bert : simplify token type embedding access

This commit is contained in:
Jared Van Bortel 2024-02-09 13:44:32 -05:00
parent 56afb2f60e
commit ab49e9ee45
2 changed files with 7 additions and 12 deletions

View file

@ -1705,7 +1705,10 @@ class BertModel(Model):
n_dims = len(data.shape)
new_dtype: type[np.floating[Any]]
if self.ftype == 1 and name.endswith(".weight") and n_dims == 2:
if (
self.ftype == 1 and name.endswith(".weight") and n_dims == 2
and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
):
# if f16 desired, convert any float32 2-dim weight tensors to float16
new_dtype = np.float16
else:

View file

@ -1881,7 +1881,6 @@ struct llama_context {
struct ggml_tensor * inp_tokens; // I32 [n_batch]
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
struct ggml_tensor * inp_pos; // I32 [n_batch]
struct ggml_tensor * inp_type; // I32 [n_batch]
struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch]
struct ggml_tensor * inp_K_shift; // I32 [n_ctx]
struct ggml_tensor * inp_sum; // F32 [1, n_batch]
@ -5746,13 +5745,14 @@ struct llm_build_context {
struct ggml_tensor * inpL;
// get input vectors with right size
struct ggml_tensor * inp_type = ggml_view_1d(ctx0, lctx.inp_type, n_tokens, 0);
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
struct ggml_tensor * inp_sum = ggml_view_1d(ctx0, lctx.inp_sum, n_tokens, 0);
// construct input embeddings (token, type, position)
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.type_embd, inp_type), inpL);
// token types are hardcoded to zero ("Sentence A")
struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
inpL = ggml_add(ctx0, inpL, type_row0);
inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
cb(inpL, "inp_embd", -1);
@ -7249,12 +7249,6 @@ static struct ggml_cgraph * llama_build_graph(
ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
}
{
// for embedding models, token type is always zero ("sentence A")
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_type->buffer));
memset(lctx.inp_type->data, 0, batch.n_tokens * ggml_element_size(lctx.inp_type));
}
{
const int64_t n_kv = llm.n_kv;
const int64_t n_tokens = batch.n_tokens;
@ -11240,7 +11234,6 @@ struct llama_context * llama_new_context_with_model(
ctx->inp_tokens = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch);
ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
ctx->inp_type = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch);
ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx);
ctx->inp_sum = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, 1, cparams.n_batch);
@ -11248,7 +11241,6 @@ struct llama_context * llama_new_context_with_model(
ggml_set_name(ctx->inp_tokens, "inp_tokens");
ggml_set_name(ctx->inp_embd, "inp_embd");
ggml_set_name(ctx->inp_pos, "inp_pos");
ggml_set_name(ctx->inp_type, "inp_type");
ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask");
ggml_set_name(ctx->inp_K_shift, "inp_K_shift");
ggml_set_name(ctx->inp_sum, "inp_sum");