This commit is contained in:
stduhpf 2024-10-01 21:39:05 +02:00 committed by GitHub
commit 4cd67cadd7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 663 additions and 1 deletions

View file

@ -1638,7 +1638,7 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
params.cvector_outfile = value;
params.lora_outfile = value;
}
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA}));
).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_COMPRESS}));
add_opt(llama_arg(
{"-ofreq", "--output-frequency"}, "N",
format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
@ -1950,6 +1950,24 @@ gpt_params_context gpt_params_parser_init(gpt_params & params, llama_example ex,
else { std::invalid_argument("invalid value"); }
}
).set_examples({LLAMA_EXAMPLE_BENCH}));
add_opt(llama_arg(
{"--compression_header_size"}, "N",
"Number of tokens to keep in header (default: 1)",
[](gpt_params & params, int value){
params.num_tokens_header = value;
}).set_examples({LLAMA_EXAMPLE_COMPRESS}));
add_opt(llama_arg(
{"--mode"}, "{compress,expand,test}",
"What task to run (default: test)",
[](gpt_params & params, const std::string & value){
if (value == "test"){
return; }
else if (value == "compress"){
params.compress_mode = 1; }
else if (value == "expand"){
params.compress_mode = 2; }
else { std::invalid_argument("invalid value"); }
}).set_examples({LLAMA_EXAMPLE_COMPRESS}));
add_opt(llama_arg(
{"--log-disable"},
"Log disable",

View file

@ -80,6 +80,7 @@ enum llama_example {
LLAMA_EXAMPLE_PARALLEL,
LLAMA_EXAMPLE_COUNT,
LLAMA_EXAMPLE_COMPRESS
};
enum gpt_sampler_type {
@ -341,6 +342,9 @@ struct gpt_params {
// batched-bench params
bool batched_bench_output_jsonl = false;
int num_tokens_header = 1;
int compress_mode = 0;
};
// call once at the start of a program if it uses libcommon

View file

@ -17,6 +17,7 @@ else()
add_subdirectory(batched-bench)
add_subdirectory(batched)
add_subdirectory(benchmark)
add_subdirectory(compress)
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(embedding)
add_subdirectory(eval-callback)

View file

@ -0,0 +1,5 @@
set(TARGET llama-compress)
add_executable(${TARGET} compress.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_11)

View file

@ -0,0 +1,3 @@
# llama.cpp/examples/compress
Demonstration of LLM-based natural language compression.

View file

@ -0,0 +1,631 @@
#include "arg.h"
#include "common.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"
#include <cstdio>
#include <cmath>
#include <string>
#include <vector>
#include <cassert>
#include <bitset>
#include <fstream>
int msB_log256(int x)
{
int ret = 0;
while (x > 0)
{
ret++;
x >>= 8;
}
return ret;
}
const int block_header_size = 2;
const int fixed_token_cost = 1;
int total_pad = 0;
std::vector<uint8_t> encode(llama_context *ctx, std::vector<llama_token> inp, gpt_sampler *smpl, int num_raw_tokens_header)
{
llama_batch batch = llama_batch_init(inp.size(), 0, 1);
for (size_t i = 0; i < num_raw_tokens_header; i++)
{
llama_batch_add(batch, inp[i], i, {0}, true);
}
// eval the first few tokens of the prompt
if (llama_decode(ctx, batch))
{
LOG_ERR("%s: llama_decode() failed\n", __func__);
exit(1);
}
const auto t_enc_end = ggml_time_us();
std::vector<int> sample_ids;
gpt_sampler_sample(smpl, ctx, num_raw_tokens_header - 1, true);
for (int index = num_raw_tokens_header; index < inp.size(); index++)
{
auto cur_p = gpt_sampler_get_candidates(smpl); // initialized by set_logits
int match = -1;
for (int i = 0; i < cur_p->size; i++)
{
auto tok = cur_p->data[i];
llama_token candidate = tok.id;
if (candidate == inp[index])
{
LOG("%s", llama_token_to_piece(ctx, candidate).c_str());
match = i;
break;
}
}
if (match < 0)
{
LOG_ERR("\n couldn't match %s", llama_token_to_piece(ctx, inp[index]).c_str());
exit(1);
}
sample_ids.push_back(match);
llama_batch_clear(batch);
llama_batch_add(batch, inp[index], index, {0}, true);
if (llama_decode(ctx, batch))
{
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
exit(1);
}
gpt_sampler_sample(smpl, ctx, 0, true);
}
std::vector<uint8_t> sample_ids_bitpacked;
int bit_offset = 0;
uint8_t current = 0;
int block_start = 0;
bool build_block = true;
bool was_block = false;
// frst put the raw first few tokens
sample_ids_bitpacked.push_back(num_raw_tokens_header);
for (size_t i = 0; i < num_raw_tokens_header; i++)
{
// pack 4 bytes
for (int j = 0; j < 4; j++)
{
uint8_t byte = inp[i] >> (j * 8);
sample_ids_bitpacked.push_back(byte);
}
}
block_start = 1 + num_raw_tokens_header * 4;
bit_offset = block_start * 8;
for (int i = 0; i < sample_ids.size(); i++)
{
int sample_id = sample_ids[i];
uint8_t PAD = (8 - bit_offset % 8) % 8;
uint8_t bytesize = (uint8_t)msB_log256(sample_id);
// Big number, better save as token
if (sample_id > PAD + (block_header_size + fixed_token_cost + bytesize) * 8)
{
// Close current block (0b1010 is block marker)
if (was_block)
{
sample_ids_bitpacked[block_start] = 0b10100000 | PAD;
int block_size = (bit_offset + PAD) / 8 - block_start;
if (block_size >= 256)
{
// TODO: handle more than 256 bytes of block data
// (maybe allow multiple blocks in a row)
LOG_ERR("Block too big %d >= 256", block_size);
exit(-1);
}
sample_ids_bitpacked[block_start + 1] = block_size & 0xff;
// put last bytes
if (PAD)
{
sample_ids_bitpacked.push_back(current);
current = 0;
}
}
bit_offset += PAD;
total_pad += PAD;
if (bit_offset % 8)
{
LOG_ERR("Unreachable");
exit(-1);
}
// 0b0101 is token marker
sample_ids_bitpacked.push_back(0b01010000 | bytesize);
// put token bytes into sample_ids_bitpacked
for (int j = 0; j < bytesize; j++)
{
sample_ids_bitpacked.push_back(sample_id & 0xff);
sample_id >>= 8;
}
if (sample_id)
LOG("Shouldn't happen");
bit_offset += 8 * (fixed_token_cost + bytesize);
build_block = true;
was_block = false;
continue;
}
was_block = true;
if (build_block)
{
if (bit_offset % 8)
{
LOG_ERR("Unreachable");
exit(-1);
}
build_block = false;
block_start = bit_offset / 8;
for (int j = 0; j < block_header_size; j++)
{
sample_ids_bitpacked.push_back(0);
}
bit_offset += 8 * block_header_size;
}
for (int j = 0; j < sample_id; j++)
{
current |= 1 << (7 - bit_offset % 8);
bit_offset++;
if (bit_offset % 8 == 0)
{
sample_ids_bitpacked.push_back(current);
current = 0;
}
}
bit_offset++;
if (bit_offset % 8 == 0)
{
sample_ids_bitpacked.push_back(current);
current = 0;
}
}
if (!build_block)
{
if (bit_offset % 8)
sample_ids_bitpacked.push_back(current);
uint8_t PAD = (8 - bit_offset % 8) % 8;
sample_ids_bitpacked[block_start] = 0b10100000 | PAD;
int block_size = (bit_offset + PAD) / 8 - block_start;
// endianness: big endian
sample_ids_bitpacked[block_start + 1] = block_size & 0xff;
total_pad += PAD;
}
llama_batch_free(batch);
return sample_ids_bitpacked;
}
std::vector<llama_token> decode(llama_context *ctx, gpt_sampler *smpl, std::vector<uint8_t> sample_ids_bitpacked, std::vector<llama_token> inp = {})
{
std::vector<llama_token> out;
llama_batch batch = llama_batch_init(512, 0, 1);
int num_raw_tokens_header = sample_ids_bitpacked[0];
for (size_t i = 0; i < num_raw_tokens_header; i++)
{
// unpack 4 bytes
llama_token token = 0;
for (int j = 3; j >= 0; j--)
{
token <<= 8;
token |= sample_ids_bitpacked[1 + i * 4 + j];
}
llama_batch_add(batch, token, i, {0}, true);
out.push_back(token);
auto token_str = llama_token_to_piece(ctx, token);
LOG("%s", token_str.c_str());
}
if (llama_decode(ctx, batch))
{
LOG_ERR("%s: llama_decode() failed\n", __func__);
exit(1);
}
gpt_sampler_sample(smpl, ctx, num_raw_tokens_header - 1, true);
int index = 0;
int bit_index = (1 + num_raw_tokens_header * 4) * 8;
const int bitsize = sample_ids_bitpacked.size() * 8;
while (bit_index < bitsize)
{
uint8_t header = sample_ids_bitpacked[bit_index / 8];
if (header & 0b01010000)
{
uint8_t bytesize = header & 0x0f;
// it's a token
int sample_id = 0;
for (int i = bytesize; i > 0; i--)
{
sample_id <<= 8;
sample_id |= (int)sample_ids_bitpacked[i + (bit_index / 8)];
}
auto cur_p = gpt_sampler_get_candidates(smpl); // initialized by set_logits
auto token_id = cur_p->data[sample_id].id;
out.push_back(token_id);
if (!inp.size() || token_id == inp[num_raw_tokens_header + index])
{
LOG("%s", llama_token_to_piece(ctx, token_id).c_str());
}
else
{
// print in red
LOG("\u001b[31m%s", llama_token_to_piece(ctx, token_id).c_str());
LOG("\nExpected: %s", llama_token_to_piece(ctx, inp[num_raw_tokens_header + index]).c_str());
LOG("\n, Id: %d != %d", token_id, inp[num_raw_tokens_header + index]);
LOG("\nPos: %d, bs:%d", sample_id, bytesize);
// print sample_id bytes in hex
LOG("\n");
for (int i = bytesize; i > 0; i--)
{
LOG("%02x ", sample_ids_bitpacked[i + (bit_index / 8)]);
}
exit(-1);
}
llama_batch_clear(batch);
llama_batch_add(batch, token_id, num_raw_tokens_header + index, {0}, true);
if (llama_decode(ctx, batch))
{
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
exit(1);
}
gpt_sampler_sample(smpl, ctx, 0, true);
index++;
bit_index += 8 * (fixed_token_cost + bytesize);
}
else
{
// it's a block
uint8_t PAD = header & 0x0f;
int block_size = sample_ids_bitpacked[bit_index / 8 + 1];
int block_end = block_size * 8 + bit_index;
bit_index += 8 * block_header_size;
int id = 0;
for (; bit_index < block_end - PAD; bit_index++)
{
bool bit = sample_ids_bitpacked[bit_index / 8] & (1 << (7 - bit_index % 8));
if (bit)
{
id++;
}
else
{
{
int sample_id = id;
auto cur_p = gpt_sampler_get_candidates(smpl); // initialized by set_logits
auto token_id = cur_p->data[sample_id].id;
out.push_back(token_id);
if (!inp.size() || token_id == inp[num_raw_tokens_header + index])
{
LOG("%s", llama_token_to_piece(ctx, token_id).c_str());
}
else
{
// print in red
LOG("\u001b[31m%s", llama_token_to_piece(ctx, token_id).c_str());
}
llama_batch_clear(batch);
llama_batch_add(batch, token_id, num_raw_tokens_header + index, {0}, true);
if (llama_decode(ctx, batch))
{
LOG_ERR("%s : failed to eval, return code %d\n", __func__, 1);
exit(1);
}
gpt_sampler_sample(smpl, ctx, 0, true);
}
index++;
id = 0;
}
}
bit_index += PAD;
}
}
llama_batch_free(batch);
return out;
}
void test(const gpt_params &params)
{
int num_raw_tokens_header = params.num_tokens_header;
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model *model = llama_load_model_from_file(params.model.c_str(), model_params);
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
llama_context *ctx = llama_new_context_with_model(model, ctx_params);
// Tokenize the prompt
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, false, false);
// num_raw_tokens_header = inp.size();
assert(inp.size() > num_raw_tokens_header);
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ((int)inp.size() > max_tokens_list_size)
{
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int)inp.size(), max_tokens_list_size);
exit(1);
}
LOG("\n\n");
int i = 0;
for (auto id : inp)
{
LOG("%s", llama_token_to_piece(ctx, id).c_str());
if (++i >= num_raw_tokens_header)
break;
}
fflush(stderr);
// encode stage
const auto t_enc_start = ggml_time_us();
struct gpt_sampler *smpl = gpt_sampler_init(model, params.sparams);
std::vector<uint8_t> sample_ids_bitpacked = encode(ctx, inp, smpl, num_raw_tokens_header);
gpt_sampler_free(smpl);
auto t_enc_end = ggml_time_us();
LOG("\n");
// print bits as binary to debug
for (int i = 0; i < sample_ids_bitpacked.size(); i++)
{
std::bitset<8> x(sample_ids_bitpacked[i]);
LOG("%s ", x.to_string().c_str());
}
LOG("\n");
// print as hexadecimal
for (int i = 0; i < sample_ids_bitpacked.size(); i++)
{
LOG("%02X ", sample_ids_bitpacked[i]);
}
LOG("\n");
LOG("\nInput: %d characters (%d tokens)", params.prompt.length(), inp.size());
float compressed_byte_per_token = (float)sample_ids_bitpacked.size() / (float)inp.size();
float compressed_bits_per_char = 8 * (float)sample_ids_bitpacked.size() / (float)params.prompt.length();
LOG("\n%d compressed bytes,(%04f bytes per token, %04f bits per character)\n", (int)sample_ids_bitpacked.size(), compressed_byte_per_token, compressed_bits_per_char);
llama_free(ctx);
ctx = llama_new_context_with_model(model, ctx_params);
LOG("\n------------\n");
// decode stage
const auto t_dec_start = ggml_time_us();
smpl = gpt_sampler_init(model, params.sparams);
decode(ctx, smpl, sample_ids_bitpacked, inp);
auto t_dec_end = ggml_time_us();
LOG("\n\n");
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", inp.size(), (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_INF("\n");
LOG_INF("\n");
LOG_INF("\n");
gpt_perf_print(ctx, smpl);
gpt_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
}
int main(int argc, char **argv)
{
gpt_params params;
if (!gpt_params_parse(argc, argv, params, LLAMA_EXAMPLE_COMPRESS))
{
return 1;
}
// TODO: change defaults instead?
params.sparams.min_p = 0;
params.sparams.top_p = 1;
params.sparams.top_k = -1;
// Avoid temp=0 because greedy sampling breaks stuff
params.sparams.temp = 1.;
gpt_init();
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
// TODO: use Enum?
if (params.compress_mode == 0)
{
test(params);
}
else if (params.compress_mode == 1)
{ // compress
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model *model = llama_load_model_from_file(params.model.c_str(), model_params);
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
llama_context *ctx = llama_new_context_with_model(model, ctx_params);
// Tokenize the prompt
std::vector<llama_token> inp;
inp = ::llama_tokenize(ctx, params.prompt, false, false);
assert(inp.size() > params.num_tokens_header);
const int max_context_size = llama_n_ctx(ctx);
const int max_tokens_list_size = max_context_size - 4;
if ((int)inp.size() > max_tokens_list_size)
{
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int)inp.size(), max_tokens_list_size);
return 1;
}
// Eval the start of the prompt
int i = 0;
for (auto id : inp)
{
LOG("%s", llama_token_to_piece(ctx, id).c_str());
if (++i >= params.num_tokens_header)
break;
}
fflush(stderr);
// encode stage
const auto t_enc_start = ggml_time_us();
struct gpt_sampler *smpl = gpt_sampler_init(model, params.sparams);
std::vector<uint8_t> sample_ids_bitpacked = encode(ctx, inp, smpl, params.num_tokens_header);
gpt_sampler_free(smpl);
llama_free(ctx);
llama_free_model(model);
auto t_enc_end = ggml_time_us();
LOG("\n");
if (!params.no_perf)
{
LOG("\nInput: %d characters (%d tokens)", params.prompt.length(), inp.size());
float compressed_bits_per_token = 8 * (float)sample_ids_bitpacked.size() / (float)inp.size();
float compressed_bits_per_char = 8 * (float)sample_ids_bitpacked.size() / (float)params.prompt.length();
LOG("\n%d compressed bytes,(%04f bits per token, %04f bits per character)\n", (int)sample_ids_bitpacked.size(), compressed_bits_per_token, compressed_bits_per_char);
LOG("\n%d padding bits, (%04f bits per character without padding)", total_pad, compressed_bits_per_char - total_pad / (float)params.prompt.length());
LOG("\nPPL (over)estimation: %04f (%04f with padding)", exp2(compressed_bits_per_token - total_pad / (float)inp.size()), exp2(compressed_bits_per_token));
}
// maybe this needs to be changed
if (params.out_file != "imatrix.dat")
{
// dump uint8array to bin file
std::ofstream ofs(params.out_file.c_str(), std::ios::binary);
ofs.write((char *)&sample_ids_bitpacked[0], sample_ids_bitpacked.size());
ofs.close();
}
else
{
LOG("\n------------\n");
// print as hex to stdout
for (int i = 0; i < sample_ids_bitpacked.size(); i++)
{
LOG("%02X ", sample_ids_bitpacked[i]);
}
}
}
else if (params.compress_mode == 2)
{
// decompress mode
// load sample_ids_bitpacked from params.prompt_file
std::ifstream ifs(params.prompt_file.c_str(), std::ios::binary);
if (!ifs)
{
LOG_ERR("%s: failed to open file\n", __func__);
return -1;
}
// Get the ifs size
ifs.seekg(0, std::ios::end);
std::streampos fileSize = ifs.tellg();
ifs.seekg(0, std::ios::beg);
// Reserve space in the vector
std::vector<uint8_t> sample_ids_bitpacked(fileSize);
// Read the ifs into the vector
if (!ifs.read(reinterpret_cast<char *>(sample_ids_bitpacked.data()), fileSize))
{
LOG_ERR("%s: failed to read file\n", __func__);
return -1;
}
ifs.close();
// Debug: print as hex
for (int i = 0; i < sample_ids_bitpacked.size(); i++)
{
LOG("%02X ", sample_ids_bitpacked[i]);
}
LOG("\n");
llama_model_params model_params = llama_model_params_from_gpt_params(params);
llama_model *model = llama_load_model_from_file(params.model.c_str(), model_params);
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
llama_context *ctx = llama_new_context_with_model(model, ctx_params);
const auto t_dec_start = ggml_time_us();
struct gpt_sampler *smpl = gpt_sampler_init(model, params.sparams);
std::vector<llama_token> out = decode(ctx, smpl, sample_ids_bitpacked);
gpt_sampler_free(smpl);
auto t_dec_end = ggml_time_us();
// maybe this needs to be changed
if (params.out_file != "imatrix.dat")
{
// dump as string to file
std::string out_str = ::llama_detokenize(ctx, out);
std::ofstream ofs(params.out_file.c_str(), std::ios::binary);
ofs.write((char *)&out_str[0], out_str.size());
ofs.close();
}
llama_free(ctx);
llama_free_model(model);
}
llama_backend_free();
LOG("\n\n");
return 0;
}