Merge branch 'master' into localised-metal-graph-setup-logic

This commit is contained in:
Paul Tsochantaris 2024-01-14 14:32:22 +00:00
commit b95842ae4e
13 changed files with 1704 additions and 142 deletions

View file

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.13) # for add_link_options
cmake_minimum_required(VERSION 3.14) # for add_link_options and implicit target directories.
project("llama.cpp" C CXX)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
@ -76,6 +76,10 @@ if (NOT MSVC)
option(LLAMA_F16C "llama: enable F16C" ${INS_ENB})
endif()
if (WIN32)
option(LLAMA_WIN_VER "llama: Windows Version" 0x602)
endif()
# 3rd party libs
option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON)
option(LLAMA_BLAS "llama: use BLAS" OFF)
@ -686,7 +690,7 @@ endif()
if (MINGW)
# Target Windows 8 for PrefetchVirtualMemory
add_compile_definitions(_WIN32_WINNT=0x602)
add_compile_definitions(_WIN32_WINNT=${LLAMA_WIN_VER})
endif()
#

View file

@ -194,7 +194,7 @@ int main(int argc, char ** argv) {
// Set up a the benchmark matrices
// printf("Creating new tensor q11 & Running quantize\n");
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements, hist_cur.data());
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], hist_cur.data(), nullptr);
// Set up a the compute graph
// printf("Creating new tensor q31\n");
@ -207,7 +207,7 @@ int main(int argc, char ** argv) {
// Set up a second graph computation to make sure we override the CPU cache lines
// printf("Creating new tensor q12 & Running quantize\n");
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements, hist_cur.data());
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], hist_cur.data(), nullptr);
// printf("Creating new tensor q32\n");
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);

View file

@ -5,6 +5,10 @@
#include <cstring>
#include <vector>
#include <string>
#include <unordered_map>
#include <fstream>
#include <cmath>
#include <algorithm>
struct quant_option {
std::string name;
@ -17,6 +21,8 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
{ "Q4_1", LLAMA_FTYPE_MOSTLY_Q4_1, " 3.90G, +0.1585 ppl @ LLaMA-v1-7B", },
{ "Q5_0", LLAMA_FTYPE_MOSTLY_Q5_0, " 4.33G, +0.0683 ppl @ LLaMA-v1-7B", },
{ "Q5_1", LLAMA_FTYPE_MOSTLY_Q5_1, " 4.70G, +0.0349 ppl @ LLaMA-v1-7B", },
{ "IQ2_XXS",LLAMA_FTYPE_MOSTLY_IQ2_XXS," 2.06 bpw quantization", },
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
@ -72,10 +78,14 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
//
[[noreturn]]
static void usage(const char * executable) {
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
printf("\nAllowed quantization types:\n");
for (auto & it : QUANT_OPTIONS) {
if (it.name != "COPY") {
@ -83,11 +93,93 @@ static void usage(const char * executable) {
} else {
printf(" ");
}
printf("%-6s : %s\n", it.name.c_str(), it.desc.c_str());
printf("%-7s : %s\n", it.name.c_str(), it.desc.c_str());
}
exit(1);
}
static void load_imatrix(const std::string& imatrix_file, std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
std::ifstream in(imatrix_file.c_str(), std::ios::binary);
if (!in) {
printf("%s: failed to open %s\n",__func__,imatrix_file.c_str());
return;
}
int n_entries;
in.read((char*)&n_entries, sizeof(n_entries));
if (in.fail() || n_entries < 1) {
printf("%s: no data in file %s\n", __func__, imatrix_file.c_str());
return;
}
for (int i = 0; i < n_entries; ++i) {
int len; in.read((char *)&len, sizeof(len));
std::vector<char> name_as_vec(len+1);
in.read((char *)name_as_vec.data(), len);
if (in.fail()) {
printf("%s: failed reading name for entry %d from %s\n",__func__,i+1,imatrix_file.c_str());
return;
}
name_as_vec[len] = 0;
std::string name{name_as_vec.data()};
auto& e = imatrix_data[std::move(name)];
int ncall;
in.read((char*)&ncall, sizeof(ncall));
int nval;
in.read((char *)&nval, sizeof(nval));
if (in.fail() || nval < 1) {
printf("%s: failed reading number of values for entry %d\n",__func__,i);
imatrix_data = {};
return;
}
e.resize(nval);
in.read((char*)e.data(), nval*sizeof(float));
if (in.fail()) {
printf("%s: failed reading data for entry %d\n",__func__,i);
imatrix_data = {};
return;
}
if (ncall > 0) {
for (auto& v : e) v /= ncall;
}
}
printf("%s: loaded %d importance matrix entries from %s\n",__func__,int(imatrix_data.size()),imatrix_file.c_str());
}
static void prepare_imatrix(const std::string& imatrix_file,
const std::vector<std::string>& included_weights,
const std::vector<std::string>& excluded_weights,
std::unordered_map<std::string, std::vector<float>>& imatrix_data) {
if (!imatrix_file.empty()) {
load_imatrix(imatrix_file, imatrix_data);
}
if (imatrix_data.empty()) {
return;
}
if (!excluded_weights.empty()) {
for (auto& name : excluded_weights) {
for (auto it = imatrix_data.begin(); it != imatrix_data.end(); ) {
auto pos = it->first.find(name);
if (pos != std::string::npos) it = imatrix_data.erase(it);
else ++it;
}
}
}
if (!included_weights.empty()) {
std::unordered_map<std::string, std::vector<float>> tmp;
for (auto& name : included_weights) {
for (auto& e : imatrix_data) {
auto pos = e.first.find(name);
if (pos != std::string::npos) {
tmp.emplace(std::move(e));
}
}
}
imatrix_data = std::move(tmp);
}
if (!imatrix_data.empty()) {
printf("%s: have %d importance matrix entries\n", __func__, int(imatrix_data.size()));
}
}
int main(int argc, char ** argv) {
if (argc < 3) {
usage(argv[0]);
@ -96,6 +188,8 @@ int main(int argc, char ** argv) {
llama_model_quantize_params params = llama_model_quantize_default_params();
int arg_idx = 1;
std::string imatrix_file;
std::vector<std::string> included_weights, excluded_weights;
for (; arg_idx < argc && strncmp(argv[arg_idx], "--", 2) == 0; arg_idx++) {
if (strcmp(argv[arg_idx], "--leave-output-tensor") == 0) {
@ -104,14 +198,42 @@ int main(int argc, char ** argv) {
params.allow_requantize = true;
} else if (strcmp(argv[arg_idx], "--pure") == 0) {
params.pure = true;
} else if (strcmp(argv[arg_idx], "--imatrix") == 0) {
if (arg_idx < argc-1) {
imatrix_file = argv[++arg_idx];
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--include-weights") == 0) {
if (arg_idx < argc-1) {
included_weights.push_back(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--exclude-weights") == 0) {
if (arg_idx < argc-1) {
excluded_weights.push_back(argv[++arg_idx]);
} else {
usage(argv[0]);
}
} else {
usage(argv[0]);
}
}
if (argc - arg_idx < 2) {
printf("%s: bad arguments\n", argv[0]);
usage(argv[0]);
}
if (!included_weights.empty() && !excluded_weights.empty()) {
usage(argv[0]);
}
std::unordered_map<std::string, std::vector<float>> imatrix_data;
prepare_imatrix(imatrix_file, included_weights, excluded_weights, imatrix_data);
if (!imatrix_data.empty()) {
params.imatrix = &imatrix_data;
}
llama_backend_init(false);
@ -163,6 +285,13 @@ int main(int argc, char ** argv) {
}
}
if ((params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || params.ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || params.ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) && imatrix_data.empty()) {
fprintf(stderr, "\n===============================================================================================\n");
fprintf(stderr, "Please do not use IQ2_XXS, IQ2_XS or Q2_K_S quantization without an importance matrix\n");
fprintf(stderr, "===============================================================================================\n\n\n");
return 1;
}
print_build_info();
fprintf(stderr, "%s: quantizing '%s' to '%s' as %s", __func__, fname_inp.c_str(), fname_out.c_str(), ftype_str.c_str());

View file

@ -327,7 +327,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
}
}
#if TARGET_OS_OSX
// print MTL GPU family:
GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]);
@ -367,6 +366,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
GGML_METAL_LOG_INFO("%s: simdgroup reduction support = %s\n", __func__, ctx->support_simdgroup_reduction ? "true" : "false");
GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false");
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
#if TARGET_OS_OSX
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
if (ctx->device.maxTransferRate != 0) {
GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6);

File diff suppressed because it is too large Load diff

View file

@ -196,8 +196,6 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
void quantize_row_iq2_xxs_reference(const float * restrict x, block_iq2_xxs * restrict y, int k);
void quantize_row_iq2_xs_reference (const float * restrict x, block_iq2_xs * restrict y, int k);
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
@ -212,8 +210,6 @@ void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
void quantize_row_iq2_xxs(const float * restrict x, void * restrict y, int k);
void quantize_row_iq2_xs (const float * restrict x, void * restrict y, int k);
// Dequantization
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
@ -246,3 +242,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx,
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict vx, const void * restrict vy);
//
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
//
size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q5_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
size_t quantize_q6_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);

64
ggml.c
View file

@ -585,8 +585,8 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.type_size = sizeof(block_iq2_xxs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
.from_float = quantize_row_iq2_xxs,
.from_float_reference = (ggml_from_float_t) quantize_row_iq2_xxs_reference,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
@ -596,8 +596,8 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
.type_size = sizeof(block_iq2_xs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
.from_float = quantize_row_iq2_xs,
.from_float_reference = (ggml_from_float_t) quantize_row_iq2_xs_reference,
.from_float = NULL,
.from_float_reference = NULL,
.vec_dot = ggml_vec_dot_iq2_xs_q8_K,
.vec_dot_type = GGML_TYPE_Q8_K,
},
@ -18665,8 +18665,11 @@ size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t *
return (n/QK8_0*sizeof(block_q8_0));
}
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
(void)imatrix;
size_t result = 0;
int n = nrows * n_per_row;
switch (type) {
case GGML_TYPE_Q4_0:
{
@ -18701,44 +18704,67 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
case GGML_TYPE_Q2_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q2_K * block = (block_q2_K*)dst + start / QK_K;
result = ggml_quantize_q2_K(src + start, block, n, n, hist);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q3_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q3_K * block = (block_q3_K*)dst + start / QK_K;
result = ggml_quantize_q3_K(src + start, block, n, n, hist);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q4_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q4_K * block = (block_q4_K*)dst + start / QK_K;
result = ggml_quantize_q4_K(src + start, block, n, n, hist);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q5_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q5_K * block = (block_q5_K*)dst + start / QK_K;
result = ggml_quantize_q5_K(src + start, block, n, n, hist);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_Q6_K:
{
GGML_ASSERT(start % QK_K == 0);
block_q6_K * block = (block_q6_K*)dst + start / QK_K;
result = ggml_quantize_q6_K(src + start, block, n, n, hist);
GGML_ASSERT(start % n_per_row == 0);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_IQ2_XXS:
{
GGML_ASSERT(start % QK_K == 0);
block_iq2_xxs * block = (block_iq2_xxs*)dst + start / QK_K;
result = ggml_quantize_iq2_xxs(src + start, block, n, n, hist);
GGML_ASSERT(start % n_per_row == 0);
GGML_ASSERT(imatrix);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_IQ2_XS:
{
GGML_ASSERT(start % QK_K == 0);
block_iq2_xs * block = (block_iq2_xs*)dst + start / QK_K;
result = ggml_quantize_iq2_xs(src + start, block, n, n, hist);
GGML_ASSERT(start % n_per_row == 0);
GGML_ASSERT(imatrix);
size_t start_row = start / n_per_row;
size_t row_size = ggml_row_size(type, n_per_row);
result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
GGML_ASSERT(result == row_size * nrows);
} break;
case GGML_TYPE_F16:
{

9
ggml.h
View file

@ -2067,10 +2067,13 @@ extern "C" {
GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_iq2_xxs(const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_iq2_xs (const float * src, void * dst, int n, int k, int64_t * hist);
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst,
int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
// These are needed for IQ2_XS and IQ2_XXS quantizations
GGML_API void ggml_init_iq2_quantization(enum ggml_type type);
GGML_API void ggml_deinit_iq2_quantization(enum ggml_type type);
//
// Importance matrix

199
llama.cpp
View file

@ -987,6 +987,7 @@ struct llama_mmap {
}
if (prefetch > 0) {
#if _WIN32_WINNT >= 0x602
// PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
@ -1004,6 +1005,9 @@ struct llama_mmap {
llama_format_win_err(GetLastError()).c_str());
}
}
#else
throw std::runtime_error("PrefetchVirtualMemory unavailable");
#endif
}
}
@ -1110,7 +1114,7 @@ struct llama_mlock {
suggest = false;
}
fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
return false;
}
@ -1119,7 +1123,7 @@ struct llama_mlock {
static void raw_unlock(void * addr, size_t size) {
if (munlock(addr, size)) {
fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
}
}
#elif defined(_WIN32)
@ -1137,7 +1141,7 @@ struct llama_mlock {
return true;
}
if (tries == 2) {
fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
len, size, llama_format_win_err(GetLastError()).c_str());
return false;
}
@ -1146,7 +1150,7 @@ struct llama_mlock {
// set size and try again.
SIZE_T min_ws_size, max_ws_size;
if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
@ -1159,7 +1163,7 @@ struct llama_mlock {
min_ws_size += increment;
max_ws_size += increment;
if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
llama_format_win_err(GetLastError()).c_str());
return false;
}
@ -1168,7 +1172,7 @@ struct llama_mlock {
static void raw_unlock(void * ptr, size_t len) {
if (!VirtualUnlock(ptr, len)) {
fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
llama_format_win_err(GetLastError()).c_str());
}
}
@ -1180,7 +1184,7 @@ struct llama_mlock {
}
bool raw_lock(const void * addr, size_t len) const {
fprintf(stderr, "warning: mlock not supported on this system\n");
LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
return false;
}
@ -2081,13 +2085,13 @@ namespace GGUFMeta {
__func__, override_type_to_str(override->tag), override->key);
switch (override->tag) {
case LLAMA_KV_OVERRIDE_BOOL: {
printf("%s\n", override->bool_value ? "true" : "false");
LLAMA_LOG_INFO("%s\n", override->bool_value ? "true" : "false");
} break;
case LLAMA_KV_OVERRIDE_INT: {
printf("%" PRId64 "\n", override->int_value);
LLAMA_LOG_INFO("%" PRId64 "\n", override->int_value);
} break;
case LLAMA_KV_OVERRIDE_FLOAT: {
printf("%.6f\n", override->float_value);
LLAMA_LOG_INFO("%.6f\n", override->float_value);
} break;
default:
// Shouldn't be possible to end up here, but just in case...
@ -2186,6 +2190,11 @@ struct llama_model_loader {
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") {
int trace = 0;
if (getenv("LLAMA_TRACE")) {
trace = atoi(getenv("LLAMA_TRACE"));
}
struct gguf_init_params params = {
/*.no_alloc = */ true,
/*.ctx = */ &ctx_meta,
@ -2238,11 +2247,10 @@ struct llama_model_loader {
type_max = type;
}
// TODO: make runtime configurable
#if 0
struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str());
#endif
if (trace > 0) {
struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str());
}
}
switch (type_max) {
@ -6447,15 +6455,15 @@ static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
static const char * hex = "0123456789ABCDEF";
switch (llama_vocab_get_type(vocab)) {
case LLAMA_VOCAB_TYPE_SPM: {
const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
return vocab.token_to_id.at(buf);
}
case LLAMA_VOCAB_TYPE_BPE: {
return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
}
default:
GGML_ASSERT(false);
case LLAMA_VOCAB_TYPE_SPM: {
const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
return vocab.token_to_id.at(buf);
}
case LLAMA_VOCAB_TYPE_BPE: {
return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
}
default:
GGML_ASSERT(false);
}
}
@ -6989,7 +6997,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
#ifdef PRETOKENIZERDEBUG
fprintf(stderr, "FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
auto source = std::distance(buffer.begin(), it);
@ -7002,7 +7010,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
#ifdef PRETOKENIZERDEBUG
fprintf(stderr, "FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
#endif
it++;
}
@ -7018,7 +7026,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
#ifdef PRETOKENIZERDEBUG
fprintf(stderr, "FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
#endif
it++;
@ -7034,7 +7042,7 @@ static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<
raw_text_base_length = right_reminder_length;
#ifdef PRETOKENIZERDEBUG
fprintf(stderr, "RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
#endif
} else {
if (source == 0) {
@ -7091,7 +7099,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
}
#ifdef PRETOKENIZERDEBUG
fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
llm_tokenizer_spm tokenizer(vocab);
llama_escape_whitespace(raw_text);
@ -7112,7 +7120,7 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
#ifdef PRETOKENIZERDEBUG
fprintf(stderr,"TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
LLAMA_LOG_WARN(TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
#endif
llm_tokenizer_bpe tokenizer(vocab);
tokenizer.tokenize(raw_text, output);
@ -8429,9 +8437,23 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
new_type = GGML_TYPE_Q8_0;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
new_type = GGML_TYPE_Q5_K;
}
else if (new_type != GGML_TYPE_Q8_0) {
new_type = GGML_TYPE_Q6_K;
}
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
if (name.find("attn_v.weight") != std::string::npos) {
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
else new_type = GGML_TYPE_Q2_K;
++qs.i_attention_wv;
}
else if (name.find("ffn_down") != std::string::npos) {
if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q2_K;
++qs.i_feed_forward_w2;
}
else if (name == "token_embd.weight") new_type = GGML_TYPE_Q2_K;
} else if (name.find("attn_v.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
@ -8462,13 +8484,31 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
new_type = GGML_TYPE_Q8_0;
}
} else if (name.find("ffn_down") != std::string::npos) {
const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
int i_layer, n_layer;
if (n_expert == 1) {
i_layer = qs.i_feed_forward_w2;
n_layer = qs.n_feed_forward_w2;
} else {
// Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
// sprinkled in the model. Hence, simply dividing i_feed_forward_w2 by n_expert does not work
// for getting the current layer as I initially thought, and we need to resort to parsing the
// tensor name.
n_layer = qs.n_feed_forward_w2 / n_expert;
if (sscanf(name.c_str(), "blk.%d.ffn_down", &i_layer) != 1) {
throw std::runtime_error(format("Failed to determine layer for tensor %s", name.c_str()));
}
if (i_layer < 0 || i_layer >= n_layer) {
throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name.c_str(), n_layer));
}
}
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q4_K;
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q5_K
: arch != LLM_ARCH_FALCON || use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q4_K
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
: GGML_TYPE_Q3_K;
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
@ -8476,22 +8516,29 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
if (arch == LLM_ARCH_FALCON) {
new_type = qs.i_feed_forward_w2 < qs.n_feed_forward_w2/16 ? GGML_TYPE_Q6_K :
use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
} else {
if (use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
}
}
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(qs.i_feed_forward_w2, qs.n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) {
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
new_type = GGML_TYPE_Q5_K;
}
++qs.i_feed_forward_w2;
} else if (name.find("attn_output.weight") != std::string::npos) {
if (arch != LLM_ARCH_FALCON) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
if (qs.model.hparams.n_expert == 8) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
new_type = GGML_TYPE_Q5_K;
}
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
}
} else {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
}
@ -8594,6 +8641,13 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
if (params->only_copy) {
ftype = model.ftype;
}
const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
if (params->imatrix) {
imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
if (imatrix_data) {
LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
}
}
const size_t align = GGUF_DEFAULT_ALIGNMENT;
struct gguf_context * ctx_out = gguf_init_empty();
@ -8651,6 +8705,8 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
// placeholder for the meta data
::zeros(fout, meta_size);
std::set<ggml_type> used_iq2;
for (int i = 0; i < ml.n_tensors; ++i) {
struct ggml_tensor * tensor = ml.get_tensor_meta(i);
@ -8703,6 +8759,35 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
} else {
const size_t nelements = ggml_nelements(tensor);
if ((new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_XS) && used_iq2.find(new_type) == used_iq2.end()) {
ggml_init_iq2_quantization(new_type);
used_iq2.insert(new_type);
}
const float * imatrix = nullptr;
if (imatrix_data) {
auto it = imatrix_data->find(tensor->name);
if (it == imatrix_data->end()) {
LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
} else {
if (it->second.size() == (size_t)tensor->ne[0]) {
imatrix = it->second.data();
} else {
LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
int(it->second.size()), int(tensor->ne[0]), tensor->name);
}
}
}
if ((new_type == GGML_TYPE_IQ2_XXS ||
new_type == GGML_TYPE_IQ2_XS ||
(new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
LLAMA_LOG_ERROR("\n\n============================================================\n");
LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
LLAMA_LOG_ERROR("============================================================\n\n");
throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
}
float * f32_data;
if (tensor->type == GGML_TYPE_F32) {
@ -8723,21 +8808,28 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
new_data = work.data();
std::array<int64_t, 1 << 4> hist_cur = {};
static const int chunk_size = 32 * 512;
const int n_per_row = tensor->ne[0];
const int nrows = nelements / n_per_row;
static const int min_chunk_size = 32 * 512;
const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
if (nthread_use < 2) {
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix);
} else {
size_t counter = 0;
int counter = 0;
new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
nrows, n_per_row, imatrix]() {
std::array<int64_t, 1 << 4> local_hist = {};
const int nrows_per_chunk = chunk_size / n_per_row;
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
size_t first = counter; counter += chunk_size;
if (first >= nelements) {
int first_row = counter; counter += nrows_per_chunk;
if (first_row >= nrows) {
if (local_size > 0) {
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
@ -8747,8 +8839,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
break;
}
lock.unlock();
size_t last = std::min(nelements, first + chunk_size);
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
}
};
for (int it = 0; it < nthread_use - 1; ++it) {
@ -8759,7 +8852,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
workers.clear();
}
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
int64_t tot_count = 0;
for (size_t i = 0; i < hist_cur.size(); i++) {
hist_all[i] += hist_cur[i];
@ -8767,6 +8860,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
}
if (tot_count > 0) {
LLAMA_LOG_INFO(" | hist: ");
for (size_t i = 0; i < hist_cur.size(); i++) {
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
}
@ -8795,6 +8889,10 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
fout.close();
for (auto type : used_iq2) {
ggml_deinit_iq2_quantization(type);
}
gguf_free(ctx_out);
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
@ -9159,6 +9257,7 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
/*.quantize_output_tensor =*/ true,
/*.only_copy =*/ false,
/*.pure =*/ false,
/*.imatrix =*/ nullptr,
};
return result;

View file

@ -249,6 +249,7 @@ extern "C" {
bool quantize_output_tensor; // quantize output.weight
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
bool pure; // disable k-quant mixtures and quantize all tensors to the same type
void * imatrix; // pointer to importance matrix data
} llama_model_quantize_params;
// grammar types

View file

@ -5,7 +5,7 @@
# Usage:
#
# $ cd /path/to/llama.cpp
# $ ./scripts/sync-ggml-am.sh
# $ ./scripts/sync-ggml-am.sh -skip hash0,hash1,hash2...
#
set -e
@ -24,6 +24,11 @@ fi
lc=$(cat $SRC_LLAMA/scripts/sync-ggml.last)
echo "Syncing ggml changes since commit $lc"
to_skip=""
if [ "$1" == "-skip" ]; then
to_skip=$2
fi
cd $SRC_GGML
git log --oneline $lc..HEAD
@ -40,6 +45,13 @@ if [ -f $SRC_LLAMA/ggml-src.patch ]; then
fi
while read c; do
if [ -n "$to_skip" ]; then
if [[ $to_skip == *"$c"* ]]; then
echo "Skipping $c"
continue
fi
fi
git format-patch -k $c~1..$c --stdout -- \
include/ggml/ggml*.h \
src/ggml*.h \

View file

@ -1 +1 @@
1890780da4ea10db88736fcde85f285abf6c64b0
b306d6e996ec0ace77118fa5098822cdc7f9c88f

View file

@ -56,7 +56,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
int64_t hist[16];
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist);
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], hist, nullptr);
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
// This is going to create some weird integers though.