add ggml_set(ctx, a, b) to set b in view of a and return modified a
necessary to set values into kv_self cache and properly propagate the gradients
This commit is contained in:
parent
48bcc4dcf9
commit
47561de7d8
3 changed files with 373 additions and 2 deletions
265
ggml.c
265
ggml.c
|
@ -3986,6 +3986,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
|
|||
"MUL_MAT",
|
||||
|
||||
"SCALE",
|
||||
"SET",
|
||||
"CPY",
|
||||
"CONT",
|
||||
"RESHAPE",
|
||||
|
@ -4011,7 +4012,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
|
|||
"MAP_BINARY",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 48, "GGML_OP_COUNT != 48");
|
||||
static_assert(GGML_OP_COUNT == 49, "GGML_OP_COUNT != 49");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
|
@ -4045,6 +4046,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||
"X*Y",
|
||||
|
||||
"x*v",
|
||||
"y-\\>view(x)",
|
||||
"x-\\>y",
|
||||
"cont(x)",
|
||||
"reshape(x)",
|
||||
|
@ -4070,7 +4072,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||
"f(x,y)",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 48, "GGML_OP_COUNT != 48");
|
||||
static_assert(GGML_OP_COUNT == 49, "GGML_OP_COUNT != 49");
|
||||
|
||||
static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
|
||||
static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
|
||||
|
@ -5857,6 +5859,100 @@ struct ggml_tensor * ggml_scale_inplace(
|
|||
return ggml_scale_impl(ctx, a, b, true);
|
||||
}
|
||||
|
||||
// ggml_set
|
||||
|
||||
struct ggml_tensor * ggml_set_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3,
|
||||
size_t offset,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (!inplace && (a->grad || b->grad)) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
// make a view of the destination
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
|
||||
(( int32_t * ) c->data)[0] = nb1;
|
||||
(( int32_t * ) c->data)[1] = nb2;
|
||||
(( int32_t * ) c->data)[2] = nb3;
|
||||
(( int32_t * ) c->data)[3] = offset;
|
||||
(( int32_t * ) c->data)[4] = inplace ? 1 : 0;
|
||||
|
||||
result->op = GGML_OP_SET;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src0 = a;
|
||||
result->src1 = b;
|
||||
result->opt[0] = c;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_set(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3,
|
||||
size_t offset) {
|
||||
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_set_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3,
|
||||
size_t offset) {
|
||||
return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_set_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t offset) {
|
||||
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_set_1d_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t offset) {
|
||||
return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_set_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t offset) {
|
||||
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_set_2d_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t offset) {
|
||||
return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
|
||||
}
|
||||
|
||||
|
||||
// ggml_cpy
|
||||
|
||||
struct ggml_tensor * ggml_cpy_impl(
|
||||
|
@ -10513,6 +10609,121 @@ static void ggml_compute_forward_scale(
|
|||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_set
|
||||
|
||||
static void ggml_compute_forward_set_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
const struct ggml_tensor * opt0,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_are_same_shape(src0, dst));
|
||||
GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
|
||||
|
||||
GGML_ASSERT(opt0->type == GGML_TYPE_I32);
|
||||
GGML_ASSERT(ggml_nelements(opt0) == 5);
|
||||
|
||||
// view src0 and dst with these strides and data offset inbytes during set
|
||||
// nb0 is implicitely element_size because src0 and dst are contiguous
|
||||
size_t nb1 = ((int32_t *) opt0->data)[0];
|
||||
size_t nb2 = ((int32_t *) opt0->data)[1];
|
||||
size_t nb3 = ((int32_t *) opt0->data)[2];
|
||||
size_t offset = ((int32_t *) opt0->data)[3];
|
||||
bool inplace = (bool) ((int32_t *) opt0->data)[4];
|
||||
|
||||
if (!inplace && (params->type == GGML_TASK_INIT)) {
|
||||
// memcpy needs to be synchronized across threads to avoid race conditions.
|
||||
// => do it in INIT phase
|
||||
memcpy(
|
||||
((char *) dst->data),
|
||||
((char *) src0->data),
|
||||
ggml_nbytes(dst));
|
||||
}
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int nr = ggml_nrows(src1);
|
||||
const int nc = src1->ne[0];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
const int64_t ne13 = src1->ne[3];
|
||||
|
||||
const size_t nb10 = src1->nb[0];
|
||||
const size_t nb11 = src1->nb[1];
|
||||
const size_t nb12 = src1->nb[2];
|
||||
const size_t nb13 = src1->nb[3];
|
||||
|
||||
// src0 and dst as viewed during set
|
||||
const size_t nb0 = ggml_element_size(src0);
|
||||
|
||||
const size_t nb00 = nb0;
|
||||
const size_t nb01 = nb1;
|
||||
const size_t nb02 = nb2;
|
||||
const size_t nb03 = nb3;
|
||||
|
||||
const int im0 = (ne10 == 0 ? 0 : ne10-1);
|
||||
const int im1 = (ne11 == 0 ? 0 : ne11-1);
|
||||
const int im2 = (ne12 == 0 ? 0 : ne12-1);
|
||||
const int im3 = (ne13 == 0 ? 0 : ne13-1);
|
||||
|
||||
GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
|
||||
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
// rows per thread
|
||||
const int dr = (nr + nth - 1)/nth;
|
||||
|
||||
// row range for this thread
|
||||
const int ir0 = dr*ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
for (int ir = ir0; ir < ir1; ++ir) {
|
||||
// src0 and dst are viewed with shape of src1 and offset
|
||||
// => same indices
|
||||
const int i3 = ir/(ne12*ne11);
|
||||
const int i2 = (ir - i3*ne12*ne11)/ne11;
|
||||
const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
|
||||
|
||||
ggml_vec_cpy_f32(nc,
|
||||
(float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
|
||||
(float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_set(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
const struct ggml_tensor * opt0,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q4_2:
|
||||
case GGML_TYPE_Q5_0:
|
||||
case GGML_TYPE_Q5_1:
|
||||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q8_1:
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_cpy
|
||||
|
||||
static void ggml_compute_forward_cpy(
|
||||
|
@ -13045,6 +13256,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||
{
|
||||
ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
{
|
||||
ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
|
||||
} break;
|
||||
case GGML_OP_CPY:
|
||||
{
|
||||
ggml_compute_forward_cpy(params, tensor->src0, tensor);
|
||||
|
@ -13516,6 +13731,51 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
inplace);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
{
|
||||
GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
|
||||
GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
|
||||
const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
|
||||
const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
|
||||
const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
|
||||
const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
|
||||
|
||||
struct ggml_tensor * tensor_grad_view = NULL;
|
||||
|
||||
if (src0->grad || src1->grad) {
|
||||
GGML_ASSERT(src0->type == tensor->type);
|
||||
GGML_ASSERT(tensor->grad->type == tensor->type);
|
||||
GGML_ASSERT(tensor->grad->type == src1->grad->type);
|
||||
|
||||
tensor_grad_view = ggml_view_4d(ctx,
|
||||
tensor->grad,
|
||||
src1->grad->ne[0],
|
||||
src1->grad->ne[1],
|
||||
src1->grad->ne[2],
|
||||
src1->grad->ne[3],
|
||||
nb1, nb2, nb3, offset);
|
||||
}
|
||||
|
||||
if (src0->grad) {
|
||||
src0->grad = ggml_add_impl(ctx,
|
||||
src0->grad,
|
||||
ggml_add_at_impl(ctx,
|
||||
tensor->grad,
|
||||
ggml_neg(ctx, tensor_grad_view),
|
||||
nb1, nb2, nb3, offset, false),
|
||||
inplace);
|
||||
}
|
||||
|
||||
if (src1->grad) {
|
||||
src1->grad =
|
||||
ggml_add_impl(ctx,
|
||||
src1->grad,
|
||||
ggml_reshape(ctx,
|
||||
ggml_cont(ctx, tensor_grad_view),
|
||||
src1->grad),
|
||||
inplace);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CPY:
|
||||
{
|
||||
// necessary for llama
|
||||
|
@ -14234,6 +14494,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||
{
|
||||
node->n_tasks = n_threads;
|
||||
} break;
|
||||
case GGML_OP_SET:
|
||||
case GGML_OP_CONT:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
|
|
50
ggml.h
50
ggml.h
|
@ -279,6 +279,7 @@ extern "C" {
|
|||
GGML_OP_MUL_MAT,
|
||||
|
||||
GGML_OP_SCALE,
|
||||
GGML_OP_SET,
|
||||
GGML_OP_CPY,
|
||||
GGML_OP_CONT,
|
||||
GGML_OP_RESHAPE,
|
||||
|
@ -638,6 +639,55 @@ extern "C" {
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// b -> view(a,offset,nb1,nb2,3), return modified a
|
||||
GGML_API struct ggml_tensor * ggml_set(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3,
|
||||
size_t offset);
|
||||
|
||||
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
||||
GGML_API struct ggml_tensor * ggml_set_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3,
|
||||
size_t offset);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_set_1d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t offset);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t offset);
|
||||
|
||||
// b -> view(a,offset,nb1,nb2,3), return modified a
|
||||
GGML_API struct ggml_tensor * ggml_set_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t offset);
|
||||
|
||||
// b -> view(a,offset,nb1,nb2,3), return view(a)
|
||||
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t nb1,
|
||||
size_t offset);
|
||||
|
||||
|
||||
// a -> b, return view(b)
|
||||
GGML_API struct ggml_tensor * ggml_cpy(
|
||||
struct ggml_context * ctx,
|
||||
|
|
|
@ -826,6 +826,66 @@ int main(int argc, const char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
// set_1d
|
||||
{
|
||||
int64_t ne2[4];
|
||||
|
||||
const int nargs = 2;
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
||||
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
get_random_dims(ne2, 1);
|
||||
while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) {
|
||||
get_random_dims(ne2, 1);
|
||||
}
|
||||
|
||||
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
|
||||
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
|
||||
const int offset = irand(max_offset) * ggml_element_size(x[0]);
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_1d(ctx0, x[0], x[1], offset));
|
||||
|
||||
check_gradient("set_1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
}
|
||||
}
|
||||
|
||||
// set_2d
|
||||
{
|
||||
int64_t ne2[4];
|
||||
int64_t nb2[4];
|
||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||
|
||||
const int nargs = 1;
|
||||
for (int ndims = 2; ndims <= 4; ++ndims) {
|
||||
|
||||
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
get_random_dims(ne2, 2);
|
||||
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) {
|
||||
get_random_dims(ne2, 2);
|
||||
}
|
||||
|
||||
x[1] = get_random_tensor(ctx0, 2, ne2, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
|
||||
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
|
||||
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
|
||||
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
|
||||
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
|
||||
const int offset = offsets[0] + offsets[1];
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_set_2d(ctx0, x[0], x[1], x[1]->nb[1], offset));
|
||||
|
||||
check_gradient("set_2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
}
|
||||
}
|
||||
|
||||
// view_1d
|
||||
{
|
||||
const int nargs = 1;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue