rot = hparams.n_rot;
const int n_ff = hparams.n_ff; const int n_ff = hparams.n_ff;
const int n_rot = hparams.n_embd_head();
const int n_embd_head = hparams.n_embd_head(); const int n_embd_head = hparams.n_embd_head();
const int n_embd_gqa = hparams.n_embd_gqa(); const int n_embd_gqa = hparams.n_embd_gqa();
const float rms_norm_eps = lora->hparams.f_norm_rms_eps; const float rms_norm_eps = lora->hparams.f_norm_rms_eps;
@ -544,7 +541,6 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
const float rope_freq_scale = lora->hparams.rope_freq_scale; const float rope_freq_scale = lora->hparams.rope_freq_scale;
GGML_ASSERT((size_t) n_layer == lora->layers.size()); GGML_ASSERT((size_t) n_layer == lora->layers.size());
GGML_ASSERT(n_embd_head == n_rot);
auto set_name = [](struct ggml_tensor * t, const char * n) { auto set_name = [](struct ggml_tensor * t, const char * n) {
ggml_set_name(t, n); ggml_set_name(t, n);
@ -823,9 +819,6 @@ static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context
model->hparams.n_head_kv = model->hparams.n_head; model->hparams.n_head_kv = model->hparams.n_head;
GGUF_GET_KEY(fctx, model->hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV)); GGUF_GET_KEY(fctx, model->hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
model->hparams.n_rot = model->hparams.n_embd / model->hparams.n_head;
GGUF_GET_KEY(fctx, model->hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
float rope_freq_scale = 1.0f; float rope_freq_scale = 1.0f;
GGUF_GET_KEY(fctx, lora->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS)); GGUF_GET_KEY(fctx, lora->hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
GGUF_GET_KEY(fctx, lora->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE)); GGUF_GET_KEY(fctx, lora->hparams.rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
@ -899,7 +892,7 @@ static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_mod
gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head); gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head);
gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv); gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv);
gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer); gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer);
gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_rot); gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_embd_head());
gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), lora->hparams.f_norm_rms_eps); gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), lora->hparams.f_norm_rms_eps);
gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), lora->hparams.rope_freq_base); gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), lora->hparams.rope_freq_base);
gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), lora->hparams.rope_freq_scale); gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), lora->hparams.rope_freq_scale);