implement swin norm

This commit is contained in:
nopperl 2024-07-17 12:55:47 +02:00
parent c460d5c3bb
commit 3d3523e432

View file

@ -320,6 +320,7 @@ enum llm_kv {
LLM_KV_DECODER_START_TOKEN_ID,
LLM_KV_ATTN_LOGIT_SOFTCAPPING,
LLM_KV_FINAL_LOGIT_SOFTCAPPING,
LLM_KV_SWIN_NORM,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,
@ -413,6 +414,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_DECODER_START_TOKEN_ID, "%s.decoder_start_token_id" },
{ LLM_KV_ATTN_LOGIT_SOFTCAPPING, "%s.attn_logit_softcapping" },
{ LLM_KV_FINAL_LOGIT_SOFTCAPPING, "%s.final_logit_softcapping" },
{ LLM_KV_SWIN_NORM, "%s.swin_norm" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@ -2172,6 +2174,7 @@ struct llama_hparams {
bool vocab_only;
bool rope_finetuned;
bool use_par_res;
bool swin_norm;
uint32_t n_vocab;
uint32_t n_ctx_train; // context size the model was trained on
@ -5242,6 +5245,7 @@ static void llm_load_hparams(
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
@ -7560,7 +7564,7 @@ static bool llm_load_tensors(
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head});
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv});
layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
@ -13686,7 +13690,7 @@ struct llm_build_context {
// ref: https://github.com/facebookresearch/chameleon
// based on the original build_llama() function, changes:
// * qk-norm
// * swin-norm (TODO)
// * swin-norm
// * removed bias
// * removed MoE
struct ggml_cgraph * build_chameleon() {
@ -13714,9 +13718,11 @@ struct llm_build_context {
struct ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams,
if (!hparams.swin_norm) {
cur = llm_build_norm(ctx0, inpL, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
}
cb(cur, "attn_norm", il);
// self-attention
@ -13773,6 +13779,12 @@ struct llm_build_context {
cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
model.layers[il].wo, nullptr,
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
if (hparams.swin_norm) {
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].attn_norm, NULL,
LLM_NORM_RMS, cb, il);
}
}
if (il == n_layer - 1) {
@ -13787,10 +13799,12 @@ struct llm_build_context {
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
if (!hparams.swin_norm) {
cur = llm_build_norm(ctx0, ffn_inp, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
}
cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL, NULL,
@ -13800,6 +13814,13 @@ struct llm_build_context {
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il);
if (hparams.swin_norm) {
cur = llm_build_norm(ctx0, cur, hparams,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
}
cur = ggml_add(ctx0, cur, ffn_inp);
cb(cur, "ffn_out", il);
@ -14818,6 +14839,7 @@ static int llama_decode_internal(
GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
}
}
// extract embeddings