Merge remote-tracking branch 'origin/master' into ggml-logger-subsystem
This commit is contained in:
commit
9d9a7eeb7f
38 changed files with 2136 additions and 1874 deletions
4
.github/workflows/bench.yml.disabled
vendored
4
.github/workflows/bench.yml.disabled
vendored
|
@ -27,10 +27,10 @@ on:
|
|||
push:
|
||||
branches:
|
||||
- master
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
pull_request_target:
|
||||
types: [opened, synchronize, reopened]
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.c', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
paths: ['llama.cpp', 'ggml.c', 'ggml-backend.cpp', 'ggml-quants.c', '**/*.cu', 'examples/server/*.h*', 'examples/server/*.cpp']
|
||||
schedule:
|
||||
- cron: '04 2 * * *'
|
||||
|
||||
|
|
18
Makefile
18
Makefile
|
@ -5,7 +5,6 @@ BUILD_TARGETS = \
|
|||
llama-batched \
|
||||
llama-batched-bench \
|
||||
llama-bench \
|
||||
llama-benchmark-matmult \
|
||||
llama-cli \
|
||||
llama-convert-llama2c-to-ggml \
|
||||
llama-embedding \
|
||||
|
@ -68,7 +67,7 @@ TEST_TARGETS = \
|
|||
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
|
||||
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli baby-llama \
|
||||
retrieval speculative infill tokenize benchmark-matmult parallel export-lora lookahead lookup passkey gritlm
|
||||
retrieval speculative infill tokenize parallel export-lora lookahead lookup passkey gritlm
|
||||
|
||||
# Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them.
|
||||
# We don't want to clutter things too much, so we only build replacements for the most commonly used binaries.
|
||||
|
@ -1055,10 +1054,11 @@ ggml/src/ggml-alloc.o: \
|
|||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
|
||||
ggml/src/ggml-backend.o: \
|
||||
ggml/src/ggml-backend.c \
|
||||
ggml/src/ggml-backend.cpp \
|
||||
ggml/src/ggml-backend-impl.h \
|
||||
ggml/include/ggml.h \
|
||||
ggml/include/ggml-backend.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
ggml/src/ggml-quants.o: \
|
||||
ggml/src/ggml-quants.c \
|
||||
|
@ -1523,16 +1523,6 @@ common/build-info.o: common/build-info.cpp
|
|||
|
||||
tests: $(TEST_TARGETS)
|
||||
|
||||
llama-benchmark-matmult: examples/benchmark/benchmark-matmult.cpp \
|
||||
$(OBJ_GGML) common/build-info.o
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
run-benchmark-matmult: llama-benchmark-matmult
|
||||
./$@
|
||||
|
||||
.PHONY: run-benchmark-matmult swift
|
||||
|
||||
tests/test-arg-parser: tests/test-arg-parser.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
|
|
|
@ -11,7 +11,7 @@ var sources = [
|
|||
"src/unicode-data.cpp",
|
||||
"ggml/src/ggml.c",
|
||||
"ggml/src/ggml-alloc.c",
|
||||
"ggml/src/ggml-backend.c",
|
||||
"ggml/src/ggml-backend.cpp",
|
||||
"ggml/src/ggml-quants.c",
|
||||
"ggml/src/ggml-aarch64.c",
|
||||
]
|
||||
|
|
|
@ -92,6 +92,7 @@ Typically finetunes of the base models below are supported as well.
|
|||
- [x] [EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
||||
- [x] [FalconMamba Models](https://huggingface.co/collections/tiiuae/falconmamba-7b-66b9a580324dd1598b0f6d4a)
|
||||
- [x] [Jais](https://huggingface.co/inceptionai/jais-13b-chat)
|
||||
- [x] [Bielik-11B-v2.3](https://huggingface.co/collections/speakleash/bielik-11b-v23-66ee813238d9b526a072408a)
|
||||
|
||||
(instructions for supporting more models: [HOWTO-add-model.md](./docs/development/HOWTO-add-model.md))
|
||||
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
|
||||
### Llama.cpp + SYCL
|
||||
|
||||
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it could support other vendor GPUs: Nvidia GPU (*AMD GPU coming*).
|
||||
The llama.cpp SYCL backend is designed to support **Intel GPU** firstly. Based on the cross-platform feature of SYCL, it also supports other vendor GPUs: Nvidia and AMD.
|
||||
|
||||
## Recommended Release
|
||||
|
||||
|
@ -111,10 +111,18 @@ SYCL backend supports Intel GPU Family:
|
|||
|
||||
**Verified devices**
|
||||
|
||||
| Nvidia GPU | Status | Verified Model |
|
||||
|--------------------------|---------|----------------|
|
||||
| Ampere Series | Support | A100, A4000 |
|
||||
| Ampere Series *(Mobile)* | Support | RTX 40 Series |
|
||||
| Nvidia GPU | Status | Verified Model |
|
||||
|--------------------------|-----------|----------------|
|
||||
| Ampere Series | Supported | A100, A4000 |
|
||||
| Ampere Series *(Mobile)* | Supported | RTX 40 Series |
|
||||
|
||||
| AMD GPU | Status | Verified Model |
|
||||
|--------------------------|--------------|----------------|
|
||||
| Radeon Pro | Experimental | W6800 |
|
||||
| Radeon RX | Experimental | 6700 XT |
|
||||
|
||||
Note: AMD GPU support is highly experimental and is incompatible with F16.
|
||||
Additionally, it only supports GPUs with a sub_group_size (warp size) of 32.
|
||||
|
||||
## Docker
|
||||
The docker build option is currently limited to *intel GPU* targets.
|
||||
|
@ -186,6 +194,10 @@ Platform #0: Intel(R) OpenCL HD Graphics
|
|||
|
||||
In order to target Nvidia GPUs through SYCL, please make sure the CUDA/CUBLAS native requirements *-found [here](README.md#cuda)-* are installed.
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
To target AMD GPUs with SYCL, the ROCm stack must be installed first.
|
||||
|
||||
2. **Install Intel® oneAPI Base toolkit**
|
||||
|
||||
- **For Intel GPU**
|
||||
|
@ -212,6 +224,19 @@ cmake -B buildWithCublas -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENAB
|
|||
cmake --build buildWithCublas --config Release
|
||||
```
|
||||
|
||||
- **Adding support to AMD GPUs**
|
||||
|
||||
**oneAPI Plugin**: In order to enable SYCL support on AMD GPUs, please install the [Codeplay oneAPI Plugin for AMD GPUs](https://developer.codeplay.com/products/oneapi/amd/download). As with Nvidia GPUs, the user should also make sure the plugin version matches the installed base toolkit.
|
||||
|
||||
**oneMKL for rocBlas**: The current oneMKL releases *(shipped with the oneAPI base-toolkit)* doesn't contain the rocBLAS backend. A build from source of the upstream [oneMKL](https://github.com/oneapi-src/oneMKL) with the *rocBLAS* backend enabled is thus required to run it on AMD GPUs.
|
||||
|
||||
```sh
|
||||
git clone https://github.com/oneapi-src/oneMKL
|
||||
cd oneMKL
|
||||
# Find your HIPTARGET with rocminfo, under the key 'Name:'
|
||||
cmake -B buildWithrocBLAS -DCMAKE_CXX_COMPILER=icpx -DCMAKE_C_COMPILER=icx -DENABLE_MKLGPU_BACKEND=OFF -DENABLE_MKLCPU_BACKEND=OFF -DENABLE_ROCBLAS_BACKEND=ON -DHIPTARGETS=${HIPTARGET} -DTARGET_DOMAINS=blas
|
||||
cmake --build buildWithrocBLAS --config Release
|
||||
```
|
||||
|
||||
3. **Verify installation and environment**
|
||||
|
||||
|
@ -223,22 +248,32 @@ sycl-ls
|
|||
|
||||
- **Intel GPU**
|
||||
|
||||
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`ext_oneapi_level_zero:gpu:0`] in the sample output below:
|
||||
When targeting an intel GPU, the user should expect one or more level-zero devices among the available SYCL devices. Please make sure that at least one GPU is present, for instance [`level_zero:gpu`] in the sample output below:
|
||||
|
||||
```
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||
[ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.10.0.17_160000]
|
||||
[opencl:cpu][opencl:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i7-13700K OpenCL 3.0 (Build 0) [2023.16.10.0.17_160000]
|
||||
[opencl:gpu][opencl:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics OpenCL 3.0 NEO [23.30.26918.50]
|
||||
[level_zero:gpu][level_zero:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26918]
|
||||
```
|
||||
|
||||
- **Nvidia GPU**
|
||||
|
||||
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`ext_oneapi_cuda:gpu`] as bellow:
|
||||
Similarly, user targeting Nvidia GPUs should expect at least one SYCL-CUDA device [`cuda:gpu`] as below:
|
||||
|
||||
```
|
||||
[opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[opencl:cpu:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[ext_oneapi_cuda:gpu:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.2]
|
||||
[opencl:acc][opencl:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device OpenCL 1.2 [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[opencl:cpu][opencl:1] Intel(R) OpenCL, Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz OpenCL 3.0 (Build 0) [2023.16.12.0.12_195853.xmain-hotfix]
|
||||
[cuda:gpu][cuda:0] NVIDIA CUDA BACKEND, NVIDIA A100-PCIE-40GB 8.0 [CUDA 12.5]
|
||||
```
|
||||
|
||||
- **AMD GPU**
|
||||
|
||||
For AMD GPUs we should expect at least one SYCL-HIP device [`hip:gpu`]:
|
||||
|
||||
```
|
||||
[opencl:cpu][opencl:0] Intel(R) OpenCL, 12th Gen Intel(R) Core(TM) i9-12900K OpenCL 3.0 (Build 0) [2024.18.6.0.02_160000]
|
||||
[hip:gpu][hip:0] AMD HIP BACKEND, AMD Radeon PRO W6800 gfx1030 [HIP 60140.9]
|
||||
```
|
||||
|
||||
### II. Build llama.cpp
|
||||
|
@ -266,6 +301,7 @@ cmake --build build --config Release -j -v
|
|||
```
|
||||
|
||||
#### Nvidia GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithCublas/lib:$LD_LIBRARY_PATH
|
||||
|
@ -283,7 +319,25 @@ cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -
|
|||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
#### AMD GPU
|
||||
|
||||
```sh
|
||||
# Export relevant ENV variables
|
||||
export LD_LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LD_LIBRARY_PATH
|
||||
export LIBRARY_PATH=/path/to/oneMKL/buildWithrocBLAS/lib:$LIBRARY_PATH
|
||||
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE_DIR
|
||||
|
||||
# Build LLAMA with rocBLAS acceleration through SYCL
|
||||
|
||||
## AMD
|
||||
# Use FP32, FP16 is not supported
|
||||
# Find your GGML_SYCL_HIP_TARGET with rocminfo, under the key 'Name:'
|
||||
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_HIP_TARGET=${GGML_SYCL_HIP_TARGET} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
|
||||
|
||||
# build all binary
|
||||
cmake --build build --config Release -j -v
|
||||
```
|
||||
|
||||
### III. Run the inference
|
||||
|
@ -586,11 +640,11 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|
|||
|
||||
#### Build
|
||||
|
||||
| Name | Value | Function |
|
||||
|--------------------|-----------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA | Set the SYCL target device type. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
||||
| Name | Value | Function |
|
||||
|--------------------|---------------------------------------|---------------------------------------------|
|
||||
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
|
||||
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
|
||||
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
|
||||
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
|
||||
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |
|
||||
|
||||
|
|
|
@ -16,7 +16,6 @@ else()
|
|||
add_subdirectory(baby-llama)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(benchmark)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(embedding)
|
||||
add_subdirectory(eval-callback)
|
||||
|
|
|
@ -1,6 +0,0 @@
|
|||
set(TARGET llama-bench-matmult)
|
||||
add_executable(${TARGET} benchmark-matmult.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE llama build_info ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_include_directories(${TARGET} PRIVATE ../../common)
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
|
@ -1,275 +0,0 @@
|
|||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
|
||||
#include <locale.h>
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <cstring>
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
#include <unordered_map>
|
||||
#include <queue>
|
||||
#include <string.h>
|
||||
#include <cassert>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <iterator>
|
||||
#include <algorithm>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
|
||||
|
||||
if (plan.work_size > 0) {
|
||||
buf.resize(plan.work_size);
|
||||
plan.work_data = buf.data();
|
||||
}
|
||||
|
||||
ggml_graph_compute(graph, &plan);
|
||||
}
|
||||
|
||||
static float tensor_sum_elements(const ggml_tensor * tensor) {
|
||||
double sum = 0;
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
for (int j = 0; j < tensor->ne[1]; j++) {
|
||||
for (int k = 0; k < tensor->ne[0]; k++) {
|
||||
sum += ((float *) tensor->data)[j*tensor->ne[0] + k];
|
||||
}
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
static void tensor_dump(const ggml_tensor * tensor, const char * name) {
|
||||
printf("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64 " x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi) - ", name,
|
||||
tensor->type, ggml_type_name(tensor->type),
|
||||
tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->nb[0], tensor->nb[1], tensor->nb[2]);
|
||||
float sum = tensor_sum_elements(tensor);
|
||||
printf("Sum of tensor %s is %6.2f\n", name, sum);
|
||||
}
|
||||
|
||||
#define TENSOR_DUMP(tensor) tensor_dump(tensor, #tensor)
|
||||
|
||||
struct benchmark_params_struct {
|
||||
int n_threads = 1;
|
||||
int32_t n_iterations = 10;
|
||||
};
|
||||
|
||||
static void print_usage(int /*argc*/, char ** argv, struct benchmark_params_struct params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
fprintf(stderr, " -i N, --iter N number of iterations to use during computation (default: %d)\n", params.n_iterations);
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
struct benchmark_params_struct benchmark_params;
|
||||
|
||||
bool invalid_param = false;
|
||||
std::string arg;
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
|
||||
if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
benchmark_params.n_threads = std::stoi(argv[i]);
|
||||
} else if (arg == "-i" || arg == "--iter") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
benchmark_params.n_iterations = std::stoi(argv[i]);
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
print_usage(argc, argv, benchmark_params);
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
|
||||
print_usage(argc, argv, benchmark_params);
|
||||
exit(1);
|
||||
}
|
||||
|
||||
print_build_info();
|
||||
printf("Starting Test\n");
|
||||
|
||||
// create the ggml context
|
||||
struct ggml_context * ctx;
|
||||
//const int sizex = 4096;
|
||||
//const int sizey = 11008;
|
||||
|
||||
#undef VERBOSE_DEBUGGING
|
||||
#ifndef VERBOSE_DEBUGGING
|
||||
const int sizey = 4096;
|
||||
const int sizex = 11008;
|
||||
const int sizez = 128;
|
||||
#else
|
||||
/* Working - let's increase size */
|
||||
const int sizey = 1;
|
||||
const int sizex = (8*32);
|
||||
const int sizez = 1;
|
||||
|
||||
/*const int sizey = 1;
|
||||
const int sizex = 3*(8*32);
|
||||
const int sizez = 1;*/
|
||||
#endif
|
||||
|
||||
//printf("Memsize required = %i\n", sizex*sizex);
|
||||
|
||||
// TODO: perform the bench for all types or for a user specified type
|
||||
const ggml_type qtype = GGML_TYPE_Q4_1;
|
||||
|
||||
size_t ctx_size = 0;
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey);
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizez);
|
||||
ctx_size += ggml_row_size(qtype, sizex*sizey);
|
||||
ctx_size += ggml_row_size(qtype, sizex*sizey);
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
|
||||
ctx_size += ggml_row_size(GGML_TYPE_F32, sizex*sizey); // BLAS
|
||||
ctx_size += 1024*1024*16;
|
||||
|
||||
printf("Allocating Memory of size %zi bytes, %zi MB\n",ctx_size, (ctx_size/1024/1024));
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size =*/ ctx_size,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/* no_alloc =*/ 0
|
||||
};
|
||||
|
||||
ctx = ggml_init(params);
|
||||
if (!ctx) {
|
||||
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
printf("Creating new tensors\n");
|
||||
// printf("Creating new tensor m1\n");
|
||||
struct ggml_tensor * m11 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
|
||||
ggml_set_f32(m11, 1.0f);
|
||||
|
||||
// printf("Creating new tensor m1\n");
|
||||
struct ggml_tensor * m12 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizey);
|
||||
ggml_set_f32(m12, 1.5f);
|
||||
|
||||
// printf("Creating new tensor m2\n");
|
||||
struct ggml_tensor * m2 = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, sizex, sizez);
|
||||
ggml_set_f32(m2, 2.0f);
|
||||
|
||||
printf("\n------ Test 1 - Matrix Mult via F32 code\n");
|
||||
// printf("Creating new tensor m11xm2\n");
|
||||
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand(gf, m11xm2);
|
||||
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
|
||||
TENSOR_DUMP(m11);
|
||||
TENSOR_DUMP(m2);
|
||||
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
|
||||
|
||||
TENSOR_DUMP(ggml_graph_node(gf, 0));
|
||||
|
||||
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
|
||||
|
||||
int32_t nelements = sizex*sizey;
|
||||
|
||||
// Set up a the benchmark matrices
|
||||
// printf("Creating new tensor q11 & Running quantize\n");
|
||||
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], nullptr);
|
||||
|
||||
// Set up a the compute graph
|
||||
// printf("Creating new tensor q31\n");
|
||||
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph * gf31 = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand(gf31, q31);
|
||||
|
||||
// Set up a second graph computation to make sure we override the CPU cache lines
|
||||
// printf("Creating new tensor q12 & Running quantize\n");
|
||||
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], nullptr);
|
||||
|
||||
// printf("Creating new tensor q32\n");
|
||||
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
|
||||
|
||||
//printf("Creating compute graph\n");
|
||||
struct ggml_cgraph * gf32 = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand(gf32, q32);
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
|
||||
const int dimx = sizex;
|
||||
const int dimy = sizey;
|
||||
const int dimz = sizez;
|
||||
long long int flops_per_dot_product = dimy + dimy;
|
||||
long long int flops_per_matrix = flops_per_dot_product * dimx * dimz; ;
|
||||
printf("Matrix Multiplication of (%i,%i,%i) x (%i,%i,%i) - about %6.2f gFLOPS\n\n", sizex, sizey, 1, sizex, sizez, 1, 1.0f*flops_per_matrix / 1000 / 1000 / 1000);
|
||||
|
||||
|
||||
// Let's use the F32 result from above as a reference for the quantized multiplication
|
||||
float sum_of_F32_reference = tensor_sum_elements(ggml_graph_node(gf, 0));
|
||||
|
||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
|
||||
printf("=====================================================================================\n");
|
||||
|
||||
double gflops_sum = 0;
|
||||
for (int i=0;i<benchmark_params.n_iterations ;i++) {
|
||||
|
||||
long long int start = ggml_time_us();
|
||||
//printf("Running ggml_graph_compute\n");
|
||||
ggml_graph_compute_helper(work_buffer, gf31, benchmark_params.n_threads);
|
||||
|
||||
long long int stop = ggml_time_us();
|
||||
long long int usec = stop-start;
|
||||
double gflops = (double)(flops_per_matrix)/usec/1000.0;
|
||||
gflops_sum += gflops;
|
||||
printf("%9i;%8i;%6i;%6i;%6i;%15lli;%18lli;%10.2f\n",
|
||||
i,
|
||||
benchmark_params.n_threads,
|
||||
sizex, sizey, sizez, flops_per_matrix,
|
||||
usec,gflops);
|
||||
|
||||
#ifdef VERBOSE_DEBUGGING
|
||||
TENSOR_DUMP("res",gf31.nodes[0])
|
||||
#endif
|
||||
|
||||
// Check that the matrix multiplication result is in the right ballpark
|
||||
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
||||
float sum_of_Q4_result = tensor_sum_elements(ggml_graph_node(gf31, 0));
|
||||
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
|
||||
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
||||
|
||||
if (delta > allowed_delta) {
|
||||
printf("\nABORT - ERROR in Matrix Multiplication result - expected %6.2f, got %6.2f (delta %6.2f > allowed_delta %6.2f)\n",
|
||||
sum_of_F32_reference,
|
||||
sum_of_Q4_result,
|
||||
delta,
|
||||
allowed_delta
|
||||
);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
// Running a different graph computation to make sure we override the CPU cache lines
|
||||
ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads);
|
||||
}
|
||||
printf("\n");
|
||||
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
|
||||
printf("=====================================================================================\n");
|
||||
}
|
|
@ -22,12 +22,20 @@
|
|||
#endif
|
||||
|
||||
enum split_operation : uint8_t {
|
||||
SPLIT_OP_SPLIT,
|
||||
SPLIT_OP_MERGE,
|
||||
OP_NONE,
|
||||
OP_SPLIT,
|
||||
OP_MERGE,
|
||||
};
|
||||
|
||||
enum split_mode : uint8_t {
|
||||
MODE_NONE,
|
||||
MODE_TENSOR,
|
||||
MODE_SIZE,
|
||||
};
|
||||
|
||||
struct split_params {
|
||||
split_operation operation = SPLIT_OP_SPLIT;
|
||||
split_operation operation = OP_NONE;
|
||||
split_mode mode = MODE_NONE;
|
||||
size_t n_bytes_split = 0;
|
||||
int n_split_tensors = 128;
|
||||
std::string input;
|
||||
|
@ -87,59 +95,52 @@ static void split_params_parse_ex(int argc, const char ** argv, split_params & p
|
|||
}
|
||||
|
||||
bool arg_found = false;
|
||||
bool is_op_set = false;
|
||||
bool is_mode_set = false;
|
||||
if (arg == "-h" || arg == "--help") {
|
||||
split_print_usage(argv[0]);
|
||||
exit(0);
|
||||
}
|
||||
if (arg == "--version") {
|
||||
} else if (arg == "--version") {
|
||||
fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
|
||||
fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
|
||||
exit(0);
|
||||
}
|
||||
if (arg == "--dry-run") {
|
||||
} else if (arg == "--dry-run") {
|
||||
arg_found = true;
|
||||
params.dry_run = true;
|
||||
}
|
||||
if (arg == "--no-tensor-first-split") {
|
||||
} else if (arg == "--no-tensor-first-split") {
|
||||
arg_found = true;
|
||||
params.no_tensor_first_split = true;
|
||||
}
|
||||
|
||||
if (is_op_set) {
|
||||
throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
|
||||
}
|
||||
if (arg == "--merge") {
|
||||
} else if (arg == "--merge") {
|
||||
arg_found = true;
|
||||
is_op_set = true;
|
||||
params.operation = SPLIT_OP_MERGE;
|
||||
}
|
||||
if (arg == "--split") {
|
||||
if (params.operation != OP_NONE && params.operation != OP_MERGE) {
|
||||
throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
|
||||
}
|
||||
params.operation = OP_MERGE;
|
||||
} else if (arg == "--split") {
|
||||
arg_found = true;
|
||||
is_op_set = true;
|
||||
params.operation = SPLIT_OP_SPLIT;
|
||||
}
|
||||
|
||||
if (is_mode_set) {
|
||||
throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
|
||||
}
|
||||
if (arg == "--split-max-tensors") {
|
||||
if (params.operation != OP_NONE && params.operation != OP_SPLIT) {
|
||||
throw std::invalid_argument("error: either --split or --merge can be specified, but not both");
|
||||
}
|
||||
params.operation = OP_SPLIT;
|
||||
} else if (arg == "--split-max-tensors") {
|
||||
if (++arg_idx >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
arg_found = true;
|
||||
is_mode_set = true;
|
||||
if (params.mode != MODE_NONE && params.mode != MODE_TENSOR) {
|
||||
throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
|
||||
}
|
||||
params.mode = MODE_TENSOR;
|
||||
params.n_split_tensors = atoi(argv[arg_idx]);
|
||||
}
|
||||
if (arg == "--split-max-size") {
|
||||
} else if (arg == "--split-max-size") {
|
||||
if (++arg_idx >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
arg_found = true;
|
||||
is_mode_set = true;
|
||||
if (params.mode != MODE_NONE && params.mode != MODE_SIZE) {
|
||||
throw std::invalid_argument("error: either --split-max-tensors or --split-max-size can be specified, but not both");
|
||||
}
|
||||
params.mode = MODE_SIZE;
|
||||
params.n_bytes_split = split_str_to_n_bytes(argv[arg_idx]);
|
||||
}
|
||||
|
||||
|
@ -148,6 +149,15 @@ static void split_params_parse_ex(int argc, const char ** argv, split_params & p
|
|||
}
|
||||
}
|
||||
|
||||
// the operation is split if not specified
|
||||
if (params.operation == OP_NONE) {
|
||||
params.operation = OP_SPLIT;
|
||||
}
|
||||
// the split mode is by tensor if not specified
|
||||
if (params.mode == MODE_NONE) {
|
||||
params.mode = MODE_TENSOR;
|
||||
}
|
||||
|
||||
if (invalid_param) {
|
||||
throw std::invalid_argument("error: invalid parameter for argument: " + arg);
|
||||
}
|
||||
|
@ -265,13 +275,15 @@ struct split_strategy {
|
|||
}
|
||||
|
||||
bool should_split(int i_tensor, size_t next_size) {
|
||||
if (params.n_bytes_split > 0) {
|
||||
if (params.mode == MODE_SIZE) {
|
||||
// split by max size per file
|
||||
return next_size > params.n_bytes_split;
|
||||
} else {
|
||||
} else if (params.mode == MODE_TENSOR) {
|
||||
// split by number of tensors per file
|
||||
return i_tensor > 0 && i_tensor < n_tensors && i_tensor % params.n_split_tensors == 0;
|
||||
}
|
||||
// should never happen
|
||||
GGML_ABORT("invalid mode");
|
||||
}
|
||||
|
||||
void print_info() {
|
||||
|
@ -559,9 +571,9 @@ int main(int argc, const char ** argv) {
|
|||
split_params_parse(argc, argv, params);
|
||||
|
||||
switch (params.operation) {
|
||||
case SPLIT_OP_SPLIT: gguf_split(params);
|
||||
case OP_SPLIT: gguf_split(params);
|
||||
break;
|
||||
case SPLIT_OP_MERGE: gguf_merge(params);
|
||||
case OP_MERGE: gguf_merge(params);
|
||||
break;
|
||||
default: split_print_usage(argv[0]);
|
||||
exit(EXIT_FAILURE);
|
||||
|
|
|
@ -12,43 +12,52 @@ extern "C" {
|
|||
typedef struct ggml_backend_event * ggml_backend_event_t;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef void * ggml_backend_graph_plan_t;
|
||||
typedef struct ggml_backend_reg * ggml_backend_reg_t;
|
||||
typedef struct ggml_backend_device * ggml_backend_dev_t;
|
||||
|
||||
|
||||
//
|
||||
// Backend buffer type
|
||||
//
|
||||
|
||||
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_buft_get_device (ggml_backend_buffer_type_t buft);
|
||||
|
||||
//
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
// buffer type
|
||||
GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft);
|
||||
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft);
|
||||
GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft);
|
||||
GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft);
|
||||
|
||||
// buffer
|
||||
enum ggml_backend_buffer_usage {
|
||||
GGML_BACKEND_BUFFER_USAGE_ANY = 0,
|
||||
GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1,
|
||||
GGML_BACKEND_BUFFER_USAGE_COMPUTE = 2,
|
||||
};
|
||||
|
||||
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
||||
GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
GGML_API enum ggml_backend_buffer_usage ggml_backend_buffer_get_usage (ggml_backend_buffer_t buffer);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer);
|
||||
|
||||
// tensor copy between different backends
|
||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
//
|
||||
// Backend
|
||||
// Backend (stream)
|
||||
//
|
||||
|
||||
GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend);
|
||||
|
@ -64,9 +73,9 @@ extern "C" {
|
|||
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
|
||||
// "offset" refers to the offset of the tensor data for setting/getting data
|
||||
GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
GGML_API GGML_CALL void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
|
||||
GGML_API void ggml_backend_synchronize(ggml_backend_t backend);
|
||||
|
||||
|
@ -76,65 +85,121 @@ extern "C" {
|
|||
GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// NOTE: will be removed, use device version instead
|
||||
GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
GGML_API bool ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
||||
GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// tensor copy between different backends
|
||||
GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// asynchronous copy
|
||||
// the copy is performed after all the currently queued operations in backend_src
|
||||
// backend_dst will wait for the copy to complete before performing other operations
|
||||
// automatic fallback to sync copy if async is not supported
|
||||
GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// events
|
||||
GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_event_free (ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_record (ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_get_device(ggml_backend_t backend);
|
||||
|
||||
//
|
||||
// CPU backend
|
||||
// Events
|
||||
//
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
GGML_API ggml_backend_event_t ggml_backend_event_new(ggml_backend_dev_t device);
|
||||
GGML_API void ggml_backend_event_free(ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event);
|
||||
GGML_API void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
//
|
||||
// Backend device
|
||||
//
|
||||
|
||||
// Create a backend buffer from an existing pointer
|
||||
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
||||
enum ggml_backend_dev_type {
|
||||
GGML_BACKEND_DEVICE_TYPE_CPU,
|
||||
GGML_BACKEND_DEVICE_TYPE_GPU,
|
||||
// devices with full capabilities (excludes backends such as BLAS that only support matrix multiplication)
|
||||
GGML_BACKEND_DEVICE_TYPE_CPU_FULL,
|
||||
GGML_BACKEND_DEVICE_TYPE_GPU_FULL
|
||||
};
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
|
||||
// functionality supported by the device
|
||||
struct ggml_backend_dev_caps {
|
||||
// asynchronous operations
|
||||
bool async;
|
||||
// pinned host buffer
|
||||
bool host_buffer;
|
||||
// event synchronization
|
||||
bool events;
|
||||
};
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
||||
#endif
|
||||
// all the device properties
|
||||
struct ggml_backend_dev_props {
|
||||
const char * name;
|
||||
const char * description;
|
||||
size_t memory_free;
|
||||
size_t memory_total;
|
||||
enum ggml_backend_dev_type type;
|
||||
struct ggml_backend_dev_caps caps;
|
||||
};
|
||||
|
||||
GGML_API const char * ggml_backend_dev_name(ggml_backend_dev_t device);
|
||||
GGML_API const char * ggml_backend_dev_description(ggml_backend_dev_t device);
|
||||
GGML_API void ggml_backend_dev_memory(ggml_backend_dev_t device, size_t * free, size_t * total);
|
||||
GGML_API enum ggml_backend_dev_type ggml_backend_dev_type(ggml_backend_dev_t device);
|
||||
GGML_API void ggml_backend_dev_get_props(ggml_backend_dev_t device, struct ggml_backend_dev_props * props);
|
||||
GGML_API ggml_backend_reg_t ggml_backend_dev_backend_reg(ggml_backend_dev_t device);
|
||||
GGML_API ggml_backend_t ggml_backend_dev_init(ggml_backend_dev_t device, const char * params);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_buffer_type(ggml_backend_dev_t device);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, void * ptr, size_t size, size_t max_tensor_size);
|
||||
|
||||
GGML_API bool ggml_backend_dev_supports_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
|
||||
GGML_API bool ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft);
|
||||
GGML_API bool ggml_backend_dev_offload_op(ggml_backend_dev_t device, const struct ggml_tensor * op);
|
||||
|
||||
//
|
||||
// Backend (reg)
|
||||
//
|
||||
|
||||
GGML_API const char * ggml_backend_reg_name(ggml_backend_reg_t reg);
|
||||
GGML_API size_t ggml_backend_reg_dev_count(ggml_backend_reg_t reg);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_reg_dev_get(ggml_backend_reg_t reg, size_t index);
|
||||
GGML_API void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * name);
|
||||
GGML_API void ggml_backend_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data);
|
||||
|
||||
// Functions that may be obtained using ggml_backend_reg_get_proc_address
|
||||
typedef ggml_backend_buffer_type_t (*ggml_backend_split_buffer_type_t)(const float *);
|
||||
|
||||
//
|
||||
// Backend registry
|
||||
//
|
||||
|
||||
// The backend registry is a registry of all the available backends, and allows initializing backends in a generic way
|
||||
// Backend (reg) enumeration
|
||||
GGML_API size_t ggml_backend_reg_count(void);
|
||||
GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index);
|
||||
GGML_API ggml_backend_reg_t ggml_backend_reg_by_name(const char * name);
|
||||
|
||||
GGML_API size_t ggml_backend_reg_get_count(void);
|
||||
GGML_API size_t ggml_backend_reg_find_by_name(const char * name); // returns index of backend with name, or SIZE_MAX if not found
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is backend_name:params (params is optional)
|
||||
GGML_API const char * ggml_backend_reg_get_name(size_t i);
|
||||
GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size);
|
||||
// Device enumeration
|
||||
GGML_API size_t ggml_backend_dev_count(void);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_dev_get(size_t index);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_dev_by_name(const char * name);
|
||||
GGML_API ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type);
|
||||
|
||||
// Set the log callback for all registered backends
|
||||
GGML_API void ggml_backend_set_log_callback(ggml_log_callback log_callback, void * user_data);
|
||||
|
||||
// Direct backend (stream) initialization
|
||||
// = ggml_backend_dev_init(ggml_backend_dev_by_name(name), params)
|
||||
GGML_API ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params);
|
||||
// = ggml_backend_dev_init(ggml_backend_dev_by_type(type), params)
|
||||
GGML_API ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params);
|
||||
// = ggml_backend_dev_init(ggml_backend_dev_by_type(GPU_FULL) OR ggml_backend_dev_by_type(CPU_FULL), NULL)
|
||||
GGML_API ggml_backend_t ggml_backend_init_best(void);
|
||||
|
||||
//
|
||||
// Backend scheduler
|
||||
//
|
||||
|
||||
// The backend scheduler allows for multiple backends to be used together
|
||||
// The backend scheduler allows for multiple backend devices to be used together
|
||||
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
|
||||
// The backends are selected based on:
|
||||
// - the backend that supports the operation
|
||||
|
@ -169,9 +234,9 @@ extern "C" {
|
|||
}
|
||||
*/
|
||||
|
||||
struct ggml_backend_sched;
|
||||
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
||||
|
||||
// Evaluation callback for each node in the graph (set with ggml_backend_sched_set_eval_callback)
|
||||
// when ask == true, the scheduler wants to know if the user wants to observe this node
|
||||
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
|
||||
//
|
||||
|
@ -226,7 +291,7 @@ extern "C" {
|
|||
GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph);
|
||||
GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy);
|
||||
|
||||
typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
typedef bool (*ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data);
|
||||
|
||||
// Compare the output of two backends
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
|
@ -235,6 +300,26 @@ extern "C" {
|
|||
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
|
||||
|
||||
//
|
||||
// CPU backend
|
||||
//
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
|
||||
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
|
||||
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
|
||||
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
|
||||
|
||||
// Create a backend buffer from an existing pointer
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
|
||||
|
||||
#ifdef GGML_USE_CPU_HBM
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -9,13 +9,13 @@ extern "C" {
|
|||
#endif
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_blas_init(void);
|
||||
GGML_API ggml_backend_t ggml_backend_blas_init(void);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend);
|
||||
GGML_API bool ggml_backend_is_blas(ggml_backend_t backend);
|
||||
|
||||
// number of threads used for conversion to float
|
||||
// for openblas and blis, this will also set the number of threads used for blas operations
|
||||
GGML_API GGML_CALL void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
||||
GGML_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
|
@ -44,7 +44,7 @@ extern "C" {
|
|||
* @param device The index of the device to initialize.
|
||||
* @return A pointer to the initialized backend instance, or nullptr on failure.
|
||||
*/
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device);
|
||||
|
||||
/**
|
||||
* @brief Checks if a given backend is a CANN backend.
|
||||
|
@ -55,7 +55,7 @@ GGML_API GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device);
|
|||
* @param backend The backend instance to check.
|
||||
* @return True if the backend is a CANN backend, false otherwise.
|
||||
*/
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
GGML_API bool ggml_backend_is_cann(ggml_backend_t backend);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the CANN buffer type for a specified device.
|
||||
|
@ -67,7 +67,7 @@ GGML_API GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend);
|
|||
* @return A pointer to the buffer type interface for the specified device, or
|
||||
* nullptr if the device index is out of range.
|
||||
*/
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t
|
||||
GGML_API ggml_backend_buffer_type_t
|
||||
ggml_backend_cann_buffer_type(int32_t device);
|
||||
|
||||
/**
|
||||
|
@ -78,14 +78,14 @@ ggml_backend_cann_buffer_type(int32_t device);
|
|||
*
|
||||
* @return The number of CANN devices available.
|
||||
*/
|
||||
GGML_API GGML_CALL int32_t ggml_backend_cann_get_device_count(void);
|
||||
GGML_API int32_t ggml_backend_cann_get_device_count(void);
|
||||
|
||||
/**
|
||||
* @brief pinned host buffer for use with the CPU backend for faster copies between CPU and NPU.
|
||||
*
|
||||
* @return A pointer to the host buffer type interface.
|
||||
*/
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
|
||||
|
||||
/**
|
||||
* @brief Retrieves the description of a specific CANN device.
|
||||
|
@ -97,7 +97,7 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type
|
|||
* @param description Pointer to a buffer where the description will be written.
|
||||
* @param description_size Size of the description buffer.
|
||||
*/
|
||||
GGML_API GGML_CALL void ggml_backend_cann_get_device_description(
|
||||
GGML_API void ggml_backend_cann_get_device_description(
|
||||
int32_t device, char* description, size_t description_size);
|
||||
|
||||
/**
|
||||
|
@ -112,9 +112,9 @@ GGML_API GGML_CALL void ggml_backend_cann_get_device_description(
|
|||
* @param total Pointer to a variable where the total memory size will be
|
||||
* stored.
|
||||
*/
|
||||
GGML_API GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device,
|
||||
size_t* free,
|
||||
size_t* total);
|
||||
GGML_API void ggml_backend_cann_get_device_memory(int32_t device,
|
||||
size_t* free,
|
||||
size_t* total);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -3,6 +3,10 @@
|
|||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_HIPBLAS
|
||||
#define GGML_CUDA_NAME "ROCm"
|
||||
#define GGML_CUBLAS_NAME "hipBLAS"
|
||||
|
@ -13,33 +17,30 @@
|
|||
#define GGML_CUDA_NAME "CUDA"
|
||||
#define GGML_CUBLAS_NAME "cuBLAS"
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define GGML_CUDA_MAX_DEVICES 16
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
|
||||
|
||||
// device buffer
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
|
||||
|
||||
GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
GGML_API int ggml_backend_cuda_get_device_count(void);
|
||||
GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||
GGML_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||
GGML_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||
|
||||
GGML_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -1,3 +1,5 @@
|
|||
// Note: this description is outdated
|
||||
//
|
||||
// An interface allowing to compute ggml_cgraph with Metal
|
||||
//
|
||||
// This is a fully functional interface that extends ggml with GPU support for Apple devices.
|
||||
|
@ -41,11 +43,11 @@ GGML_API ggml_backend_t ggml_backend_metal_init(void);
|
|||
|
||||
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size);
|
||||
|
||||
GGML_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
|
||||
|
||||
// helper to check if the device supports a specific family
|
||||
// ideally, the user code should be doing these checks
|
||||
|
|
|
@ -10,14 +10,14 @@ extern "C" {
|
|||
#define GGML_RPC_MAX_SERVERS 16
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||
GGML_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||
GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||
|
||||
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||
|
||||
GGML_API GGML_CALL void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
||||
GGML_API void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -23,20 +23,20 @@ GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
|
|||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
|
||||
|
||||
// split tensor buffer that splits matrices by rows across multiple devices
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
|
||||
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
|
||||
|
||||
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
|
||||
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
|
||||
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
|
||||
GGML_API void ggml_sycl_get_gpu_list(int *id_list, int max_len);
|
||||
GGML_API void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
|
||||
GGML_API int ggml_backend_sycl_get_device_count();
|
||||
GGML_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
|
||||
|
||||
// SYCL doesn't support registering host memory, keep here for reference
|
||||
// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||
// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
||||
// GGML_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
|
||||
// GGML_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -13,16 +13,16 @@ extern "C" {
|
|||
GGML_API void ggml_vk_instance_init(void);
|
||||
|
||||
// backend API
|
||||
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
GGML_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
|
||||
GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void);
|
||||
GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
||||
GGML_API bool ggml_backend_is_vk(ggml_backend_t backend);
|
||||
GGML_API int ggml_backend_vk_get_device_count(void);
|
||||
GGML_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
|
||||
GGML_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
|
||||
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -187,16 +187,6 @@
|
|||
# define GGML_API
|
||||
#endif
|
||||
|
||||
#ifdef GGML_MULTIPLATFORM
|
||||
# if defined(_WIN32)
|
||||
# define GGML_CALL
|
||||
# else
|
||||
# define GGML_CALL __attribute__((__ms_abi__))
|
||||
# endif
|
||||
#else
|
||||
# define GGML_CALL
|
||||
#endif
|
||||
|
||||
// TODO: support for clang
|
||||
#ifdef __GNUC__
|
||||
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||||
|
@ -340,7 +330,7 @@ extern "C" {
|
|||
};
|
||||
|
||||
// get ggml_status name string
|
||||
GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
|
||||
GGML_API const char * ggml_status_to_string(enum ggml_status status);
|
||||
|
||||
// ieee 754-2008 half-precision float16
|
||||
// todo: make this not an integral type
|
||||
|
@ -716,46 +706,46 @@ extern "C" {
|
|||
GGML_API void ggml_print_object (const struct ggml_object * obj);
|
||||
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
|
||||
|
||||
GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
|
||||
GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
||||
GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
||||
GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
|
||||
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_nbytes_pad(const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
|
||||
|
||||
GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
|
||||
GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
||||
GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
||||
GGML_API int64_t ggml_blck_size(enum ggml_type type);
|
||||
GGML_API size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
|
||||
GGML_API size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
|
||||
|
||||
GGML_DEPRECATED(
|
||||
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
|
||||
"use ggml_row_size() instead");
|
||||
|
||||
GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
|
||||
GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
|
||||
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
||||
GGML_API const char * ggml_type_name(enum ggml_type type);
|
||||
GGML_API const char * ggml_op_name (enum ggml_op op);
|
||||
GGML_API const char * ggml_op_symbol(enum ggml_op op);
|
||||
|
||||
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
||||
GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
||||
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
|
||||
GGML_API const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
|
||||
|
||||
GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
|
||||
GGML_API bool ggml_is_quantized(enum ggml_type type);
|
||||
|
||||
// TODO: temporary until model loading of ggml examples is refactored
|
||||
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
|
||||
|
||||
GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
||||
GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
||||
GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
||||
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
||||
GGML_API bool ggml_is_transposed(const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_empty (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
||||
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
||||
|
||||
GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
||||
GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
||||
GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
||||
GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
||||
GGML_API bool ggml_is_contiguous (const struct ggml_tensor * tensor);
|
||||
GGML_API bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
|
||||
GGML_API bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
|
||||
GGML_API bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
|
||||
|
||||
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||
|
@ -847,7 +837,7 @@ extern "C" {
|
|||
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
||||
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
||||
GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
|
||||
|
@ -1561,7 +1551,7 @@ extern "C" {
|
|||
"use ggml_rope_ext_inplace instead");
|
||||
|
||||
// compute correction dims for YaRN RoPE scaling
|
||||
GGML_CALL void ggml_rope_yarn_corr_dims(
|
||||
void ggml_rope_yarn_corr_dims(
|
||||
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
||||
|
||||
// rotary position embedding backward, i.e compute dx from dy
|
||||
|
|
|
@ -511,8 +511,8 @@ if (GGML_HIPBLAS)
|
|||
endif()
|
||||
|
||||
if (GGML_SYCL)
|
||||
if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL|NVIDIA)$")
|
||||
message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL or NVIDIA")
|
||||
if (NOT GGML_SYCL_TARGET MATCHES "^(INTEL|NVIDIA|AMD)$")
|
||||
message(FATAL_ERROR "Invalid backend chosen, supported options are INTEL, NVIDIA, or AMD")
|
||||
endif()
|
||||
|
||||
check_cxx_compiler_flag("-fsycl" SUPPORTS_SYCL)
|
||||
|
@ -532,6 +532,9 @@ if (GGML_SYCL)
|
|||
list(APPEND GGML_CDEF_PUBLIC GGML_USE_SYCL)
|
||||
|
||||
if (GGML_SYCL_F16)
|
||||
if (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
message(WARNING "AMD target does not entirely support FP16 in the SYCL backend.")
|
||||
endif()
|
||||
add_compile_definitions(GGML_SYCL_F16)
|
||||
endif()
|
||||
|
||||
|
@ -543,6 +546,12 @@ if (GGML_SYCL)
|
|||
|
||||
if (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
# INFO: Allowed Sub_group_sizes are not consistent through all
|
||||
# hip targets. For example, 64 is used for certain models, but the backend
|
||||
# does not support it.
|
||||
# Target archs tested working: gfx1030, gfx1031, (Only tested sub_group_size = 32)
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=32)
|
||||
else()
|
||||
add_compile_definitions(GGML_SYCL_WARP_SIZE=16)
|
||||
endif()
|
||||
|
@ -576,6 +585,12 @@ if (GGML_SYCL)
|
|||
elseif (GGML_SYCL_TARGET STREQUAL "NVIDIA")
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=nvptx64-nvidia-cuda")
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE sycl pthread m dl onemkl)
|
||||
elseif (GGML_SYCL_TARGET STREQUAL "AMD")
|
||||
if (GGML_SYCL_HIP_TARGET STREQUAL "")
|
||||
message(ERROR "Can't enable SYCL hip backend, GGML_SYCL_HIP_TARGET has not been set.")
|
||||
endif()
|
||||
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fsycl-targets=amdgcn-amd-amdhsa -Xsycl-target-backend --offload-arch=${GGML_SYCL_HIP_TARGET}")
|
||||
list(APPEND GGML_EXTRA_LIBS_PRIVATE sycl pthread m dl onemkl)
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
@ -1310,7 +1325,7 @@ add_library(ggml
|
|||
../include/ggml-backend.h
|
||||
ggml.c
|
||||
ggml-alloc.c
|
||||
ggml-backend.c
|
||||
ggml-backend.cpp
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
|
|
|
@ -9,145 +9,229 @@ extern "C" {
|
|||
#endif
|
||||
|
||||
//
|
||||
// Backend buffer
|
||||
// Backend buffer type
|
||||
//
|
||||
|
||||
// buffer type
|
||||
typedef void * ggml_backend_buffer_type_context_t;
|
||||
|
||||
struct ggml_backend_buffer_type_i {
|
||||
const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft);
|
||||
const char * (*get_name) (ggml_backend_buffer_type_t buft);
|
||||
// allocate a buffer of this type
|
||||
ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||
ggml_backend_buffer_t (*alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size);
|
||||
// tensor alignment
|
||||
size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft);
|
||||
// max buffer size that can be allocated
|
||||
size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft);
|
||||
// data size needed to allocate the tensor, including padding
|
||||
size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
||||
// check if tensor data is in host memory
|
||||
bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft);
|
||||
size_t (*get_alignment) (ggml_backend_buffer_type_t buft);
|
||||
// (optional) max buffer size that can be allocated (defaults to SIZE_MAX)
|
||||
size_t (*get_max_size) (ggml_backend_buffer_type_t buft);
|
||||
// (optional) data size needed to allocate the tensor, including padding (defaults to ggml_nbytes)
|
||||
size_t (*get_alloc_size)(ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor);
|
||||
// (optional) check if tensor data is in host memory (defaults to false)
|
||||
bool (*is_host) (ggml_backend_buffer_type_t buft);
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer_type {
|
||||
struct ggml_backend_buffer_type_i iface;
|
||||
ggml_backend_buffer_type_context_t context;
|
||||
ggml_backend_dev_t device;
|
||||
void * context;
|
||||
};
|
||||
|
||||
// buffer
|
||||
typedef void * ggml_backend_buffer_context_t;
|
||||
//
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
struct ggml_backend_buffer_i {
|
||||
const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer);
|
||||
void (*GGML_CALL free_buffer) (ggml_backend_buffer_t buffer);
|
||||
void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer);
|
||||
void (*GGML_CALL init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
void (*GGML_CALL memset_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer
|
||||
void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras
|
||||
const char * (*get_name) (ggml_backend_buffer_t buffer);
|
||||
// (optional) free the buffer
|
||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||
// base address of the buffer
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer);
|
||||
// (optional) initialize a tensor in the buffer (eg. add tensor extras)
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
// tensor data access
|
||||
void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
// (optional) tensor copy: dst is in the buffer, src may be in any buffer, including buffers from a different backend (return false if not supported)
|
||||
bool (*cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
// clear the entire buffer
|
||||
void (*clear) (ggml_backend_buffer_t buffer, uint8_t value);
|
||||
// (optional) reset any internal state due to tensor initialization, such as tensor extras
|
||||
void (*reset) (ggml_backend_buffer_t buffer);
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer {
|
||||
struct ggml_backend_buffer_i iface;
|
||||
ggml_backend_buffer_type_t buft;
|
||||
ggml_backend_buffer_context_t context;
|
||||
void * context;
|
||||
size_t size;
|
||||
enum ggml_backend_buffer_usage usage;
|
||||
};
|
||||
|
||||
GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
ggml_backend_buffer_type_t buft,
|
||||
struct ggml_backend_buffer_i iface,
|
||||
ggml_backend_buffer_context_t context,
|
||||
size_t size);
|
||||
ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
ggml_backend_buffer_type_t buft,
|
||||
struct ggml_backend_buffer_i iface,
|
||||
void * context,
|
||||
size_t size);
|
||||
|
||||
// do not use directly, use ggml_backend_tensor_copy instead
|
||||
bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// multi-buffer
|
||||
// buffer that contains a collection of buffers
|
||||
GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
||||
GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
||||
GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers);
|
||||
bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer);
|
||||
void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage);
|
||||
|
||||
//
|
||||
// Backend
|
||||
// Backend (stream)
|
||||
//
|
||||
|
||||
typedef void * ggml_backend_context_t;
|
||||
|
||||
struct ggml_backend_i {
|
||||
const char * (*GGML_CALL get_name)(ggml_backend_t backend);
|
||||
const char * (*get_name)(ggml_backend_t backend);
|
||||
|
||||
void (*GGML_CALL free)(ggml_backend_t backend);
|
||||
void (*free)(ggml_backend_t backend);
|
||||
|
||||
// buffer allocation
|
||||
ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend);
|
||||
ggml_backend_buffer_type_t (*get_default_buffer_type)(ggml_backend_t backend);
|
||||
|
||||
// (optional) asynchronous tensor data access
|
||||
void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
bool (*cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// (optional) complete all pending operations
|
||||
void (*GGML_CALL synchronize)(ggml_backend_t backend);
|
||||
void (*synchronize)(ggml_backend_t backend);
|
||||
|
||||
// compute graph with a plan (not used currently)
|
||||
// create a new plan for a graph
|
||||
ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
||||
void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
// (optional) compute graph with a plan (not used currently)
|
||||
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph);
|
||||
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
// update the plan with a new graph - this should be faster than creating a new plan when the graph has the same topology
|
||||
void (*GGML_CALL graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
|
||||
void (*graph_plan_update) (ggml_backend_t backend, ggml_backend_graph_plan_t plan, const struct ggml_cgraph * cgraph);
|
||||
// compute the graph with the plan
|
||||
enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
enum ggml_status (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
// compute graph without a plan (async)
|
||||
enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
// compute graph (always async if supported by the backend)
|
||||
enum ggml_status (*graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// IMPORTANT: these functions have been moved to the device interface and will be removed from the backend interface
|
||||
// new backends should implement the device interface instead
|
||||
|
||||
// These functions are being moved to the device interface
|
||||
// check if the backend can compute an operation
|
||||
bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
bool (*supports_op) (ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// check if the backend can use tensors allocated in a buffer type
|
||||
bool (*GGML_CALL supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
||||
bool (*supports_buft)(ggml_backend_t backend, ggml_backend_buffer_type_t buft);
|
||||
|
||||
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
|
||||
// these should be expensive operations with large batch sizes that may benefit from running on this backend
|
||||
// even if the weight has to be copied from the CPU temporarily
|
||||
bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
bool (*offload_op) (ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
|
||||
// (optional) event synchronization
|
||||
// create a new event that can record events on this backend instance
|
||||
ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend);
|
||||
void (*GGML_CALL event_free) (ggml_backend_event_t event);
|
||||
// record an event on the backend instance that created it
|
||||
void (*GGML_CALL event_record) (ggml_backend_event_t event);
|
||||
// wait for an event on on a different backend instance
|
||||
void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
// block until an event is recorded
|
||||
void (*GGML_CALL event_synchronize) (ggml_backend_event_t event);
|
||||
// record an event on this stream
|
||||
void (*event_record)(ggml_backend_t backend, ggml_backend_event_t event);
|
||||
// wait for an event on on a different stream
|
||||
void (*event_wait) (ggml_backend_t backend, ggml_backend_event_t event);
|
||||
};
|
||||
|
||||
struct ggml_backend {
|
||||
ggml_guid_t guid;
|
||||
|
||||
struct ggml_backend_i iface;
|
||||
ggml_backend_context_t context;
|
||||
ggml_backend_dev_t device;
|
||||
void * context;
|
||||
};
|
||||
|
||||
struct ggml_backend_event {
|
||||
ggml_backend_t backend;
|
||||
struct ggml_backend_device * device;
|
||||
void * context;
|
||||
};
|
||||
|
||||
//
|
||||
// Backend registry
|
||||
// Backend device
|
||||
//
|
||||
|
||||
typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data);
|
||||
// Note: if additional properties are needed, we should add a struct with all of them
|
||||
// the current functions to obtain the properties can remain, since they are more convenient for often used properties
|
||||
struct ggml_backend_device_i {
|
||||
// device name: short identifier for this device, such as "CPU" or "CUDA0"
|
||||
const char * (*get_name)(ggml_backend_dev_t dev);
|
||||
|
||||
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data);
|
||||
// device description: short informative description of the device, could be the model name
|
||||
const char * (*get_description)(ggml_backend_dev_t dev);
|
||||
|
||||
// device memory in bytes
|
||||
void (*get_memory)(ggml_backend_dev_t dev, size_t * free, size_t * total);
|
||||
|
||||
// device type
|
||||
enum ggml_backend_dev_type (*get_type)(ggml_backend_dev_t dev);
|
||||
|
||||
// device properties
|
||||
void (*get_props)(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props);
|
||||
|
||||
// backend (stream) initialization
|
||||
ggml_backend_t (*init_backend)(ggml_backend_dev_t dev, const char * params);
|
||||
|
||||
// preferred buffer type
|
||||
ggml_backend_buffer_type_t (*get_buffer_type)(ggml_backend_dev_t dev);
|
||||
|
||||
// (optional) host buffer type (in system memory, typically this is a pinned memory buffer for faster transfers between host and device)
|
||||
ggml_backend_buffer_type_t (*get_host_buffer_type)(ggml_backend_dev_t dev);
|
||||
|
||||
// (optional) buffer from pointer: create a buffer from a host pointer (useful for memory mapped models and importing data from other libraries)
|
||||
ggml_backend_buffer_t (*buffer_from_host_ptr)(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size);
|
||||
|
||||
// check if the backend can compute an operation
|
||||
bool (*supports_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
|
||||
|
||||
// check if the backend can use tensors allocated in a buffer type
|
||||
bool (*supports_buft)(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft);
|
||||
|
||||
// check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer
|
||||
// these should be expensive operations with large batch sizes that may benefit from running on this backend
|
||||
// even if the weight has to be copied from the CPU temporarily
|
||||
bool (*offload_op)(ggml_backend_dev_t dev, const struct ggml_tensor * op);
|
||||
|
||||
// (optional) event synchronization
|
||||
ggml_backend_event_t (*event_new) (ggml_backend_dev_t dev);
|
||||
void (*event_free) (ggml_backend_dev_t dev, ggml_backend_event_t event);
|
||||
void (*event_synchronize) (ggml_backend_dev_t dev, ggml_backend_event_t event);
|
||||
};
|
||||
|
||||
struct ggml_backend_device {
|
||||
struct ggml_backend_device_i iface;
|
||||
ggml_backend_reg_t reg;
|
||||
void * context;
|
||||
};
|
||||
|
||||
//
|
||||
// Backend (reg)
|
||||
//
|
||||
|
||||
struct ggml_backend_reg_i {
|
||||
const char * (*get_name)(ggml_backend_reg_t reg);
|
||||
|
||||
// enumerate available devices
|
||||
size_t (*get_device_count)(ggml_backend_reg_t reg);
|
||||
ggml_backend_dev_t (*get_device)(ggml_backend_reg_t reg, size_t index);
|
||||
|
||||
// (optional) get a pointer to a function in the backend
|
||||
// backends can add custom functions that are not part of the standard ggml-backend interface
|
||||
void * (*get_proc_address)(ggml_backend_reg_t reg, const char * name);
|
||||
|
||||
// (optional) set the log callback for the backend
|
||||
void (*set_log_callback)(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data);
|
||||
};
|
||||
|
||||
struct ggml_backend_reg {
|
||||
// int api_version; // TODO: for dynamic loading
|
||||
struct ggml_backend_reg_i iface;
|
||||
void * context;
|
||||
};
|
||||
|
||||
|
||||
// Internal backend registry API
|
||||
void ggml_backend_register(ggml_backend_reg_t reg);
|
||||
void ggml_backend_device_register(ggml_backend_dev_t device);
|
||||
// TODO: backends can be loaded as a dynamic library, in which case it needs to export this function
|
||||
// typedef ggml_backend_register_t * (*ggml_backend_init)(void);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -235,25 +235,25 @@ static void ggml_backend_blas_out_prod(ggml_backend_blas_context * ctx, struct g
|
|||
|
||||
// backend interface
|
||||
|
||||
GGML_CALL static const char * ggml_backend_blas_name(ggml_backend_t backend) {
|
||||
static const char * ggml_backend_blas_name(ggml_backend_t backend) {
|
||||
return "BLAS";
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_blas_free(ggml_backend_t backend) {
|
||||
static void ggml_backend_blas_free(ggml_backend_t backend) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
delete ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
|
||||
static ggml_backend_buffer_type_t ggml_backend_blas_get_default_buffer_type(ggml_backend_t backend) {
|
||||
return ggml_backend_cpu_buffer_type();
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
ggml_backend_blas_context * ctx = (ggml_backend_blas_context *)backend->context;
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
|
@ -285,7 +285,7 @@ GGML_CALL static enum ggml_status ggml_backend_blas_graph_compute(ggml_backend_t
|
|||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
static bool ggml_backend_blas_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
const struct ggml_tensor * src0 = op->src[0];
|
||||
const struct ggml_tensor * src1 = op->src[1];
|
||||
|
||||
|
@ -300,7 +300,7 @@ GGML_CALL static bool ggml_backend_blas_supports_op(ggml_backend_t backend, cons
|
|||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
static bool ggml_backend_blas_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return ggml_backend_buft_is_host(buft);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
|
@ -322,11 +322,8 @@ static struct ggml_backend_i blas_backend_i = {
|
|||
/* .supports_op = */ ggml_backend_blas_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_blas_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_blas_guid(void) {
|
||||
|
@ -340,6 +337,7 @@ ggml_backend_t ggml_backend_blas_init(void) {
|
|||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_blas_guid(),
|
||||
/* .interface = */ blas_backend_i,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
|
@ -356,7 +354,7 @@ ggml_backend_t ggml_backend_blas_init(void) {
|
|||
return backend;
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_blas(ggml_backend_t backend) {
|
||||
bool ggml_backend_is_blas(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_blas_guid());
|
||||
}
|
||||
|
||||
|
|
|
@ -497,7 +497,7 @@ struct ggml_backend_cann_buffer_context {
|
|||
* @return A pointer to a C-string containing the name of the buffer.
|
||||
*/
|
||||
|
||||
GGML_CALL static const char* ggml_backend_cann_buffer_get_name(
|
||||
static const char* ggml_backend_cann_buffer_get_name(
|
||||
ggml_backend_buffer_t buffer) {
|
||||
return "CANN";
|
||||
|
||||
|
@ -513,7 +513,7 @@ GGML_CALL static const char* ggml_backend_cann_buffer_get_name(
|
|||
* @param buffer The buffer to check.
|
||||
* @return true if the buffer is a CANN buffer, false otherwise.
|
||||
*/
|
||||
GGML_CALL static bool ggml_backend_buffer_is_cann(
|
||||
static bool ggml_backend_buffer_is_cann(
|
||||
ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.get_name == ggml_backend_cann_buffer_get_name;
|
||||
}
|
||||
|
@ -526,7 +526,7 @@ GGML_CALL static bool ggml_backend_buffer_is_cann(
|
|||
*
|
||||
* @param buffer The CANN buffer to free.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_buffer_free_buffer(
|
||||
static void ggml_backend_cann_buffer_free_buffer(
|
||||
ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cann_buffer_context* ctx =
|
||||
(ggml_backend_cann_buffer_context*)buffer->context;
|
||||
|
@ -542,7 +542,7 @@ GGML_CALL static void ggml_backend_cann_buffer_free_buffer(
|
|||
* @param buffer The CANN buffer whose base pointer is to be retrieved.
|
||||
* @return A pointer to the base of the device memory allocated for the buffer.
|
||||
*/
|
||||
GGML_CALL static void* ggml_backend_cann_buffer_get_base(
|
||||
static void* ggml_backend_cann_buffer_get_base(
|
||||
ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cann_buffer_context* ctx =
|
||||
(ggml_backend_cann_buffer_context*)buffer->context;
|
||||
|
@ -562,9 +562,9 @@ GGML_CALL static void* ggml_backend_cann_buffer_get_base(
|
|||
* @param dst Pointer to the destination buffer where transformed data will be
|
||||
* stored.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
|
||||
const void* src,
|
||||
void* dst) {
|
||||
static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
|
||||
const void* src,
|
||||
void* dst) {
|
||||
|
||||
int64_t n_elems = ggml_nelements(tensor);
|
||||
int64_t groups = n_elems / QK4_0;
|
||||
|
@ -614,7 +614,7 @@ GGML_CALL static void ggml_backend_cann_transform_q4_0(ggml_tensor* tensor,
|
|||
* @param dst Pointer to the destination buffer where the Q4.0 formatted data
|
||||
* will be stored.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_transform_back_q4_0(
|
||||
static void ggml_backend_cann_transform_back_q4_0(
|
||||
const ggml_tensor* tensor, void* src, void* dst) {
|
||||
|
||||
int64_t n_elems = ggml_nelements(tensor);
|
||||
|
@ -663,9 +663,9 @@ GGML_CALL static void ggml_backend_cann_transform_back_q4_0(
|
|||
* @param dst Pointer to the destination buffer where transformed data will be
|
||||
* stored.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor,
|
||||
const void* src,
|
||||
void* dst) {
|
||||
static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor,
|
||||
const void* src,
|
||||
void* dst) {
|
||||
int64_t n_elems = ggml_nelements(tensor);
|
||||
int64_t groups = n_elems / QK8_0;
|
||||
size_t quant_bytes = n_elems * sizeof(uint8_t);
|
||||
|
@ -697,7 +697,7 @@ GGML_CALL static void ggml_backend_cann_transform_q8_0(ggml_tensor* tensor,
|
|||
* @param dst Pointer to the destination buffer where the Q8.0 formatted data
|
||||
* will be stored.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_transform_back_q8_0(
|
||||
static void ggml_backend_cann_transform_back_q8_0(
|
||||
const ggml_tensor* tensor, const void* src, void* dst) {
|
||||
int64_t n_elems = ggml_nelements(tensor);
|
||||
int64_t groups = n_elems / QK8_0;
|
||||
|
@ -729,8 +729,8 @@ GGML_CALL static void ggml_backend_cann_transform_back_q8_0(
|
|||
* @param dst Pointer to the destination buffer where transformed data will be
|
||||
* stored.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_transform(ggml_tensor* tensor,
|
||||
const void* src, void* dst) {
|
||||
static void ggml_backend_cann_transform(ggml_tensor* tensor,
|
||||
const void* src, void* dst) {
|
||||
switch (tensor->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
ggml_backend_cann_transform_q4_0(tensor, src, dst);
|
||||
|
@ -755,7 +755,7 @@ GGML_CALL static void ggml_backend_cann_transform(ggml_tensor* tensor,
|
|||
* @param dst Pointer to the destination buffer where transformed tensor data
|
||||
* will be stored.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_transform_back(
|
||||
static void ggml_backend_cann_transform_back(
|
||||
const ggml_tensor* tensor, void* src, void* dst) {
|
||||
switch (tensor->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
|
@ -778,7 +778,7 @@ GGML_CALL static void ggml_backend_cann_transform_back(
|
|||
* @param type The tensor type to check.
|
||||
* @return true if transformation is needed, false otherwise.
|
||||
*/
|
||||
GGML_CALL static bool need_transform(ggml_type type) {
|
||||
static bool need_transform(ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q8_0:
|
||||
|
@ -797,7 +797,7 @@ GGML_CALL static bool need_transform(ggml_type type) {
|
|||
* @param buffer The CANN buffer from which to initialize the tensor.
|
||||
* @param tensor Pointer to the tensor to be initialized.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_buffer_init_tensor(
|
||||
static void ggml_backend_cann_buffer_init_tensor(
|
||||
ggml_backend_buffer_t buffer, ggml_tensor* tensor) {
|
||||
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
||||
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
|
||||
|
@ -833,7 +833,7 @@ GGML_CALL static void ggml_backend_cann_buffer_init_tensor(
|
|||
* @param offset Offset in the source data from where to start copying.
|
||||
* @param size Size of the data to be copied, in bytes.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_buffer_set_tensor(
|
||||
static void ggml_backend_cann_buffer_set_tensor(
|
||||
ggml_backend_buffer_t buffer, ggml_tensor *tensor, const void *data,
|
||||
size_t offset, size_t size) {
|
||||
ggml_backend_cann_buffer_context *ctx =
|
||||
|
@ -878,7 +878,7 @@ GGML_CALL static void ggml_backend_cann_buffer_set_tensor(
|
|||
* @param offset Offset in the destination buffer where to start copying.
|
||||
* @param size Size of the data to be copied, in bytes.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_buffer_get_tensor(
|
||||
static void ggml_backend_cann_buffer_get_tensor(
|
||||
ggml_backend_buffer_t buffer, const ggml_tensor* tensor, void* data,
|
||||
size_t offset, size_t size) {
|
||||
ggml_backend_cann_buffer_context* ctx =
|
||||
|
@ -912,7 +912,7 @@ GGML_CALL static void ggml_backend_cann_buffer_get_tensor(
|
|||
* @param dst Pointer to the destination tensor where the data will be copied.
|
||||
* @return true if the copy operation succeeded, false otherwise.
|
||||
*/
|
||||
GGML_CALL static bool ggml_backend_cann_buffer_cpy_tensor(
|
||||
static bool ggml_backend_cann_buffer_cpy_tensor(
|
||||
ggml_backend_buffer_t buffer, const ggml_tensor* src, ggml_tensor* dst) {
|
||||
if (ggml_backend_buffer_is_cann(src->buffer)) {
|
||||
ggml_backend_cann_buffer_context* src_ctx =
|
||||
|
@ -954,7 +954,7 @@ GGML_CALL static bool ggml_backend_cann_buffer_cpy_tensor(
|
|||
* @param buffer The CANN buffer to be cleared.
|
||||
* @param value The value to which each byte in the buffer will be set.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_buffer_clear(
|
||||
static void ggml_backend_cann_buffer_clear(
|
||||
ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
ggml_backend_cann_buffer_context* ctx =
|
||||
(ggml_backend_cann_buffer_context*)buffer->context;
|
||||
|
@ -1002,7 +1002,7 @@ struct ggml_backend_cann_buffer_type_context {
|
|||
* @param buft Pointer to the buffer type context.
|
||||
* @return Const pointer to the C-style string containing the name.
|
||||
*/
|
||||
GGML_CALL static const char* ggml_backend_cann_buffer_type_name(
|
||||
static const char* ggml_backend_cann_buffer_type_name(
|
||||
ggml_backend_buffer_type_t buft) {
|
||||
return "CANN";
|
||||
|
||||
|
@ -1019,7 +1019,7 @@ GGML_CALL static const char* ggml_backend_cann_buffer_type_name(
|
|||
* @param size Size in bytes of the buffer to allocate.
|
||||
* @return Pointer to the allocated buffer, or nullptr if allocation fails.
|
||||
*/
|
||||
GGML_CALL static ggml_backend_buffer_t
|
||||
static ggml_backend_buffer_t
|
||||
ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
|
||||
size_t size) {
|
||||
ggml_backend_cann_buffer_type_context* buft_ctx =
|
||||
|
@ -1058,7 +1058,7 @@ ggml_backend_cann_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
|
|||
* @return The alignment requirement in bytes (fixed at 128 bytes for CANN
|
||||
* buffers).
|
||||
*/
|
||||
GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alignment(
|
||||
static size_t ggml_backend_cann_buffer_type_get_alignment(
|
||||
ggml_backend_buffer_type_t buft) {
|
||||
return 128;
|
||||
|
||||
|
@ -1079,7 +1079,7 @@ GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alignment(
|
|||
* @return The total allocation size in bytes required for the tensor in the
|
||||
* CANN buffer.
|
||||
*/
|
||||
GGML_CALL static size_t ggml_backend_cann_buffer_type_get_alloc_size(
|
||||
static size_t ggml_backend_cann_buffer_type_get_alloc_size(
|
||||
ggml_backend_buffer_type_t buft, const ggml_tensor* tensor) {
|
||||
size_t size = ggml_nbytes(tensor);
|
||||
int64_t ne0 = tensor->ne[0];
|
||||
|
@ -1130,7 +1130,7 @@ static ggml_backend_buffer_type_i ggml_backend_cann_buffer_type_interface = {
|
|||
* @return A pointer to the buffer type interface for the specified device, or
|
||||
* nullptr if the device index is out of range.
|
||||
*/
|
||||
GGML_CALL ggml_backend_buffer_type_t
|
||||
ggml_backend_buffer_type_t
|
||||
ggml_backend_cann_buffer_type(int32_t device) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
@ -1168,7 +1168,7 @@ ggml_backend_cann_buffer_type(int32_t device) {
|
|||
* @param buft Pointer to the host buffer type context.
|
||||
* @return Const pointer to the C-style string containing the name.
|
||||
*/
|
||||
GGML_CALL static const char * ggml_backend_cann_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_cann_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
return "CANN_Host";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
|
@ -1183,7 +1183,7 @@ GGML_CALL static const char * ggml_backend_cann_host_buffer_type_name(ggml_backe
|
|||
* @param buft Pointer to the host buffer context.
|
||||
* @return Const pointer to the C-style string containing the name.
|
||||
*/
|
||||
GGML_CALL static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
return "CANN_Host";
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
|
@ -1197,7 +1197,7 @@ GGML_CALL static const char * ggml_backend_cann_host_buffer_name(ggml_backend_bu
|
|||
*
|
||||
* @param buffer The CANN host buffer to free.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
ACL_CHECK(aclrtFreeHost(buffer->context));
|
||||
}
|
||||
|
||||
|
@ -1231,7 +1231,7 @@ static void * ggml_cann_host_malloc(size_t size) {
|
|||
* @param size Size in bytes of the host buffer to allocate.
|
||||
* @return Pointer to the allocated host buffer, or CPU buffer pointer if allocation fails.
|
||||
*/
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * hostPtr = ggml_cann_host_malloc(size);
|
||||
|
||||
if (hostPtr == nullptr) {
|
||||
|
@ -1253,7 +1253,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cann_host_buffer_type_alloc_
|
|||
* Provides function pointers for allocating, querying properties, and managing
|
||||
* memory for CANN buffer types in the GGML backend.
|
||||
*/
|
||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
|
||||
ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_cann_buffer_type_host = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cann_host_buffer_type_name,
|
||||
|
@ -1263,6 +1263,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type() {
|
|||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
|
@ -1432,7 +1433,7 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
|
|||
* @param backend Pointer to the CANN backend structure.
|
||||
* @return A pointer to a constant string representing the backend name.
|
||||
*/
|
||||
GGML_CALL static const char* ggml_backend_cann_name(ggml_backend_t backend) {
|
||||
static const char* ggml_backend_cann_name(ggml_backend_t backend) {
|
||||
ggml_backend_cann_context* cann_ctx =
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
|
||||
|
@ -1447,7 +1448,7 @@ GGML_CALL static const char* ggml_backend_cann_name(ggml_backend_t backend) {
|
|||
*
|
||||
* @param backend Pointer to the CANN backend structure to be freed.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_free(ggml_backend_t backend) {
|
||||
static void ggml_backend_cann_free(ggml_backend_t backend) {
|
||||
ggml_backend_cann_context* cann_ctx =
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
ACL_CHECK(aclrtSynchronizeDevice());
|
||||
|
@ -1472,7 +1473,7 @@ GGML_CALL static void ggml_backend_cann_free(ggml_backend_t backend) {
|
|||
* @param backend Pointer to the CANN backend structure.
|
||||
* @return Pointer to the buffer type structure for the CANN backend.
|
||||
*/
|
||||
GGML_CALL static ggml_backend_buffer_type_t
|
||||
static ggml_backend_buffer_type_t
|
||||
ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) {
|
||||
ggml_backend_cann_context* cann_ctx =
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
|
@ -1493,11 +1494,11 @@ ggml_backend_cann_get_default_buffer_type(ggml_backend_t backend) {
|
|||
* @param offset Offset in bytes within the host data.
|
||||
* @param size Size of the data to copy in bytes.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
|
||||
ggml_tensor *tensor,
|
||||
const void *data,
|
||||
size_t offset,
|
||||
size_t size) {
|
||||
static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
|
||||
ggml_tensor *tensor,
|
||||
const void *data,
|
||||
size_t offset,
|
||||
size_t size) {
|
||||
ggml_backend_cann_context *cann_ctx =
|
||||
(ggml_backend_cann_context *)backend->context;
|
||||
|
||||
|
@ -1524,7 +1525,7 @@ GGML_CALL static void ggml_backend_cann_set_tensor_async(ggml_backend_t backend,
|
|||
}
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cann_get_tensor_async(
|
||||
static void ggml_backend_cann_get_tensor_async(
|
||||
ggml_backend_t backend, const ggml_tensor *tensor, void *data,
|
||||
size_t offset, size_t size) {
|
||||
ggml_backend_cann_context *cann_ctx =
|
||||
|
@ -1563,7 +1564,7 @@ GGML_CALL static void ggml_backend_cann_get_tensor_async(
|
|||
* @param dst Pointer to the destination tensor to copy data to.
|
||||
* @return true if the copy operation succeeds, false otherwise.
|
||||
*/
|
||||
GGML_CALL static bool ggml_backend_cann_cpy_tensor_async(
|
||||
static bool ggml_backend_cann_cpy_tensor_async(
|
||||
ggml_backend_t backend_src, ggml_backend_t backend_dst,
|
||||
const ggml_tensor* src, ggml_tensor* dst) {
|
||||
GGML_ASSERT(ggml_backend_is_cann(backend_src) ||
|
||||
|
@ -1631,7 +1632,7 @@ GGML_CALL static bool ggml_backend_cann_cpy_tensor_async(
|
|||
*
|
||||
* @param backend Pointer to the CANN backend structure to synchronize.
|
||||
*/
|
||||
GGML_CALL static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
|
||||
static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
|
||||
ggml_backend_cann_context* cann_ctx =
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
|
||||
|
@ -1652,7 +1653,7 @@ GGML_CALL static void ggml_backend_cann_synchronize(ggml_backend_t backend) {
|
|||
* @return enum ggml_status Returns GGML_STATUS_SUCCESS if computation
|
||||
* completes successfully, otherwise an appropriate error status.
|
||||
*/
|
||||
GGML_CALL static enum ggml_status ggml_backend_cann_graph_compute(
|
||||
static enum ggml_status ggml_backend_cann_graph_compute(
|
||||
ggml_backend_t backend, ggml_cgraph* cgraph) {
|
||||
ggml_backend_cann_context* cann_ctx =
|
||||
(ggml_backend_cann_context*)backend->context;
|
||||
|
@ -1690,7 +1691,7 @@ GGML_CALL static enum ggml_status ggml_backend_cann_graph_compute(
|
|||
* @return bool Returns true if the operation is supported by the backend,
|
||||
* otherwise false.
|
||||
*/
|
||||
GGML_CALL static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
|
||||
static bool ggml_backend_cann_supports_op(ggml_backend_t backend,
|
||||
const ggml_tensor* op) {
|
||||
switch (op->op) {
|
||||
case GGML_OP_UNARY:
|
||||
|
@ -1812,7 +1813,7 @@ static bool ggml_backend_buft_is_cann(ggml_backend_buffer_type_t buft) {
|
|||
* @return bool Returns true if the CANN backend supports the buffer type,
|
||||
* otherwise false.
|
||||
*/
|
||||
GGML_CALL static bool ggml_backend_cann_supports_buft(
|
||||
static bool ggml_backend_cann_supports_buft(
|
||||
ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (ggml_backend_buft_is_cann(buft)) {
|
||||
ggml_backend_cann_context * cann_ctx =
|
||||
|
@ -1838,7 +1839,7 @@ GGML_CALL static bool ggml_backend_cann_supports_buft(
|
|||
* @return bool Returns true if the operation should be offloaded, otherwise
|
||||
* false.
|
||||
*/
|
||||
GGML_CALL static bool ggml_backend_cann_offload_op(ggml_backend_t backend,
|
||||
static bool ggml_backend_cann_offload_op(ggml_backend_t backend,
|
||||
const ggml_tensor* op) {
|
||||
const int min_batch_size = 32;
|
||||
GGML_UNUSED(backend);
|
||||
|
@ -1958,11 +1959,8 @@ static ggml_backend_i ggml_backend_cann_interface = {
|
|||
/* .supports_op = */ ggml_backend_cann_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cann_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_cann_offload_op,
|
||||
/* .event_new = */ ggml_backend_cann_event_new,
|
||||
/* .event_free = */ ggml_backend_cann_event_free,
|
||||
/* .event_record = */ ggml_backend_cann_event_record,
|
||||
/* .event_wait = */ ggml_backend_cann_event_wait,
|
||||
/* .event_synchronize = */ ggml_backend_cann_event_synchronize,
|
||||
};
|
||||
|
||||
/**
|
||||
|
@ -1979,7 +1977,7 @@ static ggml_guid_t ggml_backend_cann_guid() {
|
|||
return &guid;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) {
|
||||
ggml_backend_t ggml_backend_cann_init(int32_t device) {
|
||||
aclInit(nullptr);
|
||||
if (device < 0 || device >= ggml_backend_cann_get_device_count()) {
|
||||
GGML_LOG_ERROR("%s: error: invalid device %d\n", __func__, device);
|
||||
|
@ -1995,75 +1993,30 @@ GGML_CALL ggml_backend_t ggml_backend_cann_init(int32_t device) {
|
|||
ggml_backend_t cann_backend =
|
||||
new ggml_backend{/* .guid = */ ggml_backend_cann_guid(),
|
||||
/* .interface = */ ggml_backend_cann_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ ctx};
|
||||
|
||||
return cann_backend;
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_cann(ggml_backend_t backend) {
|
||||
bool ggml_backend_is_cann(ggml_backend_t backend) {
|
||||
return backend != NULL &&
|
||||
ggml_guid_matches(backend->guid, ggml_backend_cann_guid());
|
||||
}
|
||||
|
||||
GGML_CALL int32_t ggml_backend_cann_get_device_count() {
|
||||
int32_t ggml_backend_cann_get_device_count() {
|
||||
return ggml_cann_info().device_count;
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_cann_get_device_description(
|
||||
void ggml_backend_cann_get_device_description(
|
||||
int32_t device, char* description, size_t description_size) {
|
||||
ggml_cann_set_device(device);
|
||||
const char* soc_name = aclrtGetSocName();
|
||||
snprintf(description, description_size, "%s", soc_name);
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_cann_get_device_memory(int32_t device, size_t* free,
|
||||
size_t* total) {
|
||||
void ggml_backend_cann_get_device_memory(int32_t device, size_t* free,
|
||||
size_t* total) {
|
||||
ggml_cann_set_device(device);
|
||||
ACL_CHECK(aclrtGetMemInfo(ACL_HBM_MEM, free, total));
|
||||
}
|
||||
|
||||
// backend registry
|
||||
/**
|
||||
* @brief Initializes a CANN backend based on the provided parameters.
|
||||
*
|
||||
* This function initializes a CANN backend using the device index and then
|
||||
* initializes the backend using `ggml_backend_cann_init`.
|
||||
*
|
||||
* @param params Parameters for initialization (unused in this implementation).
|
||||
* @param user_data User data containing the device index to initialize the
|
||||
* backend.
|
||||
* @return ggml_backend_t The initialized CANN backend.
|
||||
*/
|
||||
GGML_CALL static ggml_backend_t ggml_backend_reg_cann_init(const char* params,
|
||||
void* user_data) {
|
||||
ggml_backend_t cann_backend =
|
||||
ggml_backend_cann_init((int)(intptr_t)user_data);
|
||||
return cann_backend;
|
||||
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
extern "C" GGML_CALL int ggml_backend_cann_reg_devices();
|
||||
|
||||
/**
|
||||
* @brief Registers CANN (Ascend) devices as backend options.
|
||||
*
|
||||
* This function initializes ACL, retrieves the number of available CANN
|
||||
* devices, and registers each device as a backend option using
|
||||
* `ggml_backend_register`. Each device is given a unique name based on
|
||||
* `GGML_CANN_NAME` followed by its index.
|
||||
*
|
||||
* @return int The number of CANN devices registered.
|
||||
*/
|
||||
GGML_CALL int ggml_backend_cann_reg_devices() {
|
||||
uint32_t device_count = ggml_backend_cann_get_device_count();
|
||||
// initialization
|
||||
for (uint32_t i = 0; i < device_count; i++) {
|
||||
char name[128];
|
||||
snprintf(name, sizeof(name), "CANN%d", i);
|
||||
ggml_backend_register(name, ggml_backend_reg_cann_init,
|
||||
ggml_backend_cann_buffer_type(i),
|
||||
(void*)(intptr_t)i);
|
||||
}
|
||||
return device_count;
|
||||
}
|
||||
|
|
|
@ -61,11 +61,11 @@ void ggml_cuda_error(const char * stmt, const char * func, const char * file, in
|
|||
int id = -1; // in case cudaGetDevice fails
|
||||
cudaGetDevice(&id);
|
||||
|
||||
GGML_LOG_ERROR("CUDA error: %s\n", msg);
|
||||
GGML_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg);
|
||||
GGML_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
|
||||
GGML_LOG_ERROR(" %s\n", stmt);
|
||||
// abort with GGML_ASSERT to get a stack trace
|
||||
GGML_ABORT("CUDA error");
|
||||
// abort with GGML_ABORT to get a stack trace
|
||||
GGML_ABORT(GGML_CUDA_NAME " error");
|
||||
}
|
||||
|
||||
// this is faster on Windows
|
||||
|
@ -289,7 +289,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
|||
return;
|
||||
}
|
||||
}
|
||||
GGML_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
||||
GGML_LOG_WARN(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
||||
ggml_cuda_set_device(device);
|
||||
CUDA_CHECK(cudaFree(ptr));
|
||||
pool_size -= size;
|
||||
|
@ -419,26 +419,26 @@ struct ggml_backend_cuda_buffer_context {
|
|||
}
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
|
||||
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
return ctx->dev_ptr;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
if (tensor->view_src != NULL) {
|
||||
|
@ -458,7 +458,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t
|
|||
}
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
|
@ -466,7 +466,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer
|
|||
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
|
@ -474,7 +474,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t
|
|||
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
|
@ -482,7 +482,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t
|
|||
CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_cuda(src->buffer)) {
|
||||
ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
|
||||
ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
|
||||
|
@ -503,7 +503,7 @@ GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t
|
|||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
|
@ -512,7 +512,7 @@ GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffe
|
|||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
|
||||
static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_buffer_get_name,
|
||||
/* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_cuda_buffer_get_base,
|
||||
|
@ -531,17 +531,17 @@ struct ggml_backend_cuda_buffer_type_context {
|
|||
std::string name;
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_cuda_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
||||
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cuda_buffer_type_name;
|
||||
return buft->iface.get_name == ggml_backend_cuda_buffer_type_get_name;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
||||
|
||||
ggml_cuda_set_device(buft_ctx->device);
|
||||
|
@ -562,13 +562,13 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffe
|
|||
return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return 128;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
size_t size = ggml_nbytes(tensor);
|
||||
int64_t ne0 = tensor->ne[0];
|
||||
|
||||
|
@ -583,8 +583,8 @@ GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backen
|
|||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_buffer_type_name,
|
||||
static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
|
@ -592,7 +592,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
|
|||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
|
||||
ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
|
@ -605,9 +605,10 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
|
|||
static bool ggml_backend_cuda_buffer_type_initialized = false;
|
||||
|
||||
if (!ggml_backend_cuda_buffer_type_initialized) {
|
||||
for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
|
||||
for (int i = 0; i < ggml_backend_cuda_get_device_count(); i++) {
|
||||
ggml_backend_cuda_buffer_types[i] = {
|
||||
/* .iface = */ ggml_backend_cuda_buffer_type_interface,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), i),
|
||||
/* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
|
||||
};
|
||||
}
|
||||
|
@ -677,7 +678,7 @@ struct ggml_backend_cuda_split_buffer_context {
|
|||
std::vector<ggml_tensor_extra_gpu *> tensor_extras;
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
return GGML_CUDA_NAME "_Split";
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
|
@ -688,19 +689,19 @@ static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
|
|||
GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
|
||||
return (void *)0x1000;
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
|
||||
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
|
@ -748,7 +749,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_bu
|
|||
tensor->extra = extra;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
// split tensors must always be set in their entirety at once
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
|
@ -786,7 +787,7 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buf
|
|||
}
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
// split tensors must always be set in their entirety at once
|
||||
GGML_ASSERT(offset == 0);
|
||||
GGML_ASSERT(size == ggml_nbytes(tensor));
|
||||
|
@ -824,12 +825,12 @@ GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buf
|
|||
}
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
GGML_UNUSED(buffer);
|
||||
GGML_UNUSED(value);
|
||||
}
|
||||
|
||||
static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
|
||||
static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
|
||||
/* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
|
||||
/* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
|
||||
|
@ -844,17 +845,17 @@ static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
|
|||
|
||||
// cuda split buffer type
|
||||
|
||||
GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_cuda_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return GGML_CUDA_NAME "_Split";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_name;
|
||||
return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_get_name;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
|
||||
// instead, we allocate them for each tensor separately in init_tensor
|
||||
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
|
||||
|
@ -864,13 +865,13 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc
|
|||
return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return 128;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
|
||||
|
||||
size_t total_size = 0;
|
||||
|
@ -897,14 +898,14 @@ GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_
|
|||
return total_size;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
|
||||
static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_split_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
|
||||
|
@ -912,7 +913,7 @@ static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface
|
|||
/* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
|
||||
};
|
||||
|
||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
|
||||
ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
|
@ -941,6 +942,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const f
|
|||
|
||||
struct ggml_backend_buffer_type buft {
|
||||
/* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
|
||||
/* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
|
||||
};
|
||||
|
||||
|
@ -950,19 +952,19 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const f
|
|||
|
||||
// host buffer type
|
||||
|
||||
GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
return GGML_CUDA_NAME "_Host";
|
||||
|
||||
GGML_UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
return GGML_CUDA_NAME "_Host";
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
CUDA_CHECK(cudaFreeHost(buffer->context));
|
||||
}
|
||||
|
||||
|
@ -984,7 +986,7 @@ static void * ggml_cuda_host_malloc(size_t size) {
|
|||
return ptr;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * ptr = ggml_cuda_host_malloc(size);
|
||||
|
||||
if (ptr == nullptr) {
|
||||
|
@ -1000,7 +1002,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_
|
|||
return buffer;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
|
||||
ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
|
||||
|
@ -1010,6 +1012,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
|
|||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
|
@ -2337,26 +2340,26 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||
|
||||
// backend
|
||||
|
||||
GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
|
||||
static const char * ggml_backend_cuda_get_name(ggml_backend_t backend) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
return cuda_ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
|
||||
static void ggml_backend_cuda_free(ggml_backend_t backend) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
delete cuda_ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
|
||||
static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
return ggml_backend_cuda_buffer_type(cuda_ctx->device);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
|
@ -2365,7 +2368,7 @@ GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend,
|
|||
CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
|
||||
|
||||
|
@ -2374,7 +2377,7 @@ GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend,
|
|||
CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
|
||||
ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
|
||||
|
||||
|
@ -2429,7 +2432,7 @@ GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_
|
|||
return true;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
|
||||
|
@ -2488,7 +2491,7 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra
|
|||
return true;
|
||||
}
|
||||
|
||||
GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
|
@ -2760,8 +2763,187 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *) backend->context;
|
||||
static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
if (ggml_backend_is_cuda(backend)) {
|
||||
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
|
||||
} else {
|
||||
#if 0
|
||||
// untested
|
||||
auto wait_fn = [](void * user_data) {
|
||||
ggml_backend_event_t event = (ggml_backend_event_t)user_data;
|
||||
ggml_backend_event_synchronize(event);
|
||||
};
|
||||
|
||||
CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
|
||||
#endif
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
static const ggml_backend_i ggml_backend_cuda_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_get_name,
|
||||
/* .free = */ ggml_backend_cuda_free,
|
||||
/* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
|
||||
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
|
||||
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
|
||||
/* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
|
||||
/* .synchronize = */ ggml_backend_cuda_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
|
||||
/* .supports_op = */ NULL, // moved to device
|
||||
/* .supports_buft = */ NULL, // moved to device
|
||||
/* .offload_op = */ NULL, // moved to device
|
||||
/* .event_record = */ ggml_backend_cuda_event_record,
|
||||
/* .event_wait = */ ggml_backend_cuda_event_wait,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cuda_guid() {
|
||||
static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
|
||||
return &guid;
|
||||
}
|
||||
|
||||
bool ggml_backend_is_cuda(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
|
||||
}
|
||||
|
||||
int ggml_backend_cuda_get_device_count() {
|
||||
return ggml_cuda_info().device_count;
|
||||
}
|
||||
|
||||
void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
|
||||
cudaDeviceProp prop;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
|
||||
snprintf(description, description_size, "%s", prop.name);
|
||||
}
|
||||
|
||||
void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
|
||||
ggml_cuda_set_device(device);
|
||||
|
||||
CUDA_CHECK(cudaMemGetInfo(free, total));
|
||||
}
|
||||
|
||||
bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
|
||||
if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
|
||||
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
|
||||
GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
|
||||
size / 1024.0 / 1024.0, cudaGetErrorString(err));
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
|
||||
if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
cudaError_t err = cudaHostUnregister(buffer);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// backend device
|
||||
|
||||
struct ggml_backend_cuda_device_context {
|
||||
int device;
|
||||
std::string name;
|
||||
std::string description;
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t dev) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
return ctx->description.c_str();
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
ggml_cuda_set_device(ctx->device);
|
||||
CUDA_CHECK(cudaMemGetInfo(free, total));
|
||||
}
|
||||
|
||||
static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend_dev_t dev) {
|
||||
GGML_UNUSED(dev);
|
||||
return GGML_BACKEND_DEVICE_TYPE_GPU_FULL;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
|
||||
props->name = ggml_backend_cuda_device_get_name(dev);
|
||||
props->description = ggml_backend_cuda_device_get_description(dev);
|
||||
props->type = ggml_backend_cuda_device_get_type(dev);
|
||||
ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
|
||||
|
||||
bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
|
||||
#ifdef GGML_CUDA_NO_PEER_COPY
|
||||
bool events = false;
|
||||
#else
|
||||
bool events = true;
|
||||
#endif
|
||||
|
||||
props->caps = {
|
||||
/* async */ true,
|
||||
/* host_buffer */ host_buffer,
|
||||
/* events */ events,
|
||||
};
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_cuda_device_init(ggml_backend_dev_t dev, const char * params) {
|
||||
GGML_UNUSED(params);
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
return ggml_backend_cuda_init(ctx->device);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_buffer_type(ggml_backend_dev_t dev) {
|
||||
ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
return ggml_backend_cuda_buffer_type(ctx->device);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_host_buffer_type(ggml_backend_dev_t dev) {
|
||||
GGML_UNUSED(dev);
|
||||
return ggml_backend_cuda_host_buffer_type();
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_t ggml_backend_cuda_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
|
||||
GGML_UNUSED(dev);
|
||||
GGML_UNUSED(ptr);
|
||||
GGML_UNUSED(size);
|
||||
GGML_UNUSED(max_tensor_size);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// TODO: move these functions here
|
||||
static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
||||
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
|
||||
|
||||
switch (op->op) {
|
||||
case GGML_OP_UNARY:
|
||||
switch (ggml_get_unary_op(op)) {
|
||||
|
@ -2966,7 +3148,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
const int cc = ggml_cuda_info().devices[cuda_ctx->device].cc;
|
||||
const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
|
||||
return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
|
||||
}
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
|
@ -2976,115 +3158,170 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
|
||||
if (ggml_backend_buft_is_cuda_split(buft)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
if (ggml_backend_buft_is_cuda(buft)) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
|
||||
return buft_ctx->device == cuda_ctx->device;
|
||||
return buft_ctx->device == dev_ctx->device;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
|
||||
const int min_batch_size = 32;
|
||||
|
||||
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
|
||||
(op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID);
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
GGML_UNUSED(dev);
|
||||
}
|
||||
|
||||
static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
|
||||
static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) {
|
||||
#ifdef GGML_CUDA_NO_PEER_COPY
|
||||
return nullptr;
|
||||
#else
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;
|
||||
|
||||
ggml_cuda_set_device(cuda_ctx->device);
|
||||
ggml_cuda_set_device(dev_ctx->device);
|
||||
|
||||
cudaEvent_t event;
|
||||
CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
|
||||
|
||||
return new ggml_backend_event {
|
||||
/* .backend = */ backend,
|
||||
/* .device = */ dev,
|
||||
/* .context = */ event,
|
||||
};
|
||||
#endif
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
|
||||
CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
|
||||
static void ggml_backend_cuda_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) {
|
||||
GGML_UNUSED(dev);
|
||||
|
||||
CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
|
||||
delete event;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
|
||||
|
||||
CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
|
||||
ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
|
||||
|
||||
if (ggml_backend_is_cuda(event->backend)) {
|
||||
CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
|
||||
} else {
|
||||
#if 0
|
||||
// untested
|
||||
auto wait_fn = [](void * user_data) {
|
||||
ggml_backend_event_t event = (ggml_backend_event_t)user_data;
|
||||
ggml_backend_event_synchronize(event);
|
||||
};
|
||||
|
||||
CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
|
||||
#endif
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
|
||||
static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) {
|
||||
GGML_UNUSED(dev);
|
||||
CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
|
||||
}
|
||||
|
||||
static ggml_backend_i ggml_backend_cuda_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_name,
|
||||
/* .free = */ ggml_backend_cuda_free,
|
||||
/* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
|
||||
/* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
|
||||
/* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
|
||||
/* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
|
||||
/* .synchronize = */ ggml_backend_cuda_synchronize,
|
||||
/* .graph_plan_create = */ NULL,
|
||||
/* .graph_plan_free = */ NULL,
|
||||
/* .graph_plan_update = */ NULL,
|
||||
/* .graph_plan_compute = */ NULL,
|
||||
/* .graph_compute = */ ggml_backend_cuda_graph_compute,
|
||||
/* .supports_op = */ ggml_backend_cuda_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cuda_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_cuda_offload_op,
|
||||
/* .event_new = */ ggml_backend_cuda_event_new,
|
||||
/* .event_free = */ ggml_backend_cuda_event_free,
|
||||
/* .event_record = */ ggml_backend_cuda_event_record,
|
||||
/* .event_wait = */ ggml_backend_cuda_event_wait,
|
||||
/* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
|
||||
static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_device_get_name,
|
||||
/* .get_description = */ ggml_backend_cuda_device_get_description,
|
||||
/* .get_memory = */ ggml_backend_cuda_device_get_memory,
|
||||
/* .get_type = */ ggml_backend_cuda_device_get_type,
|
||||
/* .get_props = */ ggml_backend_cuda_device_get_props,
|
||||
/* .init_backend = */ ggml_backend_cuda_device_init,
|
||||
/* .get_buffer_type = */ ggml_backend_cuda_device_get_buffer_type,
|
||||
/* .get_host_buffer_type = */ ggml_backend_cuda_device_get_host_buffer_type,
|
||||
/* .buffer_from_host_ptr = */ ggml_backend_cuda_device_buffer_from_host_ptr,
|
||||
/* .supports_op = */ ggml_backend_cuda_device_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_cuda_device_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_cuda_device_offload_op,
|
||||
/* .event_new = */ ggml_backend_cuda_device_event_new,
|
||||
/* .event_free = */ ggml_backend_cuda_device_event_free,
|
||||
/* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_cuda_guid() {
|
||||
static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
|
||||
return &guid;
|
||||
// backend reg
|
||||
|
||||
struct ggml_backend_cuda_reg_context {
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
};
|
||||
|
||||
static const char * ggml_backend_cuda_reg_get_name(ggml_backend_reg_t reg) {
|
||||
GGML_UNUSED(reg);
|
||||
return GGML_CUDA_NAME;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
||||
static size_t ggml_backend_cuda_reg_get_device_count(ggml_backend_reg_t reg) {
|
||||
ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
|
||||
return ctx->devices.size();
|
||||
}
|
||||
|
||||
static ggml_backend_dev_t ggml_backend_cuda_reg_get_device(ggml_backend_reg_t reg, size_t index) {
|
||||
ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
|
||||
GGML_ASSERT(index < ctx->devices.size());
|
||||
return ctx->devices[index];
|
||||
}
|
||||
|
||||
static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
|
||||
GGML_UNUSED(reg);
|
||||
if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
|
||||
return (void *)ggml_backend_cuda_split_buffer_type;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_register_host_buffer") == 0) {
|
||||
return (void *)ggml_backend_cuda_register_host_buffer;
|
||||
}
|
||||
if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) {
|
||||
return (void *)ggml_backend_cuda_unregister_host_buffer;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_reg_set_log_callback(ggml_backend_reg_t reg, ggml_log_callback log_callback, void * user_data) {
|
||||
GGML_UNUSED(reg);
|
||||
ggml_backend_cuda_log_set_callback(log_callback, user_data);
|
||||
}
|
||||
|
||||
static const ggml_backend_reg_i ggml_backend_cuda_reg_interface = {
|
||||
/* .get_name = */ ggml_backend_cuda_reg_get_name,
|
||||
/* .get_device_count = */ ggml_backend_cuda_reg_get_device_count,
|
||||
/* .get_device_get = */ ggml_backend_cuda_reg_get_device,
|
||||
/* .get_proc_address = */ ggml_backend_cuda_reg_get_proc_address,
|
||||
/* .set_log_callback = */ ggml_backend_cuda_reg_set_log_callback,
|
||||
};
|
||||
|
||||
// backend registry
|
||||
ggml_backend_reg_t ggml_backend_cuda_reg() {
|
||||
static ggml_backend_reg reg;
|
||||
static bool initialized = false;
|
||||
|
||||
{
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
if (!initialized) {
|
||||
ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
|
||||
|
||||
for (int i = 0; i < ggml_cuda_info().device_count; i++) {
|
||||
ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
|
||||
dev_ctx->device = i;
|
||||
dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);
|
||||
|
||||
ggml_cuda_set_device(i);
|
||||
cudaDeviceProp prop;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
|
||||
dev_ctx->description = prop.name;
|
||||
|
||||
ggml_backend_dev_t dev = new ggml_backend_device {
|
||||
/* .interface = */ ggml_backend_cuda_device_interface,
|
||||
/* .reg = */ ®,
|
||||
/* .context = */ dev_ctx
|
||||
};
|
||||
ctx->devices.push_back(dev);
|
||||
}
|
||||
|
||||
reg = ggml_backend_reg {
|
||||
/* .interface = */ ggml_backend_cuda_reg_interface,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
}
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
return ®
|
||||
}
|
||||
|
||||
ggml_backend_t ggml_backend_cuda_init(int device) {
|
||||
if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
|
||||
GGML_LOG_ERROR("%s: invalid device %d\n", __func__, device);
|
||||
return nullptr;
|
||||
|
@ -3099,82 +3336,9 @@ GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
|||
ggml_backend_t cuda_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_cuda_guid(),
|
||||
/* .interface = */ ggml_backend_cuda_interface,
|
||||
/* .context = */ ctx
|
||||
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device),
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
return cuda_backend;
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
|
||||
}
|
||||
|
||||
GGML_CALL int ggml_backend_cuda_get_device_count() {
|
||||
return ggml_cuda_info().device_count;
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
|
||||
cudaDeviceProp prop;
|
||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
|
||||
snprintf(description, description_size, "%s", prop.name);
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
|
||||
ggml_cuda_set_device(device);
|
||||
|
||||
CUDA_CHECK(cudaMemGetInfo(free, total));
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
|
||||
if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
#if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
|
||||
cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
|
||||
GGML_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
|
||||
size / 1024.0 / 1024.0, cudaGetErrorString(err));
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
|
||||
if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
cudaError_t err = cudaHostUnregister(buffer);
|
||||
if (err != cudaSuccess) {
|
||||
// clear the error
|
||||
cudaGetLastError();
|
||||
}
|
||||
}
|
||||
|
||||
// backend registry
|
||||
GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
|
||||
ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
|
||||
return cuda_backend;
|
||||
|
||||
GGML_UNUSED(params);
|
||||
}
|
||||
|
||||
extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
|
||||
|
||||
GGML_CALL int ggml_backend_cuda_reg_devices() {
|
||||
int device_count = ggml_backend_cuda_get_device_count();
|
||||
//int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
|
||||
for (int i = 0; i < device_count; i++) {
|
||||
char name[128];
|
||||
snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
|
||||
ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
|
||||
}
|
||||
return device_count;
|
||||
}
|
||||
|
|
|
@ -1921,6 +1921,7 @@ ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device) {
|
|||
for (const auto & dev : devices) {
|
||||
vec.push_back({
|
||||
/* .iface = */ ggml_backend_kompute_buffer_type_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ new ggml_backend_kompute_buffer_type_context(dev.index, dev.bufferAlignment, dev.maxAlloc)
|
||||
});
|
||||
}
|
||||
|
@ -1989,11 +1990,8 @@ static struct ggml_backend_i kompute_backend_i = {
|
|||
/* .supports_op = */ ggml_backend_kompute_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_kompute_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_kompute_guid() {
|
||||
|
@ -2008,6 +2006,7 @@ ggml_backend_t ggml_backend_kompute_init(int device) {
|
|||
ggml_backend_t kompute_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_kompute_guid(),
|
||||
/* .interface = */ kompute_backend_i,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ s_kompute_context,
|
||||
};
|
||||
|
||||
|
@ -2017,23 +2016,3 @@ ggml_backend_t ggml_backend_kompute_init(int device) {
|
|||
bool ggml_backend_is_kompute(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_kompute_guid());
|
||||
}
|
||||
|
||||
static ggml_backend_t ggml_backend_reg_kompute_init(const char * params, void * user_data) {
|
||||
GGML_UNUSED(params);
|
||||
return ggml_backend_kompute_init(intptr_t(user_data));
|
||||
}
|
||||
|
||||
extern "C" int ggml_backend_kompute_reg_devices();
|
||||
|
||||
int ggml_backend_kompute_reg_devices() {
|
||||
auto devices = ggml_vk_available_devices_internal(0);
|
||||
for (const auto & device : devices) {
|
||||
ggml_backend_register(
|
||||
ggml_kompute_format_name(device.index).c_str(),
|
||||
ggml_backend_reg_kompute_init,
|
||||
ggml_backend_kompute_buffer_type(device.index),
|
||||
reinterpret_cast<void *>(intptr_t(device.index))
|
||||
);
|
||||
}
|
||||
return devices.size();
|
||||
}
|
||||
|
|
|
@ -3157,13 +3157,13 @@ static void ggml_backend_metal_free_device(void) {
|
|||
}
|
||||
}
|
||||
|
||||
GGML_CALL static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
return "Metal";
|
||||
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
||||
|
||||
for (int i = 0; i < ctx->n_buffers; i++) {
|
||||
|
@ -3182,25 +3182,25 @@ GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_
|
|||
free(ctx);
|
||||
}
|
||||
|
||||
GGML_CALL static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
||||
|
||||
return ctx->all_data;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
memcpy((char *)tensor->data + offset, data, size);
|
||||
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
memcpy(data, (const char *)tensor->data + offset, size);
|
||||
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_host(src->buffer)) {
|
||||
memcpy(dst->data, src->data, ggml_nbytes(src));
|
||||
return true;
|
||||
|
@ -3210,7 +3210,7 @@ GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t
|
|||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context;
|
||||
|
||||
memset(ctx->all_data, value, ctx->all_size);
|
||||
|
@ -3231,7 +3231,7 @@ static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = {
|
|||
|
||||
// default buffer type
|
||||
|
||||
GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
|
||||
return "Metal";
|
||||
|
||||
UNUSED(buft);
|
||||
|
@ -3262,7 +3262,7 @@ static void ggml_backend_metal_log_allocated_size(id<MTLDevice> device, size_t s
|
|||
UNUSED(size_aligned);
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
|
||||
|
||||
const size_t size_page = sysconf(_SC_PAGESIZE);
|
||||
|
@ -3304,12 +3304,12 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buff
|
|||
return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return 32;
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
id<MTLDevice> device = ggml_backend_metal_get_device();
|
||||
size_t max_size = device.maxBufferLength;
|
||||
ggml_backend_metal_free_device();
|
||||
|
@ -3319,13 +3319,13 @@ GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend
|
|||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return true;
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||
ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||
static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
|
||||
|
@ -3335,6 +3335,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
|||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
|
||||
},
|
||||
/* .device = */ NULL,
|
||||
/* .context = */ NULL,
|
||||
};
|
||||
|
||||
|
@ -3343,7 +3344,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
|||
|
||||
// buffer from ptr
|
||||
|
||||
GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
|
||||
ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) {
|
||||
struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context));
|
||||
|
||||
ctx->all_data = data;
|
||||
|
@ -3423,37 +3424,37 @@ GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data,
|
|||
|
||||
// backend
|
||||
|
||||
GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
||||
static const char * ggml_backend_metal_name(ggml_backend_t backend) {
|
||||
return "Metal";
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) {
|
||||
static void ggml_backend_metal_free(ggml_backend_t backend) {
|
||||
struct ggml_backend_metal_context * ctx = (struct ggml_backend_metal_context *)backend->context;
|
||||
ggml_metal_free(ctx);
|
||||
free(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
|
||||
static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) {
|
||||
return ggml_backend_metal_buffer_type();
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
|
||||
struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context;
|
||||
|
||||
return ggml_metal_graph_compute(metal_ctx, cgraph);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
|
||||
struct ggml_backend_metal_context * metal_ctx = (struct ggml_backend_metal_context *)backend->context;
|
||||
|
||||
return ggml_metal_supports_op(metal_ctx, op);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
static bool ggml_backend_metal_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
return buft->iface.get_name == ggml_backend_metal_buffer_type_get_name;
|
||||
|
||||
UNUSED(backend);
|
||||
|
@ -3494,11 +3495,8 @@ static struct ggml_backend_i ggml_backend_metal_i = {
|
|||
/* .supports_op = */ ggml_backend_metal_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_metal_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_metal_guid(void) {
|
||||
|
@ -3518,6 +3516,7 @@ ggml_backend_t ggml_backend_metal_init(void) {
|
|||
*backend = (struct ggml_backend) {
|
||||
/* .guid = */ ggml_backend_metal_guid(),
|
||||
/* .interface = */ ggml_backend_metal_i,
|
||||
/* .device = */ NULL,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
|
@ -3554,9 +3553,9 @@ void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
|
|||
ctx->capture_next_compute = true;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
|
||||
ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
|
||||
ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
|
||||
return ggml_backend_metal_init();
|
||||
|
||||
GGML_UNUSED(params);
|
||||
|
|
|
@ -319,12 +319,12 @@ static std::shared_ptr<socket_t> get_socket(const std::string & endpoint) {
|
|||
return sock;
|
||||
}
|
||||
|
||||
GGML_CALL static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_rpc_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
// input serialization format: | remote_ptr (8 bytes) |
|
||||
std::vector<uint8_t> input(sizeof(uint64_t), 0);
|
||||
|
@ -337,7 +337,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t
|
|||
delete ctx;
|
||||
}
|
||||
|
||||
GGML_CALL static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
if (ctx->base_cache.find(buffer) != ctx->base_cache.end()) {
|
||||
return ctx->base_cache[buffer];
|
||||
|
@ -388,7 +388,7 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
|
|||
return result;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
UNUSED(buffer);
|
||||
if (ggml_is_quantized(tensor->type)) {
|
||||
// TODO: this check is due to MATRIX_ROW_PADDING in CUDA and should be generalized
|
||||
|
@ -396,7 +396,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t
|
|||
}
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
// input serialization format: | rpc_tensor | offset (8 bytes) | data (size bytes) |
|
||||
size_t input_size = sizeof(rpc_tensor) + sizeof(uint64_t) + size;
|
||||
|
@ -410,7 +410,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t b
|
|||
GGML_ASSERT(status);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
// input serialization format: | rpc_tensor | offset (8 bytes) | size (8 bytes) |
|
||||
int input_size = sizeof(rpc_tensor) + 2*sizeof(uint64_t);
|
||||
|
@ -427,7 +427,7 @@ GGML_CALL static void ggml_backend_rpc_buffer_get_tensor(ggml_backend_buffer_t b
|
|||
memcpy(data, output.data(), size);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
// check if src and dst are on the same server
|
||||
ggml_backend_buffer_t src_buffer = src->buffer;
|
||||
ggml_backend_rpc_buffer_context * src_ctx = (ggml_backend_rpc_buffer_context *)src_buffer->context;
|
||||
|
@ -452,7 +452,7 @@ GGML_CALL static bool ggml_backend_rpc_buffer_cpy_tensor(ggml_backend_buffer_t b
|
|||
return output[0];
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
static void ggml_backend_rpc_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
// serialization format: | bufptr (8 bytes) | value (1 byte) |
|
||||
int input_size = sizeof(uint64_t) + sizeof(uint8_t);
|
||||
|
@ -477,12 +477,12 @@ static ggml_backend_buffer_i ggml_backend_rpc_buffer_interface = {
|
|||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_rpc_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
return buft_ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
static ggml_backend_buffer_t ggml_backend_rpc_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
// input serialization format: | size (8 bytes) |
|
||||
int input_size = sizeof(uint64_t);
|
||||
|
@ -522,7 +522,7 @@ static size_t get_alignment(const std::shared_ptr<socket_t> & sock) {
|
|||
return alignment;
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_rpc_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
return buft_ctx->alignment;
|
||||
}
|
||||
|
@ -540,12 +540,12 @@ static size_t get_max_size(const std::shared_ptr<socket_t> & sock) {
|
|||
return max_size;
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_rpc_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_rpc_buffer_type_context * buft_ctx = (ggml_backend_rpc_buffer_type_context *)buft->context;
|
||||
return buft_ctx->max_size;
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
static size_t ggml_backend_rpc_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
UNUSED(buft);
|
||||
return ggml_nbytes(tensor);
|
||||
}
|
||||
|
@ -559,24 +559,24 @@ static ggml_backend_buffer_type_i ggml_backend_rpc_buffer_type_interface = {
|
|||
/* .is_host = */ NULL,
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
|
||||
static const char * ggml_backend_rpc_name(ggml_backend_t backend) {
|
||||
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
|
||||
|
||||
return rpc_ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_rpc_free(ggml_backend_t backend) {
|
||||
static void ggml_backend_rpc_free(ggml_backend_t backend) {
|
||||
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
|
||||
delete rpc_ctx;
|
||||
delete backend;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
|
||||
static ggml_backend_buffer_type_t ggml_backend_rpc_get_default_buffer_type(ggml_backend_t backend) {
|
||||
ggml_backend_rpc_context * ctx = (ggml_backend_rpc_context *)backend->context;
|
||||
return ggml_backend_rpc_buffer_type(ctx->endpoint.c_str());
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
|
||||
static void ggml_backend_rpc_synchronize(ggml_backend_t backend) {
|
||||
UNUSED(backend);
|
||||
// this is no-op because we don't have any async operations
|
||||
}
|
||||
|
@ -618,7 +618,7 @@ static void serialize_graph(const ggml_cgraph * cgraph, std::vector<uint8_t> & o
|
|||
memcpy(out_tensors, tensors.data(), n_tensors * sizeof(rpc_tensor));
|
||||
}
|
||||
|
||||
GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_rpc_context * rpc_ctx = (ggml_backend_rpc_context *)backend->context;
|
||||
std::vector<uint8_t> input;
|
||||
serialize_graph(cgraph, input);
|
||||
|
@ -630,14 +630,14 @@ GGML_CALL static enum ggml_status ggml_backend_rpc_graph_compute(ggml_backend_t
|
|||
return (enum ggml_status)output[0];
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
static bool ggml_backend_rpc_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
UNUSED(backend);
|
||||
UNUSED(op);
|
||||
//TODO: call the remote backend and cache the results
|
||||
return true;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
static bool ggml_backend_rpc_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (!buft || buft->iface.get_name != ggml_backend_rpc_buffer_type_name) {
|
||||
return false;
|
||||
}
|
||||
|
@ -662,14 +662,11 @@ static ggml_backend_i ggml_backend_rpc_interface = {
|
|||
/* .supports_op = */ ggml_backend_rpc_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_rpc_supports_buft,
|
||||
/* .offload_op = */ NULL,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
// NOTE: buffer types are allocated and never freed; this is by design
|
||||
|
@ -694,13 +691,14 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const
|
|||
|
||||
ggml_backend_buffer_type_t buft = new ggml_backend_buffer_type {
|
||||
/* .iface = */ ggml_backend_rpc_buffer_type_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ buft_ctx
|
||||
};
|
||||
buft_map[endpoint] = buft;
|
||||
return buft;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
|
||||
ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
|
||||
ggml_backend_rpc_context * ctx = new ggml_backend_rpc_context {
|
||||
/* .endpoint = */ endpoint,
|
||||
/* .name = */ "RPC[" + std::string(endpoint) + "]",
|
||||
|
@ -709,12 +707,13 @@ GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint) {
|
|||
ggml_backend_t backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_rpc_guid(),
|
||||
/* .interface = */ ggml_backend_rpc_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
return backend;
|
||||
}
|
||||
|
||||
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend) {
|
||||
GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_rpc_guid());
|
||||
}
|
||||
|
||||
|
@ -734,7 +733,7 @@ static void get_device_memory(const std::shared_ptr<socket_t> & sock, size_t * f
|
|||
*total = total_mem;
|
||||
}
|
||||
|
||||
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
|
||||
GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total) {
|
||||
auto sock = get_socket(endpoint);
|
||||
if (sock == nullptr) {
|
||||
*free = 0;
|
||||
|
|
|
@ -4038,7 +4038,7 @@ bool ggml_sycl_compute_forward(ggml_backend_sycl_context & ctx, struct ggml_tens
|
|||
return true;
|
||||
}
|
||||
|
||||
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
|
||||
GGML_API void ggml_sycl_get_gpu_list(int *id_list, int max_len) try {
|
||||
GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_gpu_list\n");
|
||||
for(int i=0;i<max_len;i++) id_list[i] = -1;
|
||||
|
||||
|
@ -4068,7 +4068,7 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description,
|
||||
GGML_API void ggml_sycl_get_device_description(int device, char *description,
|
||||
size_t description_size) try {
|
||||
GGML_SYCL_DEBUG("[SYCL] call ggml_sycl_get_device_description\n");
|
||||
dpct::device_info prop;
|
||||
|
@ -4082,7 +4082,7 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free,
|
||||
void ggml_backend_sycl_get_device_memory(int device, size_t *free,
|
||||
size_t *total) try {
|
||||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_memory\n");
|
||||
ggml_sycl_set_device(device);
|
||||
|
@ -4135,12 +4135,12 @@ struct ggml_backend_sycl_buffer_context {
|
|||
}
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_sycl_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
|
||||
static bool ggml_backend_buffer_is_sycl(ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.get_name == ggml_backend_sycl_buffer_get_name;
|
||||
}
|
||||
|
||||
|
@ -4162,7 +4162,7 @@ static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
|||
return ctx->dev_ptr;
|
||||
}
|
||||
|
||||
GGML_CALL static void
|
||||
static void
|
||||
ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||||
ggml_tensor *tensor) try {
|
||||
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
|
||||
|
@ -4237,7 +4237,7 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_CALL static bool
|
||||
static bool
|
||||
ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
|
||||
const ggml_tensor *src,
|
||||
ggml_tensor *dst) try {
|
||||
|
@ -4339,12 +4339,12 @@ struct ggml_backend_sycl_buffer_type_context {
|
|||
queue_ptr stream = nullptr;
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_sycl_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_sycl_buffer_type_context * ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
|
||||
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
GGML_CALL static ggml_backend_buffer_t
|
||||
static ggml_backend_buffer_t
|
||||
ggml_backend_sycl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft,
|
||||
size_t size) try {
|
||||
ggml_backend_sycl_buffer_type_context * buft_ctx = (ggml_backend_sycl_buffer_type_context *)buft->context;
|
||||
|
@ -4368,7 +4368,7 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_sycl_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return 128;
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
@ -4379,7 +4379,7 @@ static size_t ggml_backend_sycl_buffer_type_get_max_size(ggml_backend_buffer_typ
|
|||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
static size_t ggml_backend_sycl_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
size_t size = ggml_nbytes(tensor);
|
||||
int64_t ne0 = tensor->ne[0];
|
||||
|
||||
|
@ -4424,6 +4424,7 @@ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device) {
|
|||
queue_ptr stream = &(device_i.default_queue());
|
||||
ggml_backend_sycl_buffer_types[i] = {
|
||||
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), stream},
|
||||
};
|
||||
}
|
||||
|
@ -4449,6 +4450,7 @@ ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(ggml_backend_sycl_conte
|
|||
for (int i = 0; i < ggml_sycl_info().device_count; i++) {
|
||||
ggml_backend_sycl_buffer_types[i] = {
|
||||
/* .iface = */ ggml_backend_sycl_buffer_type_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ new ggml_backend_sycl_buffer_type_context{i, GGML_SYCL_NAME + std::to_string(i), ctx->stream(i, 0)},
|
||||
};
|
||||
}
|
||||
|
@ -4513,7 +4515,7 @@ struct ggml_backend_sycl_split_buffer_context {
|
|||
std::vector<queue_ptr> streams;
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_sycl_split_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
return GGML_SYCL_NAME "_Split";
|
||||
|
||||
UNUSED(buffer);
|
||||
|
@ -4523,19 +4525,19 @@ static bool ggml_backend_buffer_is_sycl_split(ggml_backend_buffer_t buffer) {
|
|||
return buffer->iface.get_name == ggml_backend_sycl_split_buffer_get_name;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_sycl_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_sycl_split_buffer_context * ctx = (ggml_backend_sycl_split_buffer_context *)buffer->context;
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
GGML_CALL static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
// the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
|
||||
return (void *)0x1000;
|
||||
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void
|
||||
static void
|
||||
ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||||
ggml_tensor *tensor) try {
|
||||
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
|
||||
|
@ -4618,7 +4620,7 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_CALL static void
|
||||
static void
|
||||
ggml_backend_sycl_split_buffer_set_tensor(ggml_backend_buffer_t buffer,
|
||||
ggml_tensor *tensor, const void *data,
|
||||
size_t offset, size_t size) try {
|
||||
|
@ -4671,7 +4673,7 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_CALL static void
|
||||
static void
|
||||
ggml_backend_sycl_split_buffer_get_tensor(ggml_backend_buffer_t buffer,
|
||||
const ggml_tensor *tensor, void *data,
|
||||
size_t offset, size_t size) try {
|
||||
|
@ -4724,7 +4726,7 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
static void ggml_backend_sycl_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
UNUSED(buffer);
|
||||
UNUSED(value);
|
||||
}
|
||||
|
@ -4742,13 +4744,13 @@ static struct ggml_backend_buffer_i ggml_backend_sycl_split_buffer_interface = {
|
|||
/* .reset = */ NULL,
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_sycl_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
return GGML_SYCL_NAME "_Split";
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
// since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
|
||||
// instead, we allocate them for each tensor separately in init_tensor
|
||||
// however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
|
||||
|
@ -4758,12 +4760,12 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_sycl_split_buffer_type_alloc
|
|||
return ggml_backend_buffer_init(buft, ggml_backend_sycl_split_buffer_interface, ctx, size);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_sycl_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return 128;
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
ggml_backend_sycl_split_buffer_type_context * ctx = (ggml_backend_sycl_split_buffer_type_context *)buft->context;
|
||||
|
||||
size_t total_size = 0;
|
||||
|
@ -4790,7 +4792,7 @@ GGML_CALL static size_t ggml_backend_sycl_split_buffer_type_get_alloc_size(ggml_
|
|||
return total_size;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
static bool ggml_backend_sycl_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
|
||||
return false;
|
||||
|
||||
UNUSED(buft);
|
||||
|
@ -4805,7 +4807,7 @@ static ggml_backend_buffer_type_i ggml_backend_sycl_split_buffer_type_interface
|
|||
/* .is_host = */ ggml_backend_sycl_split_buffer_type_is_host,
|
||||
};
|
||||
|
||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
|
||||
ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split) {
|
||||
static std::mutex mutex;
|
||||
std::lock_guard<std::mutex> lock(mutex);
|
||||
|
||||
|
@ -4837,6 +4839,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const f
|
|||
|
||||
struct ggml_backend_buffer_type buft {
|
||||
/* .iface = */ ggml_backend_sycl_split_buffer_type_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ new ggml_backend_sycl_split_buffer_type_context{tensor_split_arr},
|
||||
};
|
||||
|
||||
|
@ -4846,13 +4849,13 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const f
|
|||
|
||||
// host buffer type
|
||||
|
||||
GGML_CALL static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_sycl_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
return GGML_SYCL_NAME "_Host";
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_sycl_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
return GGML_SYCL_NAME "_Host";
|
||||
|
||||
UNUSED(buffer);
|
||||
|
@ -4890,6 +4893,7 @@ ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
|
|||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
|
@ -4898,14 +4902,14 @@ ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type() {
|
|||
|
||||
// backend
|
||||
|
||||
GGML_CALL static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
|
||||
static const char * ggml_backend_sycl_name(ggml_backend_t backend) {
|
||||
|
||||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||
|
||||
return sycl_ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
|
||||
static void ggml_backend_sycl_free(ggml_backend_t backend) {
|
||||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||
|
||||
delete sycl_ctx;
|
||||
|
@ -4913,12 +4917,12 @@ GGML_CALL static void ggml_backend_sycl_free(ggml_backend_t backend) {
|
|||
}
|
||||
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
|
||||
static ggml_backend_buffer_type_t ggml_backend_sycl_get_default_buffer_type(ggml_backend_t backend) {
|
||||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||
return ggml_backend_sycl_buffer_type(sycl_ctx->device);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
|
||||
static void ggml_backend_sycl_set_tensor_async(ggml_backend_t backend,
|
||||
ggml_tensor *tensor,
|
||||
const void *data, size_t offset,
|
||||
size_t size) try {
|
||||
|
@ -4936,7 +4940,7 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
|
||||
static void ggml_backend_sycl_get_tensor_async(ggml_backend_t backend,
|
||||
const ggml_tensor *tensor,
|
||||
void *data, size_t offset,
|
||||
size_t size) try {
|
||||
|
@ -4954,9 +4958,9 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
|
||||
const ggml_tensor *src,
|
||||
ggml_tensor *dst) try {
|
||||
static bool ggml_backend_sycl_cpy_tensor_async(ggml_backend_t backend,
|
||||
const ggml_tensor *src,
|
||||
ggml_tensor *dst) try {
|
||||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||
if (dst->buffer->buft == ggml_backend_sycl_buffer_type(sycl_ctx->device) && ggml_backend_buffer_is_sycl(src->buffer)) {
|
||||
/*
|
||||
|
@ -4991,7 +4995,7 @@ catch (sycl::exception const &exc) {
|
|||
std::exit(1);
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
ggml_backend_sycl_context * sycl_ctx = (ggml_backend_sycl_context *)backend->context;
|
||||
ggml_sycl_set_main_device(sycl_ctx->device);
|
||||
|
||||
|
@ -5019,7 +5023,7 @@ GGML_CALL static ggml_status ggml_backend_sycl_graph_compute(ggml_backend_t back
|
|||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
switch (op->op) {
|
||||
case GGML_OP_CONV_TRANSPOSE_1D:
|
||||
{
|
||||
|
@ -5166,13 +5170,13 @@ GGML_CALL static bool ggml_backend_sycl_supports_op(ggml_backend_t backend, cons
|
|||
UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
static bool ggml_backend_sycl_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
const int min_batch_size = 32;
|
||||
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS && op->op != GGML_OP_MUL_MAT_ID;
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
static bool ggml_backend_sycl_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (buft->iface.get_name != ggml_backend_sycl_buffer_type_name) {
|
||||
return false;
|
||||
}
|
||||
|
@ -5197,11 +5201,8 @@ static ggml_backend_i ggml_backend_sycl_interface = {
|
|||
/* .supports_op = */ ggml_backend_sycl_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_sycl_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_sycl_offload_op,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_sycl_guid() {
|
||||
|
@ -5209,7 +5210,7 @@ static ggml_guid_t ggml_backend_sycl_guid() {
|
|||
return &guid;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
|
||||
ggml_backend_t ggml_backend_sycl_init(int device) {
|
||||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_init\n");
|
||||
ggml_check_sycl();
|
||||
|
||||
|
@ -5224,6 +5225,7 @@ GGML_CALL ggml_backend_t ggml_backend_sycl_init(int device) {
|
|||
ggml_backend_t sycl_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_sycl_guid(),
|
||||
/* .interface = */ ggml_backend_sycl_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ ctx
|
||||
};
|
||||
|
||||
|
@ -5234,26 +5236,7 @@ bool ggml_backend_is_sycl(ggml_backend_t backend) {
|
|||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_sycl_guid());
|
||||
}
|
||||
|
||||
GGML_CALL int ggml_backend_sycl_get_device_count() {
|
||||
int ggml_backend_sycl_get_device_count() {
|
||||
GGML_SYCL_DEBUG("[SYCL] call ggml_backend_sycl_get_device_count\n");
|
||||
return ggml_sycl_info().device_count;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_t ggml_backend_reg_sycl_init(const char * params, void * user_data) {
|
||||
ggml_backend_t sycl_backend = ggml_backend_sycl_init((int) (intptr_t) user_data);
|
||||
return sycl_backend;
|
||||
|
||||
UNUSED(params);
|
||||
}
|
||||
|
||||
extern "C" int ggml_backend_sycl_reg_devices();
|
||||
|
||||
int ggml_backend_sycl_reg_devices() {
|
||||
assert(ggml_sycl_info().device_count>0);
|
||||
for (int i = 0; i < ggml_sycl_info().device_count; i++) {
|
||||
char name[128];
|
||||
snprintf(name, sizeof(name), "%s%d", GGML_SYCL_NAME, i);
|
||||
ggml_backend_register(name, ggml_backend_reg_sycl_init, ggml_backend_sycl_buffer_type(i), (void *) (intptr_t) i);
|
||||
}
|
||||
return ggml_sycl_info().device_count;
|
||||
}
|
||||
|
|
|
@ -55,12 +55,12 @@ static __dpct_inline__ void dequantize_q4_1(const void *vx, const int64_t ib,
|
|||
#ifdef GGML_SYCL_F16
|
||||
// v = v * {d, d};
|
||||
// v = v + {m, m};
|
||||
v.s0() = (v.s0() * d) + m;
|
||||
v.s1() = (v.s1() * d) + m;
|
||||
v.s0() = sycl::fma(v.s0(), d, m);
|
||||
v.s1() = sycl::fma(v.s1(), d, m);
|
||||
|
||||
#else
|
||||
v.x() = (v.x() * d) + m;
|
||||
v.y() = (v.y() * d) + m;
|
||||
v.x() = sycl::fma(v.x(), d, m);
|
||||
v.y() = sycl::fma(v.y(), d, m);
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
|
@ -110,11 +110,11 @@ static __dpct_inline__ void dequantize_q5_1(const void *vx, const int64_t ib,
|
|||
#ifdef GGML_SYCL_F16
|
||||
// v = v * {d, d};
|
||||
// v = v + {m, m};
|
||||
v.s0() = (v.s0() * d) + m;
|
||||
v.s1() = (v.s1() * d) + m;
|
||||
v.s0() = sycl::fma(v.s0(), d, m);
|
||||
v.s1() = sycl::fma(v.s1(), d, m);
|
||||
#else
|
||||
v.x() = (v.x() * d) + m;
|
||||
v.y() = (v.y() * d) + m;
|
||||
v.x() = sycl::fma(v.x(), d, m);
|
||||
v.y() = sycl::fma(v.y(), d, m);
|
||||
#endif // GGML_SYCL_F16
|
||||
}
|
||||
|
||||
|
|
|
@ -119,11 +119,11 @@ struct ggml_backend_vk_buffer_type_context {
|
|||
vk_device device;
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft);
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
|
||||
GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft);
|
||||
GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft);
|
||||
GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor);
|
||||
static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft);
|
||||
static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size);
|
||||
static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft);
|
||||
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft);
|
||||
static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor);
|
||||
static ggml_backend_buffer_type_i ggml_backend_vk_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_vk_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_vk_buffer_type_alloc_buffer,
|
||||
|
@ -433,16 +433,6 @@ struct vk_context_struct {
|
|||
typedef std::shared_ptr<vk_context_struct> vk_context;
|
||||
typedef std::weak_ptr<vk_context_struct> vk_context_ref;
|
||||
|
||||
struct ggml_tensor_extra_gpu {
|
||||
vk_buffer_ref buffer_gpu;
|
||||
uint64_t offset;
|
||||
|
||||
void reset() {
|
||||
buffer_gpu.reset();
|
||||
offset = 0;
|
||||
}
|
||||
};
|
||||
|
||||
struct ggml_vk_garbage_collector {
|
||||
std::vector<vk_semaphore> tl_semaphores;
|
||||
std::vector<vk_semaphore> semaphores;
|
||||
|
@ -553,6 +543,31 @@ struct ggml_backend_vk_context {
|
|||
std::vector<vk_context_ref> tensor_ctxs;
|
||||
};
|
||||
|
||||
static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
|
||||
|
||||
static uint64_t vk_tensor_offset(const ggml_tensor * tensor) {
|
||||
if (tensor->view_src) {
|
||||
return (uint8_t *) tensor->view_src->data - (uint8_t *) vk_ptr_base;
|
||||
}
|
||||
return (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
||||
}
|
||||
|
||||
struct ggml_backend_vk_buffer_context {
|
||||
vk_device_ref device;
|
||||
vk_buffer dev_buffer;
|
||||
std::string name;
|
||||
|
||||
ggml_backend_vk_buffer_context(vk_device_ref device, vk_buffer&& dev_buffer, std::string& name) :
|
||||
device(device),
|
||||
dev_buffer(dev_buffer),
|
||||
name(name) {
|
||||
}
|
||||
|
||||
~ggml_backend_vk_buffer_context() {
|
||||
ggml_vk_destroy_buffer(dev_buffer);
|
||||
}
|
||||
};
|
||||
|
||||
#ifdef GGML_VULKAN_MEMORY_DEBUG
|
||||
void vk_memory_logger::log_allocation(vk_buffer_ref buf_ref, size_t size) {
|
||||
std::lock_guard<std::mutex> guard(log_mutex);
|
||||
|
@ -607,7 +622,7 @@ static void ggml_vk_check_results_1(ggml_tensor * tensor);
|
|||
|
||||
typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend);
|
||||
static void ggml_backend_vk_free(ggml_backend_t backend);
|
||||
|
||||
// variables to track number of compiles in progress
|
||||
static uint32_t compile_count = 0;
|
||||
|
@ -1938,6 +1953,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
|
|||
|
||||
device->buffer_type = {
|
||||
/* .iface = */ ggml_backend_vk_buffer_type_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ new ggml_backend_vk_buffer_type_context{ device->name, device },
|
||||
};
|
||||
|
||||
|
@ -3076,9 +3092,9 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
const uint64_t r2 = ne12 / ne02;
|
||||
const uint64_t r3 = ne13 / ne03;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
||||
|
||||
vk_buffer d_Qx;
|
||||
size_t qx_buf_offset = 0;
|
||||
|
@ -3180,8 +3196,8 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
return;
|
||||
}
|
||||
|
||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
const uint64_t d_buf_offset = extra->offset + dst->view_offs;
|
||||
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
||||
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03);
|
||||
vk_buffer d_X;
|
||||
|
@ -3189,13 +3205,13 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context& sub
|
|||
vk_buffer d_Y;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if (!src0_uma) {
|
||||
d_Qx = extra_src0->buffer_gpu.lock();
|
||||
qx_buf_offset = extra_src0->offset + src0->view_offs;
|
||||
d_Qx = src0_buf_ctx->dev_buffer;
|
||||
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
if (!src1_uma) {
|
||||
d_Qy = extra_src1->buffer_gpu.lock();
|
||||
qy_buf_offset = extra_src1->offset + src1->view_offs;
|
||||
d_Qy = src1_buf_ctx->dev_buffer;
|
||||
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
||||
GGML_ASSERT(d_Qy != nullptr);
|
||||
}
|
||||
if (qx_needs_dequant) {
|
||||
|
@ -3276,9 +3292,9 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
const uint64_t r2 = ne12 / ne02;
|
||||
const uint64_t r3 = ne13 / ne03;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
||||
|
||||
vk_buffer d_Qx;
|
||||
size_t qx_buf_offset = 0;
|
||||
|
@ -3357,21 +3373,21 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
return;
|
||||
}
|
||||
|
||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
const uint64_t d_buf_offset = extra->offset + dst->view_offs;
|
||||
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
||||
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer d_X;
|
||||
uint64_t x_buf_offset = 0;
|
||||
vk_buffer d_Y;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if(!src0_uma) {
|
||||
d_Qx = extra_src0->buffer_gpu.lock();
|
||||
qx_buf_offset = extra_src0->offset + src0->view_offs;
|
||||
d_Qx = src0_buf_ctx->dev_buffer;
|
||||
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
if(!src1_uma) {
|
||||
d_Qy = extra_src1->buffer_gpu.lock();
|
||||
qy_buf_offset = extra_src1->offset + src1->view_offs;
|
||||
d_Qy = src1_buf_ctx->dev_buffer;
|
||||
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
||||
GGML_ASSERT(d_Qy != nullptr);
|
||||
}
|
||||
if (qx_needs_dequant) {
|
||||
|
@ -3454,9 +3470,9 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
||||
|
||||
vk_buffer d_Qy;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
@ -3482,15 +3498,15 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||
return;
|
||||
}
|
||||
|
||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
const uint64_t d_buf_offset = extra->offset + dst->view_offs;
|
||||
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
||||
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer d_Qx = extra_src0->buffer_gpu.lock();
|
||||
const uint64_t qx_buf_offset = extra_src0->offset + src0->view_offs;
|
||||
vk_buffer d_Qx = src0_buf_ctx->dev_buffer;
|
||||
const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
if (!src1_uma) {
|
||||
d_Qy = extra_src1->buffer_gpu.lock();
|
||||
qy_buf_offset = extra_src1->offset + src1->view_offs;
|
||||
d_Qy = src1_buf_ctx->dev_buffer;
|
||||
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
|
||||
|
@ -3532,9 +3548,9 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
||||
|
||||
vk_buffer d_Qy = nullptr;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
@ -3561,15 +3577,15 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||
return;
|
||||
}
|
||||
|
||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
const uint64_t d_buf_offset = extra->offset + dst->view_offs;
|
||||
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
||||
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer d_Qx = extra_src0->buffer_gpu.lock();
|
||||
const uint64_t qx_buf_offset = extra_src0->offset + src0->view_offs;
|
||||
vk_buffer d_Qx = src0_buf_ctx->dev_buffer;
|
||||
const uint64_t qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
if (!src1_uma) {
|
||||
d_Qy = extra_src1->buffer_gpu.lock();
|
||||
qy_buf_offset = extra_src1->offset + src1->view_offs;
|
||||
d_Qy = src1_buf_ctx->dev_buffer;
|
||||
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
|
||||
|
@ -3631,10 +3647,10 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
|
||||
const uint64_t n_as = ne02;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
ggml_tensor_extra_gpu * extra_ids = (ggml_tensor_extra_gpu *) ids->extra;
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
||||
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
|
||||
|
||||
vk_buffer d_Qx;
|
||||
size_t qx_buf_offset = 0;
|
||||
|
@ -3731,26 +3747,26 @@ static void ggml_vk_mul_mat_id_q_f16(ggml_backend_vk_context * ctx, vk_context&
|
|||
return;
|
||||
}
|
||||
|
||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
const uint64_t d_buf_offset = extra->offset + dst->view_offs;
|
||||
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
||||
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer d_X;
|
||||
uint64_t x_buf_offset = 0;
|
||||
vk_buffer d_Y;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if (!src0_uma) {
|
||||
d_Qx = extra_src0->buffer_gpu.lock();
|
||||
qx_buf_offset = extra_src0->offset + src0->view_offs;
|
||||
d_Qx = src0_buf_ctx->dev_buffer;
|
||||
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
if (!src1_uma) {
|
||||
d_Qy = extra_src1->buffer_gpu.lock();
|
||||
qy_buf_offset = extra_src1->offset + src1->view_offs;
|
||||
d_Qy = src1_buf_ctx->dev_buffer;
|
||||
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
||||
GGML_ASSERT(d_Qy != nullptr);
|
||||
}
|
||||
if (!ids_uma) {
|
||||
d_ids = extra_ids->buffer_gpu.lock();
|
||||
ids_buf_offset = extra_ids->offset + ids->view_offs;
|
||||
d_ids = ids_buf_ctx->dev_buffer;
|
||||
ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
|
||||
GGML_ASSERT(d_ids != nullptr);
|
||||
}
|
||||
if (qx_needs_dequant) {
|
||||
|
@ -3836,10 +3852,10 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
const uint64_t ne22 = dst->ne[2];
|
||||
const uint64_t ne23 = dst->ne[3];
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
ggml_tensor_extra_gpu * extra_ids = (ggml_tensor_extra_gpu *) ids->extra;
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src1_buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
||||
ggml_backend_vk_buffer_context * ids_buf_ctx = (ggml_backend_vk_buffer_context *)ids->buffer->context;
|
||||
|
||||
vk_buffer d_Qx;
|
||||
size_t qx_buf_offset = 0;
|
||||
|
@ -3924,26 +3940,26 @@ static void ggml_vk_mul_mat_vec_id_q_f16(ggml_backend_vk_context * ctx, vk_conte
|
|||
return;
|
||||
}
|
||||
|
||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
const uint64_t d_buf_offset = extra->offset + dst->view_offs;
|
||||
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
||||
const uint64_t d_buf_offset = vk_tensor_offset(dst) + dst->view_offs;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer d_X;
|
||||
uint64_t x_buf_offset = 0;
|
||||
vk_buffer d_Y;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if(!src0_uma) {
|
||||
d_Qx = extra_src0->buffer_gpu.lock();
|
||||
qx_buf_offset = extra_src0->offset + src0->view_offs;
|
||||
d_Qx = src0_buf_ctx->dev_buffer;
|
||||
qx_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
if(!src1_uma) {
|
||||
d_Qy = extra_src1->buffer_gpu.lock();
|
||||
qy_buf_offset = extra_src1->offset + src1->view_offs;
|
||||
d_Qy = src1_buf_ctx->dev_buffer;
|
||||
qy_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
||||
GGML_ASSERT(d_Qy != nullptr);
|
||||
}
|
||||
if(!ids_uma) {
|
||||
d_ids = extra_ids->buffer_gpu.lock();
|
||||
ids_buf_offset = extra_ids->offset + ids->view_offs;
|
||||
d_ids = ids_buf_ctx->dev_buffer;
|
||||
ids_buf_offset = vk_tensor_offset(ids) + ids->view_offs;
|
||||
GGML_ASSERT(d_ids != nullptr);
|
||||
}
|
||||
if (qx_needs_dequant) {
|
||||
|
@ -4250,7 +4266,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
std::cerr << "), " << ggml_op_name(op) << ", " << (dryrun ? "dryrun" : "") << ")");
|
||||
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
|
||||
GGML_ASSERT(ggml_vk_op_supports_incontiguous(op) || ggml_vk_dim01_contiguous(src0)); // NOLINT
|
||||
GGML_ASSERT(dst->extra != nullptr);
|
||||
GGML_ASSERT(dst->buffer != nullptr);
|
||||
const uint64_t ne00 = src0->ne[0];
|
||||
const uint64_t ne01 = src0->ne[1];
|
||||
const uint64_t ne02 = src0->ne[2];
|
||||
|
@ -4296,10 +4312,10 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
|
||||
const bool op_supports_incontiguous = ggml_vk_op_supports_incontiguous(op);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||
ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr;
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src0_buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
||||
ggml_backend_vk_buffer_context * src1_buf_ctx = use_src1 ? (ggml_backend_vk_buffer_context *)src1->buffer->context : nullptr;
|
||||
ggml_backend_vk_buffer_context * src2_buf_ctx = use_src2 ? (ggml_backend_vk_buffer_context *)src2->buffer->context : nullptr;
|
||||
|
||||
vk_buffer d_X = nullptr;
|
||||
size_t x_buf_offset = 0;
|
||||
|
@ -4330,7 +4346,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
uint64_t z_sz = use_src2 ? ggml_type_size(src2->type) * ne2 : 0;
|
||||
uint64_t d_sz = ggml_type_size(dst->type) * ned;
|
||||
|
||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||
vk_buffer d_D = dst_buf_ctx->dev_buffer;
|
||||
|
||||
// Workaround for tiny tensor inputs on ROPE
|
||||
if (op == GGML_OP_ROPE && use_src1 && y_sz > d_D->size) {
|
||||
|
@ -4338,21 +4354,21 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
}
|
||||
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
uint64_t d_buf_offset = ((extra->offset + dst->view_offs) / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
||||
GGML_ASSERT(d_buf_offset == extra->offset || op == GGML_OP_CPY); // NOLINT
|
||||
uint64_t d_buf_offset = ((vk_tensor_offset(dst) + dst->view_offs) / ctx->device->properties.limits.minStorageBufferOffsetAlignment) * ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
||||
GGML_ASSERT(d_buf_offset == vk_tensor_offset(dst) || op == GGML_OP_CPY); // NOLINT
|
||||
if(!src0_uma) {
|
||||
d_X = extra_src0->buffer_gpu.lock();
|
||||
x_buf_offset = extra_src0->offset + src0->view_offs;
|
||||
d_X = src0_buf_ctx->dev_buffer;
|
||||
x_buf_offset = vk_tensor_offset(src0) + src0->view_offs;
|
||||
GGML_ASSERT(d_X != nullptr);
|
||||
}
|
||||
if (use_src1 && !src1_uma) {
|
||||
d_Y = extra_src1->buffer_gpu.lock();
|
||||
y_buf_offset = extra_src1->offset + src1->view_offs;
|
||||
d_Y = src1_buf_ctx->dev_buffer;
|
||||
y_buf_offset = vk_tensor_offset(src1) + src1->view_offs;
|
||||
GGML_ASSERT(d_Y != nullptr);
|
||||
}
|
||||
if (use_src2 && !src2_uma) {
|
||||
d_Z = extra_src2->buffer_gpu.lock();
|
||||
z_buf_offset = extra_src2->offset + src2->view_offs;
|
||||
d_Z = src2_buf_ctx->dev_buffer;
|
||||
z_buf_offset = vk_tensor_offset(src2) + src2->view_offs;
|
||||
GGML_ASSERT(d_Z != nullptr);
|
||||
}
|
||||
|
||||
|
@ -4531,11 +4547,10 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
}
|
||||
|
||||
static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, bool dryrun = false) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
const uint32_t d_offset = ((extra->offset + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||
const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||
|
||||
int nb1 = dst->op_params[0] / 4; // 4 bytes of float32
|
||||
int nb2 = dst->op_params[1] / 4; // 4 bytes of float32
|
||||
|
@ -4724,10 +4739,9 @@ static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context& subctx, co
|
|||
}
|
||||
|
||||
static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, ggml_tensor * dst, bool dryrun = false) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
const uint32_t d_offset = ((extra->offset + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||
const uint32_t d_offset = ((vk_tensor_offset(dst) + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||
|
||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
|
@ -5535,14 +5549,6 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
|
|||
}
|
||||
#endif
|
||||
|
||||
static ggml_tensor_extra_gpu * ggml_vk_tensor_create_extra(ggml_tensor * tensor) {
|
||||
VK_LOG_DEBUG("ggml_vk_create_extra(" << tensor << " (" << tensor->name << ", " << ggml_op_name(tensor->op) << "))");
|
||||
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu;
|
||||
extra->reset();
|
||||
tensor->extra = extra;
|
||||
return extra;
|
||||
}
|
||||
|
||||
static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
|
||||
#if defined(GGML_VULKAN_RUN_TESTS)
|
||||
ggml_vk_test_dequant(ctx, 7680, GGML_TYPE_F32);
|
||||
|
@ -5711,9 +5717,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context* ctx, ggml_tensor* t
|
|||
// Returns true if node has enqueued work into the queue, false otherwise
|
||||
// If submit is true the current all operations queued so far are being submitted to Vulkan to overlap cmdlist creation and GPU execution.
|
||||
static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, int node_idx, ggml_tensor *node_begin, int node_idx_begin, bool dryrun, bool last_node, bool submit){
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
|
||||
|
||||
if (ggml_is_empty(node) || extra == nullptr) {
|
||||
if (ggml_is_empty(node) || !node->buffer) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -5965,7 +5969,7 @@ static bool ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
}
|
||||
|
||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor * tensor, int tensor_idx, bool use_fence = true){
|
||||
ggml_tensor_extra_gpu * extra = nullptr;
|
||||
ggml_backend_buffer * buf = nullptr;
|
||||
|
||||
switch (tensor->op) {
|
||||
case GGML_OP_ADD:
|
||||
|
@ -6001,7 +6005,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
|||
case GGML_OP_TIMESTEP_EMBEDDING:
|
||||
case GGML_OP_LEAKY_RELU:
|
||||
case GGML_OP_REPEAT:
|
||||
extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
buf = tensor->buffer;
|
||||
|
||||
break;
|
||||
case GGML_OP_UNARY:
|
||||
|
@ -6011,7 +6015,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
|||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
buf = tensor->buffer;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
|
@ -6019,14 +6023,14 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
|||
break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
case GGML_OP_MUL_MAT_ID:
|
||||
extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
buf = tensor->buffer;
|
||||
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
||||
if (extra == nullptr) {
|
||||
if (buf == nullptr) {
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -6144,13 +6148,13 @@ static void ggml_vk_cleanup(ggml_backend_vk_context * ctx) {
|
|||
ctx->device->device.destroyFence(ctx->fence);
|
||||
}
|
||||
|
||||
GGML_CALL static int ggml_vk_get_device_count() {
|
||||
static int ggml_vk_get_device_count() {
|
||||
ggml_vk_instance_init();
|
||||
|
||||
return vk_instance.device_indices.size();
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
|
||||
static void ggml_vk_get_device_description(int device, char * description, size_t description_size) {
|
||||
ggml_vk_instance_init();
|
||||
|
||||
std::vector<vk::PhysicalDevice> devices = vk_instance.instance.enumeratePhysicalDevices();
|
||||
|
@ -6167,111 +6171,61 @@ GGML_CALL static void ggml_vk_get_device_description(int device, char * descript
|
|||
|
||||
// device backend
|
||||
|
||||
static void * const vk_ptr_base = (void *)(uintptr_t) 0x1000; // NOLINT
|
||||
|
||||
struct ggml_backend_vk_buffer_context {
|
||||
vk_device_ref device;
|
||||
vk_buffer dev_buffer;
|
||||
ggml_tensor_extra_gpu * temp_tensor_extras = nullptr;
|
||||
size_t temp_tensor_extra_index = 0;
|
||||
std::string name;
|
||||
|
||||
ggml_backend_vk_buffer_context(vk_device_ref device, vk_buffer&& dev_buffer, std::string& name) :
|
||||
device(device),
|
||||
dev_buffer(dev_buffer),
|
||||
name(name) {
|
||||
}
|
||||
|
||||
~ggml_backend_vk_buffer_context() {
|
||||
ggml_vk_destroy_buffer(dev_buffer);
|
||||
if (temp_tensor_extras != nullptr) {
|
||||
delete[] temp_tensor_extras;
|
||||
}
|
||||
}
|
||||
|
||||
ggml_tensor_extra_gpu * ggml_vk_alloc_temp_tensor_extra() {
|
||||
if (temp_tensor_extras == nullptr) {
|
||||
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_VK_MAX_NODES];
|
||||
}
|
||||
|
||||
size_t alloc_index = temp_tensor_extra_index;
|
||||
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_VK_MAX_NODES;
|
||||
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
|
||||
extra->reset();
|
||||
|
||||
return extra;
|
||||
}
|
||||
};
|
||||
|
||||
GGML_CALL static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_vk_buffer_get_name(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
|
||||
static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.get_name == ggml_backend_vk_buffer_get_name;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
VK_LOG_MEMORY("ggml_backend_vk_buffer_free_buffer()");
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
ggml_vk_destroy_buffer(ctx->dev_buffer);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
GGML_CALL static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return vk_ptr_base;
|
||||
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")");
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
|
||||
if (tensor->view_src != nullptr) {
|
||||
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
|
||||
GGML_ASSERT(tensor->view_src->extra != nullptr);
|
||||
tensor->extra = tensor->view_src->extra;
|
||||
} else {
|
||||
ggml_tensor_extra_gpu * extra = ctx->ggml_vk_alloc_temp_tensor_extra();
|
||||
extra->buffer_gpu = ctx->dev_buffer;
|
||||
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
||||
tensor->extra = extra;
|
||||
}
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
vk_buffer buf = buf_ctx->dev_buffer;
|
||||
|
||||
vk_buffer buf = extra->buffer_gpu.lock();
|
||||
|
||||
ggml_vk_buffer_write(buf, extra->offset + tensor->view_offs + offset, data, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
ggml_vk_buffer_write(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")");
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
|
||||
vk_buffer buf = extra->buffer_gpu.lock();
|
||||
vk_buffer buf = buf_ctx->dev_buffer;
|
||||
|
||||
ggml_vk_buffer_read(buf, extra->offset + tensor->view_offs + offset, data, size);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
ggml_vk_buffer_read(buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
if (ggml_backend_buffer_is_vk(src->buffer)) {
|
||||
ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
|
||||
vk_buffer src_buf = src_extra->buffer_gpu.lock();
|
||||
vk_buffer dst_buf = dst_extra->buffer_gpu.lock();
|
||||
vk_buffer src_buf = src_buf_ctx->dev_buffer;
|
||||
vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
|
||||
|
||||
ggml_vk_buffer_copy(dst_buf, dst_extra->offset + dst->view_offs, src_buf, src_extra->offset + src->view_offs, ggml_nbytes(src));
|
||||
ggml_vk_buffer_copy(dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -6280,7 +6234,7 @@ GGML_CALL static bool ggml_backend_vk_buffer_cpy_tensor(ggml_backend_buffer_t bu
|
|||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
static void ggml_backend_vk_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
|
||||
ggml_vk_buffer_memset(ctx->dev_buffer, 0, value, buffer->size);
|
||||
|
@ -6300,13 +6254,13 @@ static ggml_backend_buffer_i ggml_backend_vk_buffer_interface = {
|
|||
};
|
||||
|
||||
// vk buffer type
|
||||
GGML_CALL static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_vk_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *)buft->context;
|
||||
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
VK_LOG_MEMORY("ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")");
|
||||
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
|
||||
|
||||
|
@ -6322,23 +6276,23 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(
|
|||
return ggml_backend_buffer_init(buft, ggml_backend_vk_buffer_interface, bufctx, size);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_vk_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
|
||||
return ctx->device->properties.limits.minStorageBufferOffsetAlignment;
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_vk_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
ggml_backend_vk_buffer_type_context * ctx = (ggml_backend_vk_buffer_type_context *) buft->context;
|
||||
return ctx->device->max_memory_allocation_size;
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
static size_t ggml_backend_vk_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
|
||||
return ggml_nbytes(tensor);
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
|
||||
ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num) {
|
||||
ggml_vk_instance_init();
|
||||
|
||||
VK_LOG_DEBUG("ggml_backend_vk_buffer_type(" << dev_num << ")");
|
||||
|
@ -6350,24 +6304,24 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num)
|
|||
|
||||
// host buffer type
|
||||
|
||||
GGML_CALL static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
static const char * ggml_backend_vk_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
|
||||
return GGML_VK_NAME "_Host";
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffer) {
|
||||
return GGML_VK_NAME "_Host";
|
||||
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
|
||||
ggml_vk_host_free(vk_instance.devices[0], buffer->context);
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")");
|
||||
|
||||
size += 32; // Behave like the CPU buffer type
|
||||
|
@ -6391,7 +6345,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_bu
|
|||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
|
||||
return vk_instance.devices[0]->properties.limits.minMemoryMapAlignment;
|
||||
|
||||
UNUSED(buft);
|
||||
|
@ -6399,7 +6353,7 @@ GGML_CALL static size_t ggml_backend_vk_host_buffer_type_get_alignment(ggml_back
|
|||
|
||||
// Should be changed to return device-specific host buffer type
|
||||
// but that probably requires changes in llama.cpp
|
||||
GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
|
||||
ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
|
||||
static struct ggml_backend_buffer_type ggml_backend_vk_buffer_type_host = {
|
||||
/* .iface = */ {
|
||||
/* .get_name = */ ggml_backend_vk_host_buffer_type_name,
|
||||
|
@ -6409,6 +6363,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
|
|||
/* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
|
||||
/* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
|
||||
},
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ nullptr,
|
||||
};
|
||||
|
||||
|
@ -6422,13 +6377,13 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type() {
|
|||
|
||||
// backend
|
||||
|
||||
GGML_CALL static const char * ggml_backend_vk_name(ggml_backend_t backend) {
|
||||
static const char * ggml_backend_vk_name(ggml_backend_t backend) {
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
|
||||
return ctx->name.c_str();
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) {
|
||||
static void ggml_backend_vk_free(ggml_backend_t backend) {
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
VK_LOG_DEBUG("ggml_backend_vk_free(" << ctx->name << ")");
|
||||
|
||||
|
@ -6438,18 +6393,18 @@ GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend) {
|
|||
delete backend;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
|
||||
static ggml_backend_buffer_type_t ggml_backend_vk_get_default_buffer_type(ggml_backend_t backend) {
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
|
||||
return &ctx->device->buffer_type;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_set_tensor_async(" << size << ")");
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
|
||||
|
||||
vk_context transfer_ctx;
|
||||
|
||||
|
@ -6462,17 +6417,17 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g
|
|||
transfer_ctx = ctx->transfer_ctx.lock();
|
||||
}
|
||||
|
||||
vk_buffer buf = extra->buffer_gpu.lock();
|
||||
vk_buffer buf = buf_ctx->dev_buffer;
|
||||
|
||||
ggml_vk_buffer_write_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size);
|
||||
ggml_vk_buffer_write_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_get_tensor_async(" << size << ")");
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
|
||||
|
||||
vk_context transfer_ctx;
|
||||
|
||||
|
@ -6485,17 +6440,17 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c
|
|||
transfer_ctx = ctx->transfer_ctx.lock();
|
||||
}
|
||||
|
||||
vk_buffer buf = extra->buffer_gpu.lock();
|
||||
vk_buffer buf = buf_ctx->dev_buffer;
|
||||
|
||||
ggml_vk_buffer_read_async(transfer_ctx, buf, extra->offset + tensor->view_offs + offset, data, size);
|
||||
ggml_vk_buffer_read_async(transfer_ctx, buf, vk_tensor_offset(tensor) + tensor->view_offs + offset, data, size);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_cpy_tensor_async()");
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
if ((dst->buffer->buft == ggml_backend_vk_get_default_buffer_type(backend) || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
|
||||
ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_backend_vk_buffer_context * src_buf_ctx = (ggml_backend_vk_buffer_context *)src->buffer->context;
|
||||
ggml_backend_vk_buffer_context * dst_buf_ctx = (ggml_backend_vk_buffer_context *)dst->buffer->context;
|
||||
|
||||
vk_context transfer_ctx;
|
||||
|
||||
|
@ -6508,17 +6463,17 @@ GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, c
|
|||
transfer_ctx = ctx->transfer_ctx.lock();
|
||||
}
|
||||
|
||||
vk_buffer src_buf = src_extra->buffer_gpu.lock();
|
||||
vk_buffer dst_buf = dst_extra->buffer_gpu.lock();
|
||||
vk_buffer src_buf = src_buf_ctx->dev_buffer;
|
||||
vk_buffer dst_buf = dst_buf_ctx->dev_buffer;
|
||||
|
||||
ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, dst_extra->offset + dst->view_offs, src_buf, src_extra->offset + src->view_offs, ggml_nbytes(src));
|
||||
ggml_vk_buffer_copy_async(transfer_ctx, dst_buf, vk_tensor_offset(dst) + dst->view_offs, src_buf, vk_tensor_offset(src) + src->view_offs, ggml_nbytes(src));
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
|
||||
static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_synchronize()");
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
if(ctx->transfer_ctx.expired()) {
|
||||
|
@ -6548,7 +6503,7 @@ static bool ggml_vk_is_empty(ggml_tensor * node) {
|
|||
return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)");
|
||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||
|
||||
|
@ -6611,7 +6566,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
|
|||
UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
// ggml_backend_vk_context * ctx = (ggml_backend_vk_context *) backend->context;
|
||||
|
||||
switch (op->op) {
|
||||
|
@ -6734,7 +6689,7 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const
|
|||
UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
const int min_batch_size = 32;
|
||||
|
||||
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
|
||||
|
@ -6743,7 +6698,7 @@ GGML_CALL static bool ggml_backend_vk_offload_op(ggml_backend_t backend, const g
|
|||
UNUSED(backend);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_vk_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
static bool ggml_backend_vk_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) {
|
||||
if (buft->iface.get_name != ggml_backend_vk_buffer_type_name) {
|
||||
return false;
|
||||
}
|
||||
|
@ -6771,11 +6726,8 @@ static ggml_backend_i ggml_backend_vk_interface = {
|
|||
/* .supports_op = */ ggml_backend_vk_supports_op,
|
||||
/* .supports_buft = */ ggml_backend_vk_supports_buft,
|
||||
/* .offload_op = */ ggml_backend_vk_offload_op,
|
||||
/* .event_new = */ NULL,
|
||||
/* .event_free = */ NULL,
|
||||
/* .event_record = */ NULL,
|
||||
/* .event_wait = */ NULL,
|
||||
/* .event_synchronize = */ NULL,
|
||||
};
|
||||
|
||||
static ggml_guid_t ggml_backend_vk_guid() {
|
||||
|
@ -6783,7 +6735,7 @@ static ggml_guid_t ggml_backend_vk_guid() {
|
|||
return &guid;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
|
||||
ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_init(" << dev_num << ")");
|
||||
|
||||
ggml_backend_vk_context * ctx = new ggml_backend_vk_context;
|
||||
|
@ -6792,25 +6744,26 @@ GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num) {
|
|||
ggml_backend_t vk_backend = new ggml_backend {
|
||||
/* .guid = */ ggml_backend_vk_guid(),
|
||||
/* .interface = */ ggml_backend_vk_interface,
|
||||
/* .device = */ nullptr,
|
||||
/* .context = */ ctx,
|
||||
};
|
||||
|
||||
return vk_backend;
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend) {
|
||||
bool ggml_backend_is_vk(ggml_backend_t backend) {
|
||||
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_vk_guid());
|
||||
}
|
||||
|
||||
GGML_CALL int ggml_backend_vk_get_device_count() {
|
||||
int ggml_backend_vk_get_device_count() {
|
||||
return ggml_vk_get_device_count();
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
|
||||
void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size) {
|
||||
ggml_vk_get_device_description(device, description, description_size);
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
|
||||
void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total) {
|
||||
GGML_ASSERT(device < (int) vk_instance.device_indices.size());
|
||||
|
||||
vk::PhysicalDevice vkdev = vk_instance.instance.enumeratePhysicalDevices()[vk_instance.device_indices[device]];
|
||||
|
@ -6826,27 +6779,6 @@ GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size
|
|||
}
|
||||
}
|
||||
|
||||
// backend registry
|
||||
GGML_CALL static ggml_backend_t ggml_backend_reg_vk_init(const char * params, void * user_data) {
|
||||
ggml_backend_t vk_backend = ggml_backend_vk_init((int) (intptr_t) user_data);
|
||||
return vk_backend;
|
||||
|
||||
UNUSED(params);
|
||||
}
|
||||
|
||||
extern "C" GGML_CALL int ggml_backend_vk_reg_devices();
|
||||
|
||||
GGML_CALL int ggml_backend_vk_reg_devices() {
|
||||
ggml_vk_instance_init();
|
||||
|
||||
for (size_t i = 0; i < vk_instance.device_indices.size(); i++) {
|
||||
char name[128];
|
||||
snprintf(name, sizeof(name), "%s%ld", GGML_VK_NAME, i);
|
||||
ggml_backend_register(name, ggml_backend_reg_vk_init, ggml_backend_vk_buffer_type(i), (void *) (intptr_t) i); // NOLINT
|
||||
}
|
||||
return vk_instance.device_indices.size();
|
||||
}
|
||||
|
||||
// Extension availability
|
||||
static bool ggml_vk_instance_validation_ext_available(const std::vector<vk::ExtensionProperties>& instance_extensions) {
|
||||
#ifdef GGML_VULKAN_VALIDATE
|
||||
|
@ -6949,10 +6881,10 @@ static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name)
|
|||
const size_t tensor_size = ggml_nbytes(tensor);
|
||||
tensor_data = malloc(tensor_size);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
|
||||
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
ggml_vk_buffer_read(buffer_gpu, extra->offset + tensor->view_offs, tensor_data, tensor_size);
|
||||
vk_buffer buffer_gpu = buf_ctx->dev_buffer;
|
||||
ggml_vk_buffer_read(buffer_gpu, vk_tensor_offset(tensor) + tensor->view_offs, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
|
||||
|
@ -7026,9 +6958,9 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
|
|||
memcpy(src0_clone->data, src0->data, src0_size);
|
||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (ggml_backend_buffer_is_vk(src0->buffer)) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
uint64_t offset = extra->offset + src0->view_offs;
|
||||
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src0->buffer->context;
|
||||
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
|
||||
uint64_t offset = vk_tensor_offset(src0) + src0->view_offs;
|
||||
if (!ggml_is_contiguous(src0) && ggml_vk_dim01_contiguous(src0)) {
|
||||
for (int i3 = 0; i3 < src0->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src0->ne[2]; i2++) {
|
||||
|
@ -7068,9 +7000,9 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
|
|||
memcpy(src1_clone->data, src1->data, src1_size);
|
||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (ggml_backend_buffer_is_vk(src1->buffer)) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
uint64_t offset = extra->offset + src1->view_offs;
|
||||
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src1->buffer->context;
|
||||
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
|
||||
uint64_t offset = vk_tensor_offset(src1) + src1->view_offs;
|
||||
if (!ggml_is_contiguous(src1) && ggml_vk_dim01_contiguous(src1)) {
|
||||
for (int i3 = 0; i3 < src1->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src1->ne[2]; i2++) {
|
||||
|
@ -7110,9 +7042,9 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
|
|||
memcpy(src2_clone->data, src2->data, src2_size);
|
||||
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
} else if (ggml_backend_buffer_is_vk(src2->buffer)) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra;
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
uint64_t offset = extra->offset + src2->view_offs;
|
||||
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)src2->buffer->context;
|
||||
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
|
||||
uint64_t offset = vk_tensor_offset(src2) + src2->view_offs;
|
||||
if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) {
|
||||
for (int i3 = 0; i3 < src2->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src2->ne[2]; i2++) {
|
||||
|
@ -7167,7 +7099,7 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
|
|||
} else if (tensor->op == GGML_OP_PAD) {
|
||||
tensor_clone = ggml_pad(ggml_ctx, src0_clone, tensor->ne[0] - src0_clone->ne[0], tensor->ne[1] - src0_clone->ne[1], tensor->ne[2] - src0_clone->ne[2], tensor->ne[3] - src0_clone->ne[3]);
|
||||
} else if (tensor->op == GGML_OP_REPEAT) {
|
||||
tensor_clone = ggml_repeat(ggml_ctx, src0_clone, src1_clone);
|
||||
tensor_clone = ggml_repeat(ggml_ctx, src0_clone, tensor);
|
||||
} else if (tensor->op == GGML_OP_ADD) {
|
||||
tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone);
|
||||
} else if (tensor->op == GGML_OP_ACC) {
|
||||
|
@ -7312,14 +7244,15 @@ static void ggml_vk_check_results_1(ggml_tensor * tensor) {
|
|||
size_t tensor_size = ggml_nbytes(tensor);
|
||||
tensor_data = malloc(tensor_size);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
ggml_backend_vk_buffer_context * buf_ctx = (ggml_backend_vk_buffer_context *)tensor->buffer->context;
|
||||
|
||||
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
|
||||
if (extra->offset + tensor->view_offs + tensor_size >= buffer_gpu->size) {
|
||||
tensor_size = buffer_gpu->size - (extra->offset + tensor->view_offs);
|
||||
vk_buffer& buffer_gpu = buf_ctx->dev_buffer;
|
||||
uint64_t offset = vk_tensor_offset(tensor) + tensor->view_offs;
|
||||
if (offset + tensor_size >= buffer_gpu->size) {
|
||||
tensor_size = buffer_gpu->size - offset;
|
||||
}
|
||||
|
||||
ggml_vk_buffer_read(buffer_gpu, extra->offset + tensor->view_offs, tensor_data, tensor_size);
|
||||
ggml_vk_buffer_read(buffer_gpu, offset, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
float first_error_result = -1.0f;
|
||||
|
|
|
@ -498,7 +498,7 @@ struct ggml_arm_arch_features_type {
|
|||
} ggml_arm_arch_features = {-1, -1, -1, 0};
|
||||
#endif
|
||||
|
||||
GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
|
||||
const char * ggml_status_to_string(enum ggml_status status) {
|
||||
switch (status) {
|
||||
case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
|
||||
case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
|
||||
|
@ -3419,19 +3419,19 @@ void ggml_print_objects(const struct ggml_context * ctx) {
|
|||
GGML_LOG_INFO("%s: --- end ---\n", __func__);
|
||||
}
|
||||
|
||||
GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
|
||||
int64_t ggml_nelements(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
|
||||
}
|
||||
|
||||
GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
|
||||
int64_t ggml_nrows(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
|
||||
}
|
||||
|
||||
GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
||||
size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
||||
size_t nbytes;
|
||||
size_t blck_size = ggml_blck_size(tensor->type);
|
||||
if (blck_size == 1) {
|
||||
|
@ -3454,15 +3454,15 @@ size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
|
|||
return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
|
||||
}
|
||||
|
||||
GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
|
||||
int64_t ggml_blck_size(enum ggml_type type) {
|
||||
return type_traits[type].blck_size;
|
||||
}
|
||||
|
||||
GGML_CALL size_t ggml_type_size(enum ggml_type type) {
|
||||
size_t ggml_type_size(enum ggml_type type) {
|
||||
return type_traits[type].type_size;
|
||||
}
|
||||
|
||||
GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
|
||||
size_t ggml_row_size(enum ggml_type type, int64_t ne) {
|
||||
assert(ne % ggml_blck_size(type) == 0);
|
||||
return ggml_type_size(type)*ne/ggml_blck_size(type);
|
||||
}
|
||||
|
@ -3471,15 +3471,15 @@ double ggml_type_sizef(enum ggml_type type) {
|
|||
return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
|
||||
}
|
||||
|
||||
GGML_CALL const char * ggml_type_name(enum ggml_type type) {
|
||||
const char * ggml_type_name(enum ggml_type type) {
|
||||
return type < GGML_TYPE_COUNT ? type_traits[type].type_name : "NONE";
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
|
||||
bool ggml_is_quantized(enum ggml_type type) {
|
||||
return type_traits[type].is_quantized;
|
||||
}
|
||||
|
||||
GGML_CALL const char * ggml_op_name(enum ggml_op op) {
|
||||
const char * ggml_op_name(enum ggml_op op) {
|
||||
return GGML_OP_NAME[op];
|
||||
}
|
||||
|
||||
|
@ -3491,7 +3491,7 @@ const char * ggml_unary_op_name(enum ggml_unary_op op) {
|
|||
return GGML_UNARY_OP_NAME[op];
|
||||
}
|
||||
|
||||
GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
|
||||
const char * ggml_op_desc(const struct ggml_tensor * t) {
|
||||
if (t->op == GGML_OP_UNARY) {
|
||||
enum ggml_unary_op uop = ggml_get_unary_op(t);
|
||||
return ggml_unary_op_name(uop);
|
||||
|
@ -3499,7 +3499,7 @@ GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
|
|||
return ggml_op_name(t->op);
|
||||
}
|
||||
|
||||
GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
|
||||
size_t ggml_element_size(const struct ggml_tensor * tensor) {
|
||||
return ggml_type_size(tensor->type);
|
||||
}
|
||||
|
||||
|
@ -3592,7 +3592,7 @@ size_t ggml_tensor_overhead(void) {
|
|||
return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
|
||||
bool ggml_is_transposed(const struct ggml_tensor * tensor) {
|
||||
return tensor->nb[0] > tensor->nb[1];
|
||||
}
|
||||
|
||||
|
@ -3618,23 +3618,23 @@ static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
|
|||
return true;
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
|
||||
bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
|
||||
return ggml_is_contiguous_0(tensor);
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
|
||||
bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
|
||||
return ggml_is_contiguous_n(tensor, 0);
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
|
||||
bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
|
||||
return ggml_is_contiguous_n(tensor, 1);
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
|
||||
bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
|
||||
return ggml_is_contiguous_n(tensor, 2);
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
|
||||
bool ggml_is_permuted(const struct ggml_tensor * tensor) {
|
||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||
|
||||
return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
|
||||
|
@ -3649,7 +3649,7 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
|
|||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||||
}
|
||||
|
||||
GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
|
||||
bool ggml_is_empty(const struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
if (tensor->ne[i] == 0) {
|
||||
// empty if any dimension has no elements
|
||||
|
@ -4665,7 +4665,7 @@ float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
|
|||
return (float *)(tensor->data);
|
||||
}
|
||||
|
||||
GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
|
||||
enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->op == GGML_OP_UNARY);
|
||||
return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
|
||||
}
|
||||
|
@ -12768,6 +12768,10 @@ static void ggml_compute_forward_out_prod_f32(
|
|||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS
|
||||
|
||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
|
@ -14097,7 +14101,7 @@ static void ggml_rope_cache_init(
|
|||
}
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_rope_yarn_corr_dims(
|
||||
void ggml_rope_yarn_corr_dims(
|
||||
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
|
||||
) {
|
||||
// start and end correction dims
|
||||
|
|
|
@ -122,7 +122,7 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
|
|||
# src/ggml-aarch64.h -> ggml/src/ggml-aarch64.h
|
||||
# src/ggml-alloc.c -> ggml/src/ggml-alloc.c
|
||||
# src/ggml-backend-impl.h -> ggml/src/ggml-backend-impl.h
|
||||
# src/ggml-backend.c -> ggml/src/ggml-backend.c
|
||||
# src/ggml-backend.cpp -> ggml/src/ggml-backend.cpp
|
||||
# src/ggml-cann/* -> ggml/src/ggml-cann/
|
||||
# src/ggml-cann.cpp -> ggml/src/ggml-cann.cpp
|
||||
# src/ggml-common.h -> ggml/src/ggml-common.h
|
||||
|
@ -169,7 +169,7 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
|
|||
-e 's/([[:space:]]|[ab]\/)src\/ggml-aarch64\.h/\1ggml\/src\/ggml-aarch64.h/g' \
|
||||
-e 's/([[:space:]]|[ab]\/)src\/ggml-alloc\.c/\1ggml\/src\/ggml-alloc.c/g' \
|
||||
-e 's/([[:space:]]|[ab]\/)src\/ggml-backend-impl\.h/\1ggml\/src\/ggml-backend-impl.h/g' \
|
||||
-e 's/([[:space:]]|[ab]\/)src\/ggml-backend\.c/\1ggml\/src\/ggml-backend.c/g' \
|
||||
-e 's/([[:space:]]|[ab]\/)src\/ggml-backend\.cpp/\1ggml\/src\/ggml-backend.cpp/g' \
|
||||
-e 's/([[:space:]]|[ab]\/)src\/ggml-cann\//\1ggml\/src\/ggml-cann\//g' \
|
||||
-e 's/([[:space:]]|[ab]\/)src\/ggml-cann\.cpp/\1ggml\/src\/ggml-cann.cpp/g' \
|
||||
-e 's/([[:space:]]|[ab]\/)src\/ggml-common\.h/\1ggml\/src\/ggml-common.h/g' \
|
||||
|
|
|
@ -9,7 +9,7 @@ cp -rpv ../ggml/src/ggml-aarch64.c ./ggml/src/ggml-aarch64.c
|
|||
cp -rpv ../ggml/src/ggml-aarch64.h ./ggml/src/ggml-aarch64.h
|
||||
cp -rpv ../ggml/src/ggml-alloc.c ./ggml/src/ggml-alloc.c
|
||||
cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml/src/ggml-backend-impl.h
|
||||
cp -rpv ../ggml/src/ggml-backend.c ./ggml/src/ggml-backend.c
|
||||
cp -rpv ../ggml/src/ggml-backend.cpp ./ggml/src/ggml-backend.cpp
|
||||
cp -rpv ../ggml/src/ggml-cann/* ./ggml/src/ggml-cann/
|
||||
cp -rpv ../ggml/src/ggml-cann.cpp ./ggml/src/ggml-cann.cpp
|
||||
cp -rpv ../ggml/src/ggml-common.h ./ggml/src/ggml-common.h
|
||||
|
|
564
src/llama.cpp
564
src/llama.cpp
|
@ -12,9 +12,7 @@
|
|||
# include "ggml-rpc.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
# include "ggml-cuda.h"
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
#if defined(GGML_USE_VULKAN)
|
||||
# include "ggml-vulkan.h"
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
# include "ggml-sycl.h"
|
||||
|
@ -610,7 +608,7 @@ enum llm_tensor {
|
|||
LLM_TENSOR_CLS_OUT,
|
||||
};
|
||||
|
||||
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
|
||||
static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_NAMES = {
|
||||
{
|
||||
LLM_ARCH_LLAMA,
|
||||
{
|
||||
|
@ -1566,32 +1564,32 @@ struct LLM_TN {
|
|||
return LLM_TENSOR_NAMES.at(arch).at(tensor);
|
||||
}
|
||||
|
||||
std::string operator()(llm_tensor tensor, const std::string & suffix) const {
|
||||
std::string operator()(llm_tensor tensor, const char * suffix) const {
|
||||
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
|
||||
return "__missing__";
|
||||
}
|
||||
return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
|
||||
return std::string(LLM_TENSOR_NAMES.at(arch).at(tensor)) + "." + suffix;
|
||||
}
|
||||
|
||||
std::string operator()(llm_tensor tensor, int bid) const {
|
||||
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
|
||||
return "__missing__";
|
||||
}
|
||||
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
|
||||
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid);
|
||||
}
|
||||
|
||||
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
|
||||
std::string operator()(llm_tensor tensor, const char * suffix, int bid) const {
|
||||
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
|
||||
return "__missing__";
|
||||
}
|
||||
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
|
||||
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid) + "." + suffix;
|
||||
}
|
||||
|
||||
std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
|
||||
std::string operator()(llm_tensor tensor, const char * suffix, int bid, int xid) const {
|
||||
if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
|
||||
return "__missing__";
|
||||
}
|
||||
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
|
||||
return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor), bid, xid) + "." + suffix;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -2264,38 +2262,6 @@ static std::string llama_token_to_piece(const struct llama_model * model, llama_
|
|||
return piece;
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
|
||||
ggml_backend_buffer_type_t buft = nullptr;
|
||||
|
||||
#if defined(GGML_USE_CUDA)
|
||||
// host buffers should only be used when data is expected to be copied to/from the GPU
|
||||
if (host_buffer) {
|
||||
buft = ggml_backend_cuda_host_buffer_type();
|
||||
}
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
if (host_buffer) {
|
||||
buft = ggml_backend_sycl_host_buffer_type();
|
||||
}
|
||||
#elif defined(GGML_USE_CANN)
|
||||
if (host_buffer) {
|
||||
buft = ggml_backend_cann_host_buffer_type();
|
||||
}
|
||||
#elif defined(GGML_USE_CPU_HBM)
|
||||
buft = ggml_backend_cpu_hbm_buffer_type();
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
if (host_buffer) {
|
||||
buft = ggml_backend_vk_host_buffer_type();
|
||||
}
|
||||
#endif
|
||||
|
||||
if (buft == nullptr) {
|
||||
buft = ggml_backend_cpu_buffer_type();
|
||||
}
|
||||
return buft;
|
||||
|
||||
GGML_UNUSED(host_buffer);
|
||||
}
|
||||
|
||||
//
|
||||
// globals
|
||||
//
|
||||
|
@ -2909,14 +2875,17 @@ struct llama_model {
|
|||
|
||||
std::vector<llama_layer> layers;
|
||||
|
||||
// gguf metadata
|
||||
std::unordered_map<std::string, std::string> gguf_kv;
|
||||
|
||||
llama_split_mode split_mode;
|
||||
int main_gpu;
|
||||
int n_gpu_layers;
|
||||
|
||||
std::vector<std::string> rpc_servers;
|
||||
// list of devices used in this model
|
||||
std::vector<ggml_backend_dev_t> devices;
|
||||
|
||||
// gguf metadata
|
||||
std::unordered_map<std::string, std::string> gguf_kv;
|
||||
std::vector<std::string> rpc_servers;
|
||||
|
||||
// layer -> buffer type mapping
|
||||
struct layer_buft {
|
||||
|
@ -2959,11 +2928,6 @@ struct llama_model {
|
|||
ggml_free(ctx);
|
||||
}
|
||||
for (ggml_backend_buffer_t buf : bufs) {
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
|
||||
ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
|
||||
}
|
||||
#endif
|
||||
ggml_backend_buffer_free(buf);
|
||||
}
|
||||
while (!lora_adapters.empty()) {
|
||||
|
@ -3449,72 +3413,116 @@ struct llama_lora_adapter {
|
|||
}
|
||||
};
|
||||
|
||||
static size_t llama_get_device_count(const llama_model & model) {
|
||||
size_t count = 1;
|
||||
#if defined(GGML_USE_CUDA)
|
||||
count = ggml_backend_cuda_get_device_count();
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
count = ggml_backend_sycl_get_device_count();
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
count = ggml_backend_vk_get_device_count();
|
||||
#elif defined(GGML_USE_CANN)
|
||||
return ggml_backend_cann_get_device_count();
|
||||
#endif
|
||||
static int llama_get_device_count(const llama_model & model) {
|
||||
int count = (int) model.devices.size();
|
||||
|
||||
#if defined(GGML_USE_RPC)
|
||||
count += model.rpc_servers.size();
|
||||
count += (int) model.rpc_servers.size();
|
||||
#endif
|
||||
|
||||
#if defined(GGML_USE_METAL)
|
||||
count += 1;
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
count += ggml_backend_sycl_get_device_count();
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
count += ggml_backend_vk_get_device_count();
|
||||
#elif defined(GGML_USE_CANN)
|
||||
count += ggml_backend_cann_get_device_count();
|
||||
#endif
|
||||
|
||||
return count;
|
||||
|
||||
GGML_UNUSED(model);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
|
||||
static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(const llama_model & model, bool host_buffer) {
|
||||
ggml_backend_buffer_type_t buft = nullptr;
|
||||
|
||||
#ifdef GGML_USE_RPC
|
||||
int rpc_count = (int)model.rpc_servers.size();
|
||||
#else
|
||||
int rpc_count = 0;
|
||||
#endif
|
||||
int local_gpu = gpu - rpc_count;
|
||||
#if defined(GGML_USE_RPC)
|
||||
if (gpu < rpc_count) {
|
||||
const char * endpoint = model.rpc_servers[gpu].c_str();
|
||||
return ggml_backend_rpc_buffer_type(endpoint);
|
||||
if (host_buffer) {
|
||||
for (auto * dev : model.devices) {
|
||||
buft = ggml_backend_dev_host_buffer_type(dev);
|
||||
if (buft != nullptr) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#if defined(GGML_USE_METAL)
|
||||
buft = ggml_backend_metal_buffer_type();
|
||||
#elif defined(GGML_USE_CUDA)
|
||||
buft = ggml_backend_cuda_buffer_type(local_gpu);
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
buft = ggml_backend_vk_buffer_type(local_gpu);
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
buft = ggml_backend_sycl_buffer_type(local_gpu);
|
||||
#elif defined(GGML_USE_KOMPUTE)
|
||||
buft = ggml_backend_kompute_buffer_type(local_gpu);
|
||||
if (buft == nullptr) {
|
||||
LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, local_gpu);
|
||||
|
||||
#if defined(GGML_USE_SYCL)
|
||||
if (host_buffer) {
|
||||
buft = ggml_backend_sycl_host_buffer_type();
|
||||
}
|
||||
#elif defined(GGML_USE_CANN)
|
||||
buft = ggml_backend_cann_buffer_type(local_gpu);
|
||||
if (host_buffer) {
|
||||
buft = ggml_backend_cann_host_buffer_type();
|
||||
}
|
||||
#elif defined(GGML_USE_CPU_HBM)
|
||||
buft = ggml_backend_cpu_hbm_buffer_type();
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
if (host_buffer) {
|
||||
buft = ggml_backend_vk_host_buffer_type();
|
||||
}
|
||||
#endif
|
||||
|
||||
if (buft == nullptr) {
|
||||
buft = llama_default_buffer_type_cpu(true);
|
||||
buft = ggml_backend_cpu_buffer_type();
|
||||
}
|
||||
return buft;
|
||||
|
||||
GGML_UNUSED(host_buffer);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int device) {
|
||||
ggml_backend_buffer_type_t buft = nullptr;
|
||||
|
||||
#if defined(GGML_USE_RPC)
|
||||
int rpc_count = (int)model.rpc_servers.size();
|
||||
if (device < rpc_count) {
|
||||
const char * endpoint = model.rpc_servers[device].c_str();
|
||||
return ggml_backend_rpc_buffer_type(endpoint);
|
||||
}
|
||||
device -= rpc_count;
|
||||
#endif
|
||||
|
||||
if (device < (int)model.devices.size()) {
|
||||
return ggml_backend_dev_buffer_type(model.devices[device]);
|
||||
}
|
||||
device -= (int)model.devices.size();
|
||||
|
||||
#if defined(GGML_USE_METAL)
|
||||
buft = ggml_backend_metal_buffer_type();
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
buft = ggml_backend_vk_buffer_type(device);
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
buft = ggml_backend_sycl_buffer_type(device);
|
||||
#elif defined(GGML_USE_KOMPUTE)
|
||||
buft = ggml_backend_kompute_buffer_type(device);
|
||||
#elif defined(GGML_USE_CANN)
|
||||
buft = ggml_backend_cann_buffer_type(device);
|
||||
#endif
|
||||
|
||||
if (buft == nullptr) {
|
||||
buft = llama_default_buffer_type_cpu(model, true);
|
||||
}
|
||||
return buft;
|
||||
|
||||
GGML_UNUSED(model);
|
||||
GGML_UNUSED(local_gpu);
|
||||
}
|
||||
|
||||
static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
|
||||
ggml_backend_buffer_type_t buft = nullptr;
|
||||
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (ggml_backend_cuda_get_device_count() > 1) {
|
||||
buft = ggml_backend_cuda_split_buffer_type(tensor_split);
|
||||
// find a backend that supports split buffers
|
||||
for (size_t i = 0; i < ggml_backend_reg_count(); ++i) {
|
||||
ggml_backend_reg_t reg = ggml_backend_reg_get(i);
|
||||
|
||||
auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
|
||||
if (ggml_backend_split_buffer_type_fn) {
|
||||
buft = ggml_backend_split_buffer_type_fn(tensor_split);
|
||||
if (buft != nullptr) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_SYCL
|
||||
if (ggml_backend_sycl_get_device_count() > 1) {
|
||||
|
@ -3531,13 +3539,8 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_mo
|
|||
}
|
||||
|
||||
static size_t llama_get_device_memory(const llama_model & model, int device) {
|
||||
#ifdef GGML_USE_RPC
|
||||
int rpc_count = (int)model.rpc_servers.size();
|
||||
#else
|
||||
int rpc_count = 0;
|
||||
#endif
|
||||
int local_device = device - rpc_count;
|
||||
#if defined(GGML_USE_RPC)
|
||||
int rpc_count = (int)model.rpc_servers.size();
|
||||
if (device < rpc_count) {
|
||||
size_t total;
|
||||
size_t free;
|
||||
|
@ -3545,32 +3548,37 @@ static size_t llama_get_device_memory(const llama_model & model, int device) {
|
|||
ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
|
||||
return free;
|
||||
}
|
||||
device = device - rpc_count;
|
||||
#endif
|
||||
#if defined(GGML_USE_CUDA)
|
||||
|
||||
if (device < (int)model.devices.size()) {
|
||||
ggml_backend_dev_t dev = model.devices[device];
|
||||
size_t total;
|
||||
size_t free;
|
||||
ggml_backend_dev_memory(dev, &free, &total);
|
||||
return free;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_SYCL)
|
||||
size_t total;
|
||||
size_t free;
|
||||
ggml_backend_cuda_get_device_memory(local_device, &free, &total);
|
||||
return free;
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
size_t total;
|
||||
size_t free;
|
||||
ggml_backend_sycl_get_device_memory(local_device, &free, &total);
|
||||
ggml_backend_sycl_get_device_memory(device, &free, &total);
|
||||
return free;
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
size_t total;
|
||||
size_t free;
|
||||
ggml_backend_vk_get_device_memory(local_device, &free, &total);
|
||||
ggml_backend_vk_get_device_memory(device, &free, &total);
|
||||
return free;
|
||||
#elif defined(GGML_USE_CANN)
|
||||
size_t total;
|
||||
size_t free;
|
||||
ggml_backend_cann_get_device_memory(local_device, &free, &total);
|
||||
ggml_backend_cann_get_device_memory(device, &free, &total);
|
||||
return free;
|
||||
#else
|
||||
return 1;
|
||||
#endif
|
||||
GGML_UNUSED(model);
|
||||
GGML_UNUSED(local_device);
|
||||
GGML_UNUSED(device);
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -3613,7 +3621,7 @@ static bool llama_kv_cache_init(
|
|||
buft_layer_count[model.buft_layer[i].buft]++;
|
||||
}
|
||||
} else {
|
||||
buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
|
||||
buft_layer_count[llama_default_buffer_type_cpu(model, true)] = n_layer;
|
||||
}
|
||||
|
||||
// create a context for each buffer type
|
||||
|
@ -4905,7 +4913,7 @@ struct llama_model_loader {
|
|||
static const int TENSOR_NOT_REQUIRED = 1;
|
||||
static const int TENSOR_DUPLICATED = 2;
|
||||
|
||||
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
|
||||
struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags = 0) {
|
||||
const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
|
||||
|
||||
if (cur == NULL) {
|
||||
|
@ -4915,7 +4923,7 @@ struct llama_model_loader {
|
|||
return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
|
||||
}
|
||||
|
||||
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
|
||||
struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required = true) {
|
||||
const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
|
||||
|
||||
if (cur == NULL) {
|
||||
|
@ -4928,7 +4936,7 @@ struct llama_model_loader {
|
|||
|
||||
std::array<int64_t, GGML_MAX_DIMS> dims;
|
||||
for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
dims[i] = i < ne.size() ? ne[i] : 1;
|
||||
dims[i] = i < ne.size() ? ne.begin()[i] : 1;
|
||||
}
|
||||
|
||||
struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
|
||||
|
@ -5026,7 +5034,7 @@ struct llama_model_loader {
|
|||
// Returns false if cancelled by progress_callback
|
||||
bool load_all_data(
|
||||
struct ggml_context * ctx,
|
||||
llama_buf_map & bufs_mmap,
|
||||
llama_buf_map & bufs,
|
||||
llama_mlocks * lmlocks,
|
||||
llama_progress_callback progress_callback,
|
||||
void * progress_callback_user_data) {
|
||||
|
@ -5035,43 +5043,94 @@ struct llama_model_loader {
|
|||
std::vector<no_init<uint8_t>> read_buf;
|
||||
std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
|
||||
|
||||
#if defined(GGML_USE_CUDA)
|
||||
// 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
|
||||
// NVMe raid configurations might require more / larger buffers.
|
||||
constexpr size_t n_buffers = 4;
|
||||
constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
|
||||
|
||||
std::vector<ggml_backend_buffer_t> host_buffers;
|
||||
std::vector<void*> host_ptrs;
|
||||
std::vector<ggml_backend_event_t> events;
|
||||
std::vector<void *> host_ptrs;
|
||||
size_t buffer_idx = 0; // buffer to use for async loads
|
||||
|
||||
ggml_backend_t cuda_backend = nullptr;
|
||||
if (!use_mmap && !check_tensors) {
|
||||
ggml_backend_t upload_backend = [&](const char * fn) -> ggml_backend_t {
|
||||
if (use_mmap || check_tensors) {
|
||||
return nullptr;
|
||||
}
|
||||
// When not using mmaped io use async uploads from pinned memory to GPU memory.
|
||||
// First determine if the CUDA backend is active, and if so, determine the device ID.
|
||||
ggml_backend_buffer_t buf = bufs_mmap.count(0) ? bufs_mmap.at(0) : nullptr;
|
||||
if (buf) {
|
||||
ggml_backend_buffer_type_t buffer_type = ggml_backend_buffer_get_type(buf);
|
||||
for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
|
||||
auto * cuda_buffer_type = ggml_backend_cuda_buffer_type(i);
|
||||
if (buffer_type == cuda_buffer_type) {
|
||||
cuda_backend = ggml_backend_cuda_init(i);
|
||||
break;
|
||||
}
|
||||
}
|
||||
// First determine if the backend supports the necessary features for async uploads.
|
||||
auto * buf = bufs.count(0) ? bufs.at(0) : nullptr;
|
||||
if (!buf) {
|
||||
LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", fn);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// If the cuda backend is active create pinned memory buffers and events for synchronisation.
|
||||
if (cuda_backend) {
|
||||
for (size_t idx = 0; idx < n_buffers; ++idx) {
|
||||
host_buffers.emplace_back(ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), buffer_size));
|
||||
host_ptrs.emplace_back(ggml_backend_buffer_get_base(host_buffers[idx]));
|
||||
events.emplace_back(ggml_backend_event_new(cuda_backend));
|
||||
}
|
||||
auto * buft = ggml_backend_buffer_get_type(buf);
|
||||
auto * dev = ggml_backend_buft_get_device(buft);
|
||||
if (!dev) {
|
||||
LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", fn,
|
||||
ggml_backend_buft_name(buft));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (buft != ggml_backend_dev_buffer_type(dev)) {
|
||||
LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", fn,
|
||||
ggml_backend_buft_name(buft), ggml_backend_dev_name(dev));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
ggml_backend_dev_props props;
|
||||
ggml_backend_dev_get_props(dev, &props);
|
||||
if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) {
|
||||
LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", fn,
|
||||
ggml_backend_dev_name(dev));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
|
||||
if (!host_buft) {
|
||||
LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", fn,
|
||||
ggml_backend_dev_name(dev));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// If the backend is supported, create pinned memory buffers and events for synchronisation.
|
||||
for (size_t idx = 0; idx < n_buffers; ++idx) {
|
||||
auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size);
|
||||
if (!buf) {
|
||||
LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", fn,
|
||||
ggml_backend_dev_name(dev));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
host_buffers.emplace_back(buf);
|
||||
host_ptrs.emplace_back(ggml_backend_buffer_get_base(buf));
|
||||
|
||||
auto * event = ggml_backend_event_new(dev);
|
||||
if (!event) {
|
||||
LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", fn,
|
||||
ggml_backend_dev_name(dev));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
events.emplace_back(event);
|
||||
}
|
||||
|
||||
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
|
||||
if (!backend) {
|
||||
LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", fn,
|
||||
ggml_backend_dev_name(dev));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return backend;
|
||||
}(__func__);
|
||||
|
||||
if (upload_backend) {
|
||||
LLAMA_LOG_DEBUG("%s: using async uploads for device %s, buffer type %s, backend %s\n", __func__,
|
||||
ggml_backend_dev_name(ggml_backend_get_device(upload_backend)),
|
||||
ggml_backend_buft_name(ggml_backend_buffer_get_type(bufs.at(0))),
|
||||
ggml_backend_name(upload_backend));
|
||||
}
|
||||
#endif
|
||||
|
||||
for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
|
||||
const auto * weight = get_weight(ggml_get_name(cur));
|
||||
|
@ -5091,8 +5150,8 @@ struct llama_model_loader {
|
|||
if (use_mmap) {
|
||||
const auto & mapping = mappings.at(weight->idx);
|
||||
ggml_backend_buffer_t buf_mmap = nullptr;
|
||||
if (bufs_mmap.count(weight->idx)) {
|
||||
buf_mmap = bufs_mmap.at(weight->idx);
|
||||
if (bufs.count(weight->idx)) {
|
||||
buf_mmap = bufs.at(weight->idx);
|
||||
}
|
||||
uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
|
||||
|
||||
|
@ -5128,9 +5187,8 @@ struct llama_model_loader {
|
|||
}));
|
||||
}
|
||||
} else {
|
||||
#if defined(GGML_USE_CUDA)
|
||||
// If cuda_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
|
||||
if (cuda_backend) {
|
||||
// If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
|
||||
if (upload_backend) {
|
||||
file->seek(weight->offs, SEEK_SET);
|
||||
|
||||
size_t bytes_read = 0;
|
||||
|
@ -5140,17 +5198,14 @@ struct llama_model_loader {
|
|||
|
||||
ggml_backend_event_synchronize(events[buffer_idx]);
|
||||
file->read_raw(host_ptrs[buffer_idx], read_iteration);
|
||||
ggml_backend_tensor_set_async(cuda_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
|
||||
ggml_backend_event_record(events[buffer_idx]);
|
||||
ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
|
||||
ggml_backend_event_record(events[buffer_idx], upload_backend);
|
||||
|
||||
bytes_read += read_iteration;
|
||||
++buffer_idx;
|
||||
buffer_idx %= n_buffers;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
} else {
|
||||
read_buf.resize(n_size);
|
||||
file->seek(weight->offs, SEEK_SET);
|
||||
file->read_raw(read_buf.data(), n_size);
|
||||
|
@ -5165,17 +5220,15 @@ struct llama_model_loader {
|
|||
size_done += n_size;
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_CUDA)
|
||||
// free temporary resources used for async cuda uploads
|
||||
if (cuda_backend) {
|
||||
for (size_t idx = 0; idx < n_buffers;++idx) {
|
||||
ggml_backend_event_synchronize(events[idx]);
|
||||
ggml_backend_event_free(events[idx]);
|
||||
ggml_backend_buffer_free(host_buffers[idx]);
|
||||
}
|
||||
ggml_backend_free(cuda_backend);
|
||||
// free temporary resources used for async uploads
|
||||
for (auto * event : events) {
|
||||
ggml_backend_event_synchronize(event);
|
||||
ggml_backend_event_free(event);
|
||||
}
|
||||
#endif
|
||||
for (auto * buf : host_buffers) {
|
||||
ggml_backend_buffer_free(buf);
|
||||
}
|
||||
ggml_backend_free(upload_backend);
|
||||
|
||||
// check validation results
|
||||
bool validation_failed = false;
|
||||
|
@ -6911,6 +6964,13 @@ static bool llm_load_tensors(
|
|||
void * progress_callback_user_data) {
|
||||
auto & hparams = model.hparams;
|
||||
|
||||
// check if the value of main_gpu is valid
|
||||
if (llama_get_device_count(model) > 0 &&
|
||||
split_mode != LLAMA_SPLIT_MODE_LAYER &&
|
||||
(main_gpu < 0 || main_gpu >= llama_get_device_count(model))) {
|
||||
throw std::runtime_error(format("invalid value for main_gpu: %d (available devices: %d)", main_gpu, llama_get_device_count(model)));
|
||||
}
|
||||
|
||||
model.split_mode = split_mode;
|
||||
model.main_gpu = main_gpu;
|
||||
model.n_gpu_layers = n_gpu_layers;
|
||||
|
@ -6920,14 +6980,14 @@ static bool llm_load_tensors(
|
|||
bool use_mmap_buffer = true;
|
||||
|
||||
// there is very little benefit to offloading the input layer, so always keep it on the CPU
|
||||
model.buft_input = llama_default_buffer_type_cpu(true);
|
||||
model.buft_input = llama_default_buffer_type_cpu(model, true);
|
||||
//model.buft_input = llama_default_buffer_type_offload(main_gpu);
|
||||
|
||||
model.buft_layer.resize(n_layer);
|
||||
|
||||
// assign cpu layers
|
||||
for (int i = 0; i < i_gpu_start; ++i) {
|
||||
model.buft_layer[i] = llama_default_buffer_type_cpu(true);
|
||||
model.buft_layer[i] = llama_default_buffer_type_cpu(model, true);
|
||||
}
|
||||
|
||||
if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
|
||||
|
@ -6965,7 +7025,7 @@ static bool llm_load_tensors(
|
|||
int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
|
||||
model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
|
||||
} else {
|
||||
model.buft_output = llama_default_buffer_type_cpu(true);
|
||||
model.buft_output = llama_default_buffer_type_cpu(model, true);
|
||||
}
|
||||
} else {
|
||||
ggml_backend_buffer_type_t split_buft;
|
||||
|
@ -6989,7 +7049,7 @@ static bool llm_load_tensors(
|
|||
llama_default_buffer_type_offload(model, main_gpu)
|
||||
};
|
||||
} else {
|
||||
model.buft_output = llama_default_buffer_type_cpu(true);
|
||||
model.buft_output = llama_default_buffer_type_cpu(model, true);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -8861,7 +8921,7 @@ static bool llm_load_tensors(
|
|||
// only the mmap region containing the tensors in the model is mapped to the backend buffer
|
||||
// this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
|
||||
// this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
|
||||
if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
|
||||
if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(model, true)) {
|
||||
for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
|
||||
void * addr = nullptr;
|
||||
size_t first, last;
|
||||
|
@ -8875,13 +8935,6 @@ static bool llm_load_tensors(
|
|||
}
|
||||
model.bufs.push_back(buf);
|
||||
bufs.emplace(idx, buf);
|
||||
#ifdef GGML_USE_CUDA
|
||||
if (n_layer >= n_gpu_layers) {
|
||||
ggml_backend_cuda_register_host_buffer(
|
||||
ggml_backend_buffer_get_base(buf),
|
||||
ggml_backend_buffer_get_size(buf));
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#ifdef GGML_USE_METAL
|
||||
|
@ -16945,7 +16998,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
|
|||
lctx.embd = nullptr;
|
||||
}
|
||||
|
||||
lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
|
||||
lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(lctx.model, true), new_size);
|
||||
if (lctx.buf_output == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
|
||||
return 0;
|
||||
|
@ -18976,21 +19029,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
|||
}
|
||||
|
||||
size_t llama_max_devices(void) {
|
||||
#if defined(GGML_USE_RPC)
|
||||
return GGML_RPC_MAX_SERVERS;
|
||||
#elif defined(GGML_USE_METAL)
|
||||
return 1;
|
||||
#elif defined(GGML_USE_CUDA)
|
||||
return GGML_CUDA_MAX_DEVICES;
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
return GGML_SYCL_MAX_DEVICES;
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
return GGML_VK_MAX_DEVICES;
|
||||
#elif defined(GGML_USE_CANN)
|
||||
return GGML_CANN_MAX_DEVICES;
|
||||
#else
|
||||
return 1;
|
||||
#endif
|
||||
return 16;
|
||||
}
|
||||
|
||||
bool llama_supports_mmap(void) {
|
||||
|
@ -19002,12 +19041,13 @@ bool llama_supports_mlock(void) {
|
|||
}
|
||||
|
||||
bool llama_supports_gpu_offload(void) {
|
||||
#if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
|
||||
#if defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
|
||||
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
return ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU) != nullptr ||
|
||||
ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU_FULL) != nullptr;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -19072,17 +19112,30 @@ struct llama_model * llama_load_model_from_file(
|
|||
return true;
|
||||
};
|
||||
}
|
||||
|
||||
if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
|
||||
// split the servers set them into model->rpc_servers
|
||||
std::string servers(params.rpc_servers);
|
||||
size_t pos = 0;
|
||||
while ((pos = servers.find(",")) != std::string::npos) {
|
||||
while ((pos = servers.find(',')) != std::string::npos) {
|
||||
std::string server = servers.substr(0, pos);
|
||||
model->rpc_servers.push_back(server);
|
||||
servers.erase(0, pos + 1);
|
||||
}
|
||||
model->rpc_servers.push_back(servers);
|
||||
}
|
||||
|
||||
// create list of devices to use with this model
|
||||
// currently, we use all available devices
|
||||
// TODO: rework API to give user more control over device selection
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
// skip the CPU backend since it is handled separately
|
||||
if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU_FULL) {
|
||||
model->devices.push_back(dev);
|
||||
}
|
||||
}
|
||||
|
||||
int status = llama_model_load(path_model, *model, params);
|
||||
GGML_ASSERT(status <= 0);
|
||||
if (status < 0) {
|
||||
|
@ -19244,6 +19297,36 @@ struct llama_context * llama_new_context_with_model(
|
|||
|
||||
if (!hparams.vocab_only) {
|
||||
// initialize backends
|
||||
int main_gpu = model->main_gpu;
|
||||
|
||||
// with registry
|
||||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||
if (main_gpu >= 0 && main_gpu < (int)model->devices.size()) {
|
||||
ggml_backend_dev_t main_dev = model->devices[main_gpu];
|
||||
ggml_backend_t backend = ggml_backend_dev_init(main_dev, nullptr);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(main_dev));
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
ctx->backends.push_back(backend);
|
||||
}
|
||||
} else {
|
||||
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
|
||||
for (auto * dev : model->devices) {
|
||||
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize %s backend\n", __func__, ggml_backend_dev_name(dev));
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
ctx->backends.push_back(backend);
|
||||
}
|
||||
}
|
||||
if (main_gpu >= (int)model->devices.size()) {
|
||||
main_gpu -= (int)model->devices.size();
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_RPC)
|
||||
if (model->n_gpu_layers > 0) {
|
||||
for (const auto & endpoint : model->rpc_servers) {
|
||||
|
@ -19256,6 +19339,9 @@ struct llama_context * llama_new_context_with_model(
|
|||
ctx->backends.push_back(backend);
|
||||
}
|
||||
}
|
||||
if (main_gpu >= (int)model->rpc_servers.size()) {
|
||||
main_gpu -= (int)model->rpc_servers.size();
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(GGML_USE_METAL)
|
||||
|
@ -19268,28 +19354,6 @@ struct llama_context * llama_new_context_with_model(
|
|||
}
|
||||
ctx->backends.push_back(ctx->backend_metal);
|
||||
}
|
||||
#elif defined(GGML_USE_CUDA)
|
||||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
||||
ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
ctx->backends.push_back(backend);
|
||||
} else {
|
||||
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
|
||||
for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
|
||||
ggml_backend_t backend = ggml_backend_cuda_init(device);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
ctx->backends.push_back(backend);
|
||||
}
|
||||
}
|
||||
#elif defined(GGML_USE_VULKAN)
|
||||
if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||
LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
|
||||
|
@ -19297,7 +19361,7 @@ struct llama_context * llama_new_context_with_model(
|
|||
return nullptr;
|
||||
}
|
||||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
|
||||
ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
|
||||
ggml_backend_t backend = ggml_backend_vk_init(main_gpu);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
|
||||
llama_free(ctx);
|
||||
|
@ -19318,9 +19382,9 @@ struct llama_context * llama_new_context_with_model(
|
|||
#elif defined(GGML_USE_SYCL)
|
||||
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
||||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||
ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
|
||||
ggml_backend_t backend = ggml_backend_sycl_init(main_gpu);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, main_gpu);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
@ -19339,7 +19403,7 @@ struct llama_context * llama_new_context_with_model(
|
|||
}
|
||||
#elif defined(GGML_USE_KOMPUTE)
|
||||
if (model->n_gpu_layers > 0) {
|
||||
auto * backend = ggml_backend_kompute_init(model->main_gpu);
|
||||
auto * backend = ggml_backend_kompute_init(main_gpu);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
|
||||
llama_free(ctx);
|
||||
|
@ -19348,29 +19412,29 @@ struct llama_context * llama_new_context_with_model(
|
|||
ctx->backends.push_back(backend);
|
||||
}
|
||||
#elif defined(GGML_USE_CANN)
|
||||
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
||||
// TODO: ggml_backend_cann is not support split tensor now, just leave code here.
|
||||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||
ggml_backend_t backend = ggml_backend_cann_init(model->main_gpu);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, model->main_gpu);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
ctx->backends.push_back(backend);
|
||||
} else {
|
||||
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
|
||||
// TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
|
||||
for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
|
||||
ggml_backend_t backend = ggml_backend_cann_init(device);
|
||||
// with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
|
||||
// TODO: ggml_backend_cann is not support split tensor now, just leave code here.
|
||||
if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
|
||||
ggml_backend_t backend = ggml_backend_cann_init(main_gpu);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, main_gpu);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
ctx->backends.push_back(backend);
|
||||
} else {
|
||||
// LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
|
||||
// TODO: currently, CANN can't use multi-gpus, just leave code here for further cann version.
|
||||
for (int32_t device = 0; device < ggml_backend_cann_get_device_count(); ++device) {
|
||||
ggml_backend_t backend = ggml_backend_cann_init(device);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize CANN%d backend\n", __func__, device);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
ctx->backends.push_back(backend);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_BLAS
|
||||
|
@ -19435,7 +19499,7 @@ struct llama_context * llama_new_context_with_model(
|
|||
for (auto * backend : ctx->backends) {
|
||||
if (ggml_backend_is_cpu(backend)) {
|
||||
// use host buffers for the CPU backend compute buffer
|
||||
backend_buft.push_back(llama_default_buffer_type_cpu(true));
|
||||
backend_buft.push_back(llama_default_buffer_type_cpu(*model, true));
|
||||
} else {
|
||||
backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
|
||||
}
|
||||
|
@ -19446,17 +19510,37 @@ struct llama_context * llama_new_context_with_model(
|
|||
// buffer used to store the computation graph and the tensor meta data
|
||||
ctx->buf_compute_meta.resize(ggml_tensor_overhead()*max_nodes + ggml_graph_overhead_custom(max_nodes, false));
|
||||
|
||||
// TODO: move these checks to ggml_backend_sched
|
||||
// enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
|
||||
bool pipeline_parallel =
|
||||
llama_get_device_count(*model) > 1 &&
|
||||
model->n_gpu_layers > (int)model->hparams.n_layer &&
|
||||
model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
|
||||
params.offload_kqv;
|
||||
#ifndef GGML_USE_CUDA
|
||||
// pipeline parallelism requires support for async compute and events
|
||||
// currently this is only implemented in the CUDA backend
|
||||
pipeline_parallel = false;
|
||||
#endif
|
||||
|
||||
// pipeline parallelism requires support for async compute and events in all devices
|
||||
if (pipeline_parallel) {
|
||||
for (auto * backend : ctx->backends) {
|
||||
if (ggml_backend_is_cpu(backend)) {
|
||||
// ignore CPU backend
|
||||
continue;
|
||||
}
|
||||
auto * dev = ggml_backend_get_device(backend);
|
||||
if (!dev) {
|
||||
// backend is using old interface, not supported
|
||||
pipeline_parallel = false;
|
||||
break;
|
||||
}
|
||||
ggml_backend_dev_props props;
|
||||
ggml_backend_dev_get_props(dev, &props);
|
||||
if (!props.caps.async || !props.caps.events) {
|
||||
// device does not support async compute or events
|
||||
pipeline_parallel = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), max_nodes, pipeline_parallel);
|
||||
|
||||
if (pipeline_parallel) {
|
||||
|
|
|
@ -7,7 +7,7 @@
|
|||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
const std::vector<std::pair<uint32_t, uint16_t>> unicode_ranges_flags = { // start, flags // last=next_start-1
|
||||
const std::initializer_list<std::pair<uint32_t, uint16_t>> unicode_ranges_flags = { // start, flags // last=next_start-1
|
||||
{0x000000, 0x0080},
|
||||
{0x000020, 0x0008},
|
||||
{0x000021, 0x0020},
|
||||
|
@ -2311,7 +2311,8 @@ const std::unordered_set<uint32_t> unicode_set_whitespace = {
|
|||
0x003000,
|
||||
};
|
||||
|
||||
const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase = {
|
||||
// list is always in ascending order, to enable binary searh
|
||||
const std::initializer_list<std::pair<uint32_t, uint32_t>> unicode_map_lowercase = {
|
||||
{0x000041, 0x000061},
|
||||
{0x000042, 0x000062},
|
||||
{0x000043, 0x000063},
|
||||
|
@ -3747,7 +3748,8 @@ const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase = {
|
|||
{0x01E921, 0x01E943},
|
||||
};
|
||||
|
||||
const std::unordered_map<uint32_t, uint32_t> unicode_map_uppercase = {
|
||||
// list is always in ascending order, to enable binary searh
|
||||
const std::initializer_list<std::pair<uint32_t, uint32_t>> unicode_map_uppercase = {
|
||||
{0x000061, 0x000041},
|
||||
{0x000062, 0x000042},
|
||||
{0x000063, 0x000043},
|
||||
|
@ -5200,7 +5202,7 @@ const std::unordered_map<uint32_t, uint32_t> unicode_map_uppercase = {
|
|||
{0x01E943, 0x01E921},
|
||||
};
|
||||
|
||||
const std::vector<range_nfd> unicode_ranges_nfd = { // start, last, nfd
|
||||
const std::initializer_list<range_nfd> unicode_ranges_nfd = { // start, last, nfd
|
||||
{0x000000, 0x000000, 0x000000},
|
||||
{0x0000C0, 0x0000C5, 0x000041},
|
||||
{0x0000C7, 0x0000C7, 0x000043},
|
||||
|
|
|
@ -13,8 +13,8 @@ struct range_nfd {
|
|||
|
||||
static const uint32_t MAX_CODEPOINTS = 0x110000;
|
||||
|
||||
extern const std::vector<std::pair<uint32_t, uint16_t>> unicode_ranges_flags;
|
||||
extern const std::initializer_list<std::pair<uint32_t, uint16_t>> unicode_ranges_flags;
|
||||
extern const std::unordered_set<uint32_t> unicode_set_whitespace;
|
||||
extern const std::unordered_map<uint32_t, uint32_t> unicode_map_lowercase;
|
||||
extern const std::unordered_map<uint32_t, uint32_t> unicode_map_uppercase;
|
||||
extern const std::vector<range_nfd> unicode_ranges_nfd;
|
||||
extern const std::initializer_list<std::pair<uint32_t, uint32_t>> unicode_map_lowercase;
|
||||
extern const std::initializer_list<std::pair<uint32_t, uint32_t>> unicode_map_uppercase;
|
||||
extern const std::initializer_list<range_nfd> unicode_ranges_nfd;
|
||||
|
|
|
@ -123,11 +123,11 @@ uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) {
|
|||
static std::vector<codepoint_flags> unicode_cpt_flags_array() {
|
||||
std::vector<codepoint_flags> cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED);
|
||||
|
||||
assert (unicode_ranges_flags.front().first == 0);
|
||||
assert (unicode_ranges_flags.back().first == MAX_CODEPOINTS);
|
||||
assert (unicode_ranges_flags.begin()[0].first == 0);
|
||||
assert (unicode_ranges_flags.begin()[unicode_ranges_flags.size()-1].first == MAX_CODEPOINTS);
|
||||
for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) {
|
||||
const auto range_ini = unicode_ranges_flags[i-1]; // codepoint_ini, flags
|
||||
const auto range_end = unicode_ranges_flags[i]; // codepoint_end, flags
|
||||
const auto range_ini = unicode_ranges_flags.begin()[i-1]; // codepoint_ini, flags
|
||||
const auto range_end = unicode_ranges_flags.begin()[i]; // codepoint_end, flags
|
||||
for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) {
|
||||
cpt_flags[cpt] = range_ini.second;
|
||||
}
|
||||
|
@ -597,7 +597,7 @@ std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & c
|
|||
std::vector<uint32_t> result(cpts.size());
|
||||
for (size_t i = 0; i < cpts.size(); ++i) {
|
||||
const uint32_t cpt = cpts[i];
|
||||
auto it = std::upper_bound(unicode_ranges_nfd.cbegin(), unicode_ranges_nfd.cend(), cpt, comp) - 1;
|
||||
auto it = std::upper_bound(unicode_ranges_nfd.begin(), unicode_ranges_nfd.end(), cpt, comp) - 1;
|
||||
result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt;
|
||||
}
|
||||
return result;
|
||||
|
@ -639,8 +639,15 @@ uint8_t unicode_utf8_to_byte(const std::string & utf8) {
|
|||
}
|
||||
|
||||
uint32_t unicode_tolower(uint32_t cp) {
|
||||
auto it = unicode_map_lowercase.find(cp);
|
||||
return it == unicode_map_lowercase.end() ? cp : it->second;
|
||||
// binary search
|
||||
auto it = std::lower_bound(unicode_map_lowercase.begin(), unicode_map_lowercase.end(), cp,
|
||||
[](const std::pair<uint32_t, uint32_t> & pair, uint32_t value) {
|
||||
return pair.first < value;
|
||||
});
|
||||
if (it != unicode_map_lowercase.end() && it->first == cp) {
|
||||
return it->second;
|
||||
}
|
||||
return cp; // Return the original code point if no lowercase mapping is found
|
||||
}
|
||||
|
||||
std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) {
|
||||
|
|
|
@ -672,14 +672,11 @@ struct test_case {
|
|||
}
|
||||
|
||||
// run
|
||||
ggml_backend_synchronize(backend);
|
||||
|
||||
int64_t total_time_us = 0;
|
||||
int total_runs = 0;
|
||||
do {
|
||||
int64_t start_time = ggml_time_us();
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
ggml_backend_synchronize(backend);
|
||||
int64_t end_time = ggml_time_us();
|
||||
|
||||
total_time_us += end_time - start_time;
|
||||
|
@ -3723,20 +3720,22 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// enumerate backends
|
||||
printf("Testing %zu backends\n\n", ggml_backend_reg_get_count());
|
||||
printf("Testing %zu devices\n\n", ggml_backend_dev_count());
|
||||
|
||||
size_t n_ok = 0;
|
||||
|
||||
for (size_t i = 0; i < ggml_backend_reg_get_count(); i++) {
|
||||
printf("Backend %zu/%zu (%s)\n", i + 1, ggml_backend_reg_get_count(), ggml_backend_reg_get_name(i));
|
||||
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
|
||||
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
|
||||
|
||||
if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_reg_get_name(i)) != 0) {
|
||||
printf("Backend %zu/%zu: %s\n", i + 1, ggml_backend_dev_count(), ggml_backend_dev_name(dev));
|
||||
|
||||
if (backend_filter != NULL && strcmp(backend_filter, ggml_backend_dev_name(dev)) != 0) {
|
||||
printf(" Skipping\n");
|
||||
n_ok++;
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_backend_t backend = ggml_backend_reg_init_backend(i, NULL);
|
||||
ggml_backend_t backend = ggml_backend_dev_init(dev, NULL);
|
||||
GGML_ASSERT(backend != NULL);
|
||||
|
||||
if (backend_filter == NULL && ggml_backend_is_cpu(backend) && mode != MODE_GRAD) {
|
||||
|
@ -3751,7 +3750,11 @@ int main(int argc, char ** argv) {
|
|||
ggml_backend_cpu_set_n_threads(backend, std::thread::hardware_concurrency() / 2);
|
||||
}
|
||||
|
||||
printf(" Backend name: %s\n", ggml_backend_name(backend));
|
||||
printf(" Device description: %s\n", ggml_backend_dev_description(dev));
|
||||
size_t free, total; // NOLINT
|
||||
ggml_backend_dev_memory(dev, &free, &total);
|
||||
printf(" Device memory: %zu MB (%zu MB free)\n", total / 1024 / 1024, free / 1024 / 1024);
|
||||
printf("\n");
|
||||
|
||||
bool ok = test_backend(backend, mode, op_name_filter);
|
||||
|
||||
|
@ -3768,9 +3771,9 @@ int main(int argc, char ** argv) {
|
|||
ggml_backend_free(backend);
|
||||
}
|
||||
|
||||
printf("%zu/%zu backends passed\n", n_ok, ggml_backend_reg_get_count());
|
||||
printf("%zu/%zu backends passed\n", n_ok, ggml_backend_dev_count());
|
||||
|
||||
if (n_ok != ggml_backend_reg_get_count()) {
|
||||
if (n_ok != ggml_backend_dev_count()) {
|
||||
printf("\033[1;31mFAIL\033[0m\n");
|
||||
return 1;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue