gguf : define tensor names as constants
This commit is contained in:
parent
693bd398c5
commit
29743cb83b
1 changed files with 29 additions and 18 deletions
|
@ -56,6 +56,20 @@
|
|||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
// tensor names
|
||||
#define TN_TOKEN_EMBD "token_embd.weight"
|
||||
#define TN_OUTPUT_NORM "output_norm.weight"
|
||||
#define TN_OUTPUT "output.weight"
|
||||
#define TN_ATTN_NORM "blk.%d.attn_norm.weight"
|
||||
#define TN_ATTN_Q "blk.%d.attn_q.weight"
|
||||
#define TN_ATTN_K "blk.%d.attn_k.weight"
|
||||
#define TN_ATTN_V "blk.%d.attn_v.weight"
|
||||
#define TN_ATTN_OUTPUT "blk.%d.attn_output.weight"
|
||||
#define TN_FFN_NORM "blk.%d.ffn_norm.weight"
|
||||
#define TN_FFN_GATE "blk.%d.ffn_gate.weight"
|
||||
#define TN_FFN_DOWN "blk.%d.ffn_down.weight"
|
||||
#define TN_FFN_UP "blk.%d.ffn_up.weight"
|
||||
|
||||
static void llama_log_internal(llama_log_level level, const char* format, ...);
|
||||
static void llama_log_callback_default(llama_log_level level, const char * text, void * user_data);
|
||||
#define LLAMA_LOG_INFO(...) llama_log_internal(LLAMA_LOG_LEVEL_INFO , __VA_ARGS__)
|
||||
|
@ -1310,7 +1324,7 @@ static void llama_model_load_internal(
|
|||
|
||||
ml->ggml_ctx = ctx;
|
||||
|
||||
model.tok_embeddings = ml->get_tensor("token_embd.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
||||
model.tok_embeddings = ml->get_tensor(TN_TOKEN_EMBD, {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
||||
|
||||
// "output" tensor
|
||||
{
|
||||
|
@ -1331,8 +1345,8 @@ static void llama_model_load_internal(
|
|||
backend_output = GGML_BACKEND_CPU;
|
||||
}
|
||||
|
||||
model.norm = ml->get_tensor("output_norm.weight", {n_embd}, backend_norm);
|
||||
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
|
||||
model.norm = ml->get_tensor(TN_OUTPUT_NORM, {n_embd}, backend_norm);
|
||||
model.output = ml->get_tensor(TN_OUTPUT, {n_embd, n_vocab}, backend_output);
|
||||
if (backend_norm == GGML_BACKEND_GPU) {
|
||||
vram_weights += ggml_nbytes(model.norm);
|
||||
}
|
||||
|
@ -1349,21 +1363,18 @@ static void llama_model_load_internal(
|
|||
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
layer.attention_norm = ml->get_tensor(format(TN_ATTN_NORM, i), {n_embd}, backend);
|
||||
|
||||
std::string layers_i = "blk." + std::to_string(i);
|
||||
layer.wq = ml->get_tensor(format(TN_ATTN_Q, i), {n_embd, n_embd}, backend_split);
|
||||
layer.wk = ml->get_tensor(format(TN_ATTN_K, i), {n_embd, n_embd_gqa}, backend_split);
|
||||
layer.wv = ml->get_tensor(format(TN_ATTN_V, i), {n_embd, n_embd_gqa}, backend_split);
|
||||
layer.wo = ml->get_tensor(format(TN_ATTN_OUTPUT, i), {n_embd, n_embd}, backend_split);
|
||||
|
||||
layer.attention_norm = ml->get_tensor(layers_i + ".attn_norm.weight", {n_embd}, backend);
|
||||
layer.ffn_norm = ml->get_tensor(format(TN_FFN_NORM, i), {n_embd}, backend);
|
||||
|
||||
layer.wq = ml->get_tensor(layers_i + ".attn_q.weight", {n_embd, n_embd}, backend_split);
|
||||
layer.wk = ml->get_tensor(layers_i + ".attn_k.weight", {n_embd, n_embd_gqa}, backend_split);
|
||||
layer.wv = ml->get_tensor(layers_i + ".attn_v.weight", {n_embd, n_embd_gqa}, backend_split);
|
||||
layer.wo = ml->get_tensor(layers_i + ".attn_output.weight", {n_embd, n_embd}, backend_split);
|
||||
|
||||
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
|
||||
|
||||
layer.w1 = ml->get_tensor(layers_i + ".ffn_gate.weight", {n_embd, n_ff}, backend_split);
|
||||
layer.w2 = ml->get_tensor(layers_i + ".ffn_down.weight", { n_ff, n_embd}, backend_split);
|
||||
layer.w3 = ml->get_tensor(layers_i + ".ffn_up.weight", {n_embd, n_ff}, backend_split);
|
||||
layer.w1 = ml->get_tensor(format(TN_FFN_GATE, i), {n_embd, n_ff}, backend_split);
|
||||
layer.w2 = ml->get_tensor(format(TN_FFN_DOWN, i), { n_ff, n_embd}, backend_split);
|
||||
layer.w3 = ml->get_tensor(format(TN_FFN_UP, i), {n_embd, n_ff}, backend_split);
|
||||
|
||||
if (backend == GGML_BACKEND_GPU) {
|
||||
vram_weights +=
|
||||
|
@ -3298,7 +3309,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
} else {
|
||||
new_type = quantized_type;
|
||||
#ifdef GGML_USE_K_QUANTS
|
||||
if (tensor.name == "output.weight") {
|
||||
if (tensor.name == TN_OUTPUT) {
|
||||
int nx = tensor.ne.at(0);
|
||||
int ny = tensor.ne.at(1);
|
||||
if (nx % QK_K == 0 && ny % QK_K == 0) {
|
||||
|
@ -3334,10 +3345,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
}
|
||||
}
|
||||
if (convert_incompatible_tensor) {
|
||||
if (tensor.name == "output.weight") {
|
||||
if (tensor.name == TN_OUTPUT) {
|
||||
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
|
||||
LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
|
||||
} else if (tensor.name == "token_embd.weight") {
|
||||
} else if (tensor.name == TN_TOKEN_EMBD) {
|
||||
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
|
||||
LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
|
||||
} else {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue