clip : suppress unused variable warnings
This commit suppresses unused variable warnings for the variables e in the catch blocks. The motivation for this change is to suppress the warnings that are generated on Windows when using the MSVC compiler. The warnings are not displayed when using GCC because GCC will mark all catch parameters as used. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
This commit is contained in:
parent
083bacce14
commit
c32bad7e65
1 changed files with 13 additions and 5 deletions
|
@ -1123,6 +1123,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
hparams.image_grid_pinpoints[n] = 0;
|
hparams.image_grid_pinpoints[n] = 0;
|
||||||
} catch (std::runtime_error & e) {
|
} catch (std::runtime_error & e) {
|
||||||
hparams.image_grid_pinpoints[0]=0;
|
hparams.image_grid_pinpoints[0]=0;
|
||||||
|
GGML_UNUSED(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
@ -1130,12 +1131,14 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
|
strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
|
||||||
} catch (std::runtime_error & e) {
|
} catch (std::runtime_error & e) {
|
||||||
strcpy(hparams.mm_patch_merge_type, "flat");
|
strcpy(hparams.mm_patch_merge_type, "flat");
|
||||||
|
GGML_UNUSED(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
|
hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
|
||||||
} catch(const std::exception& e) {
|
} catch(const std::exception& e) {
|
||||||
hparams.image_crop_resolution = hparams.image_size;
|
hparams.image_crop_resolution = hparams.image_size;
|
||||||
|
GGML_UNUSED(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
|
int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
|
||||||
|
@ -1175,6 +1178,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
new_clip->has_class_embedding = true;
|
new_clip->has_class_embedding = true;
|
||||||
} catch (const std::exception& e) {
|
} catch (const std::exception& e) {
|
||||||
new_clip->has_class_embedding = false;
|
new_clip->has_class_embedding = false;
|
||||||
|
GGML_UNUSED(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
@ -1183,6 +1187,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
new_clip->has_pre_norm = true;
|
new_clip->has_pre_norm = true;
|
||||||
} catch (std::exception & e) {
|
} catch (std::exception & e) {
|
||||||
new_clip->has_pre_norm = false;
|
new_clip->has_pre_norm = false;
|
||||||
|
GGML_UNUSED(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
@ -1191,6 +1196,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
new_clip->has_post_norm = true;
|
new_clip->has_post_norm = true;
|
||||||
} catch (std::exception & e) {
|
} catch (std::exception & e) {
|
||||||
new_clip->has_post_norm = false;
|
new_clip->has_post_norm = false;
|
||||||
|
GGML_UNUSED(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
@ -1198,6 +1204,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
new_clip->has_patch_bias = true;
|
new_clip->has_patch_bias = true;
|
||||||
} catch (std::exception & e) {
|
} catch (std::exception & e) {
|
||||||
new_clip->has_patch_bias = false;
|
new_clip->has_patch_bias = false;
|
||||||
|
GGML_UNUSED(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
@ -1205,6 +1212,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
|
vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
|
||||||
} catch(const std::exception& e) {
|
} catch(const std::exception& e) {
|
||||||
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
|
LOG_TEE("%s: failed to load vision model tensors\n", __func__);
|
||||||
|
GGML_UNUSED(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
// LLaVA projection
|
// LLaVA projection
|
||||||
|
@ -1215,26 +1223,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
// Yi-type llava
|
// Yi-type llava
|
||||||
vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
|
vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
|
||||||
vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
|
vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
|
||||||
} catch (std::runtime_error & e) { }
|
} catch (std::runtime_error & e) { GGML_UNUSED(e); }
|
||||||
try {
|
try {
|
||||||
// missing in Yi-type llava
|
// missing in Yi-type llava
|
||||||
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
|
vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
|
||||||
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
|
vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
|
||||||
} catch (std::runtime_error & e) { }
|
} catch (std::runtime_error & e) { GGML_UNUSED(e); }
|
||||||
try {
|
try {
|
||||||
// Yi-type llava
|
// Yi-type llava
|
||||||
vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
|
vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
|
||||||
vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
|
vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
|
||||||
} catch (std::runtime_error & e) { }
|
} catch (std::runtime_error & e) { GGML_UNUSED(e); }
|
||||||
try {
|
try {
|
||||||
// Yi-type llava
|
// Yi-type llava
|
||||||
vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
|
vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
|
||||||
vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
|
vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
|
||||||
} catch (std::runtime_error & e) { }
|
} catch (std::runtime_error & e) { GGML_UNUSED(e); }
|
||||||
try {
|
try {
|
||||||
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
|
vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
|
||||||
// LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
|
// LOG_TEE("%s: image_newline tensor (llava-1.6) found\n", __func__);
|
||||||
} catch (std::runtime_error & e) { }
|
} catch (std::runtime_error & e) { GGML_UNUSED(e); }
|
||||||
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
|
} else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
|
||||||
// MobileVLM projection
|
// MobileVLM projection
|
||||||
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
|
vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue