Merge branch 'ggerganov:master' into master

This commit is contained in:
momonga 2024-11-22 12:44:24 +09:00 committed by GitHub
commit c50b5d0b0b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
289 changed files with 56411 additions and 28423 deletions

161
.clang-format Normal file
View file

@ -0,0 +1,161 @@
---
Language: Cpp
AlignAfterOpenBracket: Align
AlignArrayOfStructures: Left
AlignConsecutiveAssignments: AcrossComments
AlignConsecutiveBitFields: AcrossComments
AlignConsecutiveDeclarations: AcrossComments
AlignConsecutiveMacros: AcrossComments
# AlignConsecutiveShortCaseStatements: AcrossComments
AlignEscapedNewlines: Left # LeftWithLastLine
AlignOperands: Align
AlignTrailingComments:
Kind: Always
OverEmptyLines: 1
AllowAllArgumentsOnNextLine: true
AllowAllParametersOfDeclarationOnNextLine: false
# AllowBreakBeforeNoexceptSpecifier: OnlyWithParen
AllowShortBlocksOnASingleLine: Never
AllowShortCaseLabelsOnASingleLine: false
AllowShortFunctionsOnASingleLine: Inline
AllowShortIfStatementsOnASingleLine: Never
AllowShortLambdasOnASingleLine: Inline
AllowShortLoopsOnASingleLine: false
AlwaysBreakBeforeMultilineStrings: true
BinPackArguments: true
BinPackParameters: true # OnePerLine
BitFieldColonSpacing: Both
BreakBeforeBraces: Custom # Attach
BraceWrapping:
AfterCaseLabel: true
AfterClass: false
AfterControlStatement: false
AfterEnum: false
AfterFunction: false
AfterNamespace: false
AfterObjCDeclaration: false
AfterStruct: false
AfterUnion: false
AfterExternBlock: false
BeforeCatch: false
BeforeElse: false
BeforeLambdaBody: false
BeforeWhile: false
IndentBraces: false
SplitEmptyFunction: false
SplitEmptyRecord: false
SplitEmptyNamespace: false
# BreakAdjacentStringLiterals: true
BreakAfterAttributes: Never
BreakBeforeBinaryOperators: None
BreakBeforeInlineASMColon: OnlyMultiline
BreakBeforeTernaryOperators: false
# BreakBinaryOperations: Never
BreakConstructorInitializers: AfterColon
# BreakFunctionDefinitionParameters: false
BreakInheritanceList: AfterComma
BreakStringLiterals: true
# BreakTemplateDeclarations: Yes
ColumnLimit: 120
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerIndentWidth: 4
ContinuationIndentWidth: 4
Cpp11BracedListStyle: false
DerivePointerAlignment: false
DisableFormat: false
EmptyLineBeforeAccessModifier: Leave
EmptyLineAfterAccessModifier: Never
ExperimentalAutoDetectBinPacking: false
FixNamespaceComments: true
IncludeBlocks: Regroup
IncludeCategories:
- Regex: '^<.*\.h>'
Priority: 1
SortPriority: 0
- Regex: '^<.*'
Priority: 2
SortPriority: 0
- Regex: '.*'
Priority: 3
SortPriority: 0
IncludeIsMainRegex: '([-_](test|unittest))?$'
IncludeIsMainSourceRegex: ''
IndentAccessModifiers: false
IndentCaseBlocks: true
IndentCaseLabels: true
IndentExternBlock: NoIndent
IndentGotoLabels: false
IndentPPDirectives: AfterHash
IndentWidth: 4
IndentWrappedFunctionNames: false
InsertBraces: true # NOTE: may lead to incorrect formatting
InsertNewlineAtEOF: true
JavaScriptQuotes: Leave
JavaScriptWrapImports: true
KeepEmptyLinesAtTheStartOfBlocks: false
LambdaBodyIndentation: Signature
LineEnding: LF
MacroBlockBegin: ''
MacroBlockEnd: ''
MaxEmptyLinesToKeep: 1
NamespaceIndentation: None
ObjCBinPackProtocolList: Auto
ObjCBlockIndentWidth: 4
ObjCSpaceAfterProperty: true
ObjCSpaceBeforeProtocolList: true
PPIndentWidth: -1
PackConstructorInitializers: CurrentLine
PenaltyBreakAssignment: 2
PenaltyBreakBeforeFirstCallParameter: 1
PenaltyBreakComment: 300
PenaltyBreakFirstLessLess: 120
PenaltyBreakString: 1000
PenaltyBreakTemplateDeclaration: 10
PenaltyExcessCharacter: 1000000
PenaltyReturnTypeOnItsOwnLine: 200
PointerAlignment: Middle
QualifierAlignment: Left
#QualifierOrder: ['static', 'inline', 'friend', 'constexpr', 'const', 'volatile', 'type', 'restrict']
RawStringFormats:
- Language: Cpp
Delimiters:
- cc
- CC
- cpp
- Cpp
- CPP
- 'c++'
- 'C++'
CanonicalDelimiter: ''
ReferenceAlignment: Middle
ReflowComments: false # IndentOnly
SeparateDefinitionBlocks: Always
SortIncludes: CaseInsensitive
SortUsingDeclarations: LexicographicNumeric
SpaceAfterCStyleCast: true
SpaceAfterLogicalNot: false
SpaceAfterTemplateKeyword: true
SpaceBeforeAssignmentOperators: true
SpaceBeforeCpp11BracedList: false
SpaceBeforeCtorInitializerColon: true
SpaceBeforeInheritanceColon: true
SpaceBeforeParens: ControlStatements
SpaceBeforeRangeBasedForLoopColon: true
SpaceInEmptyBlock: false
SpaceInEmptyParentheses: false
SpacesBeforeTrailingComments: 2
SpacesInAngles: Never
SpacesInContainerLiterals: true
SpacesInLineCommentPrefix:
Minimum: 1
Maximum: -1
SpacesInParentheses: false
SpacesInSquareBrackets: false
SpaceBeforeSquareBrackets: false
Standard: c++17
TabWidth: 4
UseTab: Never
WhitespaceSensitiveMacros: ['STRINGIZE']
...

View file

@ -26,7 +26,7 @@ COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc) && \
cp build/bin/* .

View file

@ -19,7 +19,7 @@ WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release -j$(nproc) && \
cp build/bin/* .

View file

@ -1,6 +1,6 @@
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
FROM cosdt/cann:$ASCEND_VERSION AS build
FROM ascendai/cann:$ASCEND_VERSION AS build
WORKDIR /app
@ -22,11 +22,11 @@ ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/runtime/lib64/stub:$LD_LIBRARY_PATH
RUN echo "Building with static libs" && \
source /usr/local/Ascend/ascend-toolkit/set_env.sh --force && \
cmake -B build -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_CANN=ON -DBUILD_SHARED_LIBS=OFF && \
cmake --build build --config Release --target llama-cli
# TODO: use image with NNRT
FROM cosdt/cann:$ASCEND_VERSION AS runtime
FROM ascendai/cann:$ASCEND_VERSION AS runtime
COPY --from=build /app/build/bin/llama-cli /llama-cli
ENV LC_ALL=C.utf8

View file

@ -22,16 +22,17 @@ COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-cli -j$(nproc)
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-cli -j$(nproc) && \
mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libgomp1
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/build/bin/llama-cli /llama-cli
COPY --from=build /app/lib/ /
COPY --from=build /app/build/bin/llama-cli /
ENTRYPOINT [ "/llama-cli" ]

View file

@ -1,4 +1,4 @@
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
@ -15,7 +15,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with static libs" && \
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
${OPT_SYCL_F16} -DBUILD_SHARED_LIBS=OFF && \
cmake --build build --config Release --target llama-cli

View file

@ -15,16 +15,17 @@ WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-cli -j$(nproc)
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-cli -j$(nproc) && \
mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libgomp1
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/lib/ /
COPY --from=build /app/build/bin/llama-cli /llama-cli
ENTRYPOINT [ "/llama-cli" ]

View file

@ -14,7 +14,7 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_VULKAN=1 && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 && \
cmake --build build --config Release --target llama-cli
# Clean up

View file

@ -22,16 +22,17 @@ COPY . .
RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
fi && \
cmake -B build -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-server -j$(nproc)
cmake -B build -DGGML_NATIVE=OFF -DGGML_CUDA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-server -j$(nproc) && \
mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev libgomp1 curl
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/lib/ /
COPY --from=build /app/build/bin/llama-server /llama-server
# Must be set to 0.0.0.0 so it can listen to requests from host machine

View file

@ -1,4 +1,4 @@
ARG ONEAPI_VERSION=2024.1.1-devel-ubuntu22.04
ARG ONEAPI_VERSION=2025.0.0-0-devel-ubuntu22.04
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS build
@ -15,7 +15,7 @@ RUN if [ "${GGML_SYCL_F16}" = "ON" ]; then \
export OPT_SYCL_F16="-DGGML_SYCL_F16=ON"; \
fi && \
echo "Building with dynamic libs" && \
cmake -B build -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake -B build -DGGML_NATIVE=OFF -DGGML_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_CURL=ON ${OPT_SYCL_F16} && \
cmake --build build --config Release --target llama-server
FROM intel/oneapi-basekit:$ONEAPI_VERSION AS runtime

View file

@ -15,16 +15,17 @@ WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-server -j$(nproc)
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_MUSA=ON -DLLAMA_CURL=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
cmake --build build --config Release --target llama-server -j$(nproc) && \
mkdir -p /app/lib && \
find build -name "*.so" -exec cp {} /app/lib \;
FROM ${BASE_MUSA_RUN_CONTAINER} AS runtime
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev libgomp1 curl
COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
COPY --from=build /app/build/src/libllama.so /libllama.so
COPY --from=build /app/lib/ /
COPY --from=build /app/build/bin/llama-server /llama-server
# Must be set to 0.0.0.0 so it can listen to requests from host machine

View file

@ -14,7 +14,7 @@ RUN wget -qO - https://packages.lunarg.com/lunarg-signing-key-pub.asc | apt-key
# Build it
WORKDIR /app
COPY . .
RUN cmake -B build -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
RUN cmake -B build -DGGML_NATIVE=OFF -DGGML_VULKAN=1 -DLLAMA_CURL=1 && \
cmake --build build --config Release --target llama-server
# Clean up

View file

@ -126,9 +126,9 @@ effectiveStdenv.mkDerivation (finalAttrs: {
};
postPatch = ''
substituteInPlace ./ggml/src/ggml-metal.m \
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"ggml-metal" ofType:@"metal"];' "@\"$out/bin/ggml-metal.metal\";"
substituteInPlace ./ggml/src/ggml-metal.m \
substituteInPlace ./ggml/src/ggml-metal/ggml-metal.m \
--replace '[bundle pathForResource:@"default" ofType:@"metallib"];' "@\"$out/bin/default.metallib\";"
'';
@ -173,7 +173,7 @@ effectiveStdenv.mkDerivation (finalAttrs: {
(cmakeBool "GGML_NATIVE" false)
(cmakeBool "GGML_BLAS" useBlas)
(cmakeBool "GGML_CUDA" useCuda)
(cmakeBool "GGML_HIPBLAS" useRocm)
(cmakeBool "GGML_HIP" useRocm)
(cmakeBool "GGML_METAL" useMetalKit)
(cmakeBool "GGML_VULKAN" useVulkan)
(cmakeBool "GGML_STATIC" enableStatic)

View file

@ -24,6 +24,16 @@ insert_final_newline = unset
[examples/server/public/*]
indent_size = 2
[examples/server/public/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/server/deps_*]
trim_trailing_whitespace = unset
indent_style = unset
indent_size = unset
[examples/llama.swiftui/llama.swiftui.xcodeproj/*]
indent_style = tab

View file

@ -55,7 +55,13 @@ jobs:
sysctl -a
mkdir build
cd build
cmake -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL_EMBED_LIBRARY=ON -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF ..
cmake .. \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DGGML_RPC=ON \
-DBUILD_SHARED_LIBS=OFF
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
@ -113,7 +119,12 @@ jobs:
sysctl -a
# Metal is disabled due to intermittent failures with Github runners not having a GPU:
# https://github.com/ggerganov/llama.cpp/actions/runs/8635935781/job/23674807267#step:5:2313
cmake -B build -DLLAMA_FATAL_WARNINGS=ON -DGGML_METAL=OFF -DLLAMA_CURL=ON -DGGML_RPC=ON -DBUILD_SHARED_LIBS=OFF
cmake -B build \
-DLLAMA_FATAL_WARNINGS=ON \
-DLLAMA_CURL=ON \
-DGGML_METAL=OFF \
-DGGML_RPC=ON \
-DBUILD_SHARED_LIBS=OFF
cmake --build build --config Release -j $(sysctl -n hw.logicalcpu)
- name: Test
@ -394,15 +405,36 @@ jobs:
- name: Build with native CMake HIP support
id: cmake_build
run: |
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DGGML_HIPBLAS=ON
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DGGML_HIP=ON
cmake --build build --config Release -j $(nproc)
- name: Build with legacy HIP support
id: cmake_build_legacy_hip
run: |
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DGGML_HIPBLAS=ON
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DGGML_HIP=ON
cmake --build build2 --config Release -j $(nproc)
ubuntu-22-cmake-musa:
runs-on: ubuntu-22.04
container: mthreads/musa:rc3.1.0-devel-ubuntu22.04
steps:
- name: Clone
id: checkout
uses: actions/checkout@v4
- name: Dependencies
id: depends
run: |
apt-get update
apt-get install -y build-essential git cmake libcurl4-openssl-dev
- name: Build with native CMake MUSA support
id: cmake_build
run: |
cmake -B build -S . -DGGML_MUSA=ON
cmake --build build --config Release -j $(nproc)
ubuntu-22-cmake-sycl:
runs-on: ubuntu-22.04
@ -569,6 +601,7 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
@ -599,6 +632,7 @@ jobs:
mkdir build
cd build
cmake -G Xcode .. \
-DGGML_METAL_USE_BF16=ON \
-DGGML_METAL_EMBED_LIBRARY=ON \
-DLLAMA_BUILD_EXAMPLES=OFF \
-DLLAMA_BUILD_TESTS=OFF \
@ -734,7 +768,7 @@ jobs:
id: clone_kompute
if: ${{ matrix.build == 'kompute-x64' }}
run: |
git submodule update --init ggml/src/kompute
git submodule update --init ggml/src/ggml-kompute/kompute
- name: Download OpenBLAS
id: get_openblas
@ -917,7 +951,7 @@ jobs:
shell: bash
env:
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7dff44ba-e3af-4448-841c-0d616c8da6e7/w_BaseKit_p_2024.1.0.595_offline.exe
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/b380d914-366b-4b77-a74a-05e3c38b3514/intel-oneapi-base-toolkit-2025.0.0.882_offline.exe
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
steps:
@ -1001,7 +1035,7 @@ jobs:
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
windows-latest-cmake-hip-release:
@ -1037,7 +1071,7 @@ jobs:
run: |
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIPBLAS=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DGGML_HIP=ON -DCMAKE_BUILD_TYPE=Release -DAMDGPU_TARGETS=${{ matrix.gpu_target }} -DGGML_RPC=ON
cmake --build build -j ${env:NUMBER_OF_PROCESSORS}
md "build\bin\rocblas\library\"
cp "${env:HIP_PATH}\bin\hipblas.dll" "build\bin\"

5
.gitignore vendored
View file

@ -3,6 +3,7 @@
*.a
*.bat
*.bin
*.d
*.dll
*.dot
*.etag
@ -133,3 +134,7 @@ poetry.toml
# Test models for lora adapters
/lora-tests
# Local scripts
/run-vim.sh
/run-chat.sh

2
.gitmodules vendored
View file

@ -1,3 +1,3 @@
[submodule "kompute"]
path = ggml/src/kompute
path = ggml/src/ggml-kompute/kompute
url = https://github.com/nomic-ai/kompute.git

View file

@ -46,6 +46,13 @@ if (WIN32)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
endif()
if ("${CMAKE_CXX_COMPILER_ID}" STREQUAL "MSVC")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/source-charset:utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/source-charset:utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:C>:/execution-charset:utf-8>")
add_compile_options("$<$<COMPILE_LANGUAGE:CXX>:/execution-charset:utf-8>")
endif()
#
# option list
#
@ -140,7 +147,6 @@ set(LLAMA_INCLUDE_INSTALL_DIR ${CMAKE_INSTALL_INCLUDEDIR} CACHE PATH "Location o
set(LLAMA_LIB_INSTALL_DIR ${CMAKE_INSTALL_LIBDIR} CACHE PATH "Location of library files")
set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR} CACHE PATH "Location of binary files")
# At the moment some compile definitions are placed within the ggml/src
# directory but not exported on the `ggml` target. This could be improved by
# determining _precisely_ which defines are necessary for the llama-config

View file

@ -29,6 +29,7 @@
{ "name": "reldbg", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
{ "name": "static", "hidden": true, "cacheVariables": { "GGML_STATIC": "ON" } },
{ "name": "sycl_f16", "hidden": true, "cacheVariables": { "GGML_SYCL_F16": "ON" } },
{ "name": "vulkan", "hidden": true, "cacheVariables": { "GGML_VULKAN": "ON" } },
{
"name": "arm64-windows-msvc", "hidden": true,
@ -57,25 +58,28 @@
}
},
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-debug", "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg" ] },
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "reldbg", "static" ] },
{ "name": "arm64-apple-clang-debug" , "inherits": [ "base", "arm64-apple-clang", "debug" ] },
{ "name": "arm64-apple-clang-release" , "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
{ "name": "arm64-apple-clang+static-release" , "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
{ "name": "arm64-apple-clang-debug", "inherits": [ "base", "arm64-apple-clang", "debug" ] },
{ "name": "arm64-apple-clang-release", "inherits": [ "base", "arm64-apple-clang", "reldbg" ] },
{ "name": "arm64-apple-clang+static-release", "inherits": [ "base", "arm64-apple-clang", "reldbg", "static" ] },
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-debug", "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg" ] },
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "reldbg", "static" ] },
{ "name": "x64-windows-msvc-debug" , "inherits": [ "base", "debug" ] },
{ "name": "x64-windows-msvc-debug", "inherits": [ "base", "debug" ] },
{ "name": "x64-windows-msvc-release", "inherits": [ "base", "reldbg" ] },
{ "name": "x64-windows-msvc+static-release", "inherits": [ "base", "reldbg", "static" ] },
{ "name": "x64-windows-sycl-debug" , "inherits": [ "sycl-base", "debug" ] },
{ "name": "x64-windows-sycl-debug", "inherits": [ "sycl-base", "debug" ] },
{ "name": "x64-windows-sycl-debug-f16", "inherits": [ "sycl-base", "debug", "sycl_f16" ] },
{ "name": "x64-windows-sycl-release", "inherits": [ "sycl-base", "release" ] },
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] }
{ "name": "x64-windows-sycl-release-f16", "inherits": [ "sycl-base", "release", "sycl_f16" ] },
{ "name": "x64-windows-vulkan-debug", "inherits": [ "base", "vulkan", "debug" ] },
{ "name": "x64-windows-vulkan-release", "inherits": [ "base", "vulkan", "release" ] }
]
}

548
Makefile
View file

@ -48,7 +48,6 @@ TEST_TARGETS = \
tests/test-backend-ops \
tests/test-chat-template \
tests/test-double-float \
tests/test-grad0 \
tests/test-grammar-integration \
tests/test-grammar-parser \
tests/test-json-schema-to-grammar \
@ -359,6 +358,10 @@ ifdef LLAMA_SERVER_SSL
MK_LDFLAGS += -lssl -lcrypto
endif
ifndef GGML_NO_CPU_AARCH64
MK_CPPFLAGS += -DGGML_USE_CPU_AARCH64
endif
# warnings
WARN_FLAGS = \
-Wall \
@ -523,70 +526,59 @@ ifndef GGML_NO_ACCELERATE
# Mac OS - include Accelerate framework.
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
ifeq ($(UNAME_S),Darwin)
MK_CPPFLAGS += -DGGML_USE_ACCELERATE -DGGML_USE_BLAS
MK_CPPFLAGS += -DGGML_USE_ACCELERATE -DGGML_USE_BLAS -DGGML_BLAS_USE_ACCELERATE
MK_CPPFLAGS += -DACCELERATE_NEW_LAPACK
MK_CPPFLAGS += -DACCELERATE_LAPACK_ILP64
MK_LDFLAGS += -framework Accelerate
OBJ_GGML += ggml/src/ggml-blas.o
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif
endif # GGML_NO_ACCELERATE
ifdef GGML_MUSA
CC := clang
CXX := clang++
GGML_CUDA := 1
MK_CPPFLAGS += -DGGML_USE_MUSA
endif
ifndef GGML_NO_OPENMP
MK_CPPFLAGS += -DGGML_USE_OPENMP
MK_CFLAGS += -fopenmp
MK_CXXFLAGS += -fopenmp
ifdef GGML_MUSA
MK_CPPFLAGS += -I/usr/lib/llvm-10/include/openmp
MK_LDFLAGS += -L/usr/lib/llvm-10/lib
endif # GGML_MUSA
endif # GGML_NO_OPENMP
ifdef GGML_OPENBLAS
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas)
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
MK_LDFLAGS += $(shell pkg-config --libs openblas)
OBJ_GGML += ggml/src/ggml-blas.o
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif # GGML_OPENBLAS
ifdef GGML_OPENBLAS64
MK_CPPFLAGS += -DGGML_USE_BLAS $(shell pkg-config --cflags-only-I openblas64)
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas64)
MK_LDFLAGS += $(shell pkg-config --libs openblas64)
OBJ_GGML += ggml/src/ggml-blas.o
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif # GGML_OPENBLAS64
ifdef GGML_BLIS
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_BLIS -I/usr/local/include/blis -I/usr/include/blis
MK_LDFLAGS += -lblis -L/usr/local/lib
OBJ_GGML += ggml/src/ggml-blas.o
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif # GGML_BLIS
ifdef GGML_NVPL
MK_CPPFLAGS += -DGGML_USE_BLAS -DGGML_BLAS_USE_NVPL -DNVPL_ILP64 -I/usr/local/include/nvpl_blas -I/usr/include/nvpl_blas
MK_LDFLAGS += -L/usr/local/lib -lnvpl_blas_core -lnvpl_blas_ilp64_gomp
OBJ_GGML += ggml/src/ggml-blas.o
OBJ_GGML_EXT += ggml/src/ggml-blas/ggml-blas.o
endif # GGML_NVPL
ifndef GGML_NO_LLAMAFILE
MK_CPPFLAGS += -DGGML_USE_LLAMAFILE
OBJ_GGML += ggml/src/llamafile/sgemm.o
OBJ_GGML_EXT += ggml/src/ggml-cpu/llamafile/sgemm.o
endif
ifndef GGML_NO_AMX
MK_CPPFLAGS += -DGGML_USE_AMX
OBJ_GGML += ggml/src/ggml-amx.o ggml/src/ggml-amx/mmq.o
OBJ_GGML_EXT += ggml/src/ggml-amx/ggml-amx.o ggml/src/ggml-amx/mmq.o
endif
ifdef GGML_RPC
MK_CPPFLAGS += -DGGML_USE_RPC
OBJ_GGML += ggml/src/ggml-rpc.o
OBJ_GGML_EXT += ggml/src/ggml-rpc.o
endif # GGML_RPC
OBJ_CUDA_TMPL = $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/template-instances/fattn-wmma*.cu))
@ -601,17 +593,6 @@ else
endif # GGML_CUDA_FA_ALL_QUANTS
ifdef GGML_CUDA
ifdef GGML_MUSA
ifneq ('', '$(wildcard /opt/musa)')
CUDA_PATH ?= /opt/musa
else
CUDA_PATH ?= /usr/local/musa
endif
MK_CPPFLAGS += -DGGML_USE_CUDA -I$(CUDA_PATH)/include
MK_LDFLAGS += -lmusa -lmublas -lmusart -lpthread -ldl -lrt -L$(CUDA_PATH)/lib -L/usr/lib64
MK_NVCCFLAGS += -x musa -mtgpu --cuda-gpu-arch=mp_21 --cuda-gpu-arch=mp_22
else
ifneq ('', '$(wildcard /opt/cuda)')
CUDA_PATH ?= /opt/cuda
else
@ -621,21 +602,18 @@ ifdef GGML_CUDA
MK_CPPFLAGS += -DGGML_USE_CUDA -DGGML_CUDA_USE_GRAPHS -I$(CUDA_PATH)/include -I$(CUDA_PATH)/targets/$(UNAME_M)-linux/include
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L$(CUDA_PATH)/lib64/stubs -L/usr/lib/wsl/lib
MK_NVCCFLAGS += -use_fast_math
endif # GGML_MUSA
OBJ_GGML += ggml/src/ggml-cuda.o
OBJ_GGML += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML += $(OBJ_CUDA_TMPL)
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
ifdef LLAMA_FATAL_WARNINGS
MK_NVCCFLAGS += -Werror all-warnings
endif # LLAMA_FATAL_WARNINGS
ifndef GGML_MUSA
ifndef JETSON_EOL_MODULE_DETECT
MK_NVCCFLAGS += --forward-unknown-to-host-compiler
endif # JETSON_EOL_MODULE_DETECT
endif # GGML_MUSA
ifdef LLAMA_DEBUG
MK_NVCCFLAGS += -lineinfo
@ -648,11 +626,7 @@ endif # GGML_CUDA_DEBUG
ifdef GGML_CUDA_NVCC
NVCC = $(CCACHE) $(GGML_CUDA_NVCC)
else
ifdef GGML_MUSA
NVCC = $(CCACHE) mcc
else
NVCC = $(CCACHE) nvcc
endif # GGML_MUSA
endif # GGML_CUDA_NVCC
ifdef CUDA_DOCKER_ARCH
@ -661,10 +635,6 @@ else ifndef CUDA_POWER_ARCH
MK_NVCCFLAGS += -arch=native
endif # CUDA_DOCKER_ARCH
ifdef GGML_CUDA_FORCE_DMMV
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_DMMV
endif # GGML_CUDA_FORCE_DMMV
ifdef GGML_CUDA_FORCE_MMQ
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_MMQ
endif # GGML_CUDA_FORCE_MMQ
@ -673,20 +643,6 @@ ifdef GGML_CUDA_FORCE_CUBLAS
MK_NVCCFLAGS += -DGGML_CUDA_FORCE_CUBLAS
endif # GGML_CUDA_FORCE_CUBLAS
ifdef GGML_CUDA_DMMV_X
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=$(GGML_CUDA_DMMV_X)
else
MK_NVCCFLAGS += -DGGML_CUDA_DMMV_X=32
endif # GGML_CUDA_DMMV_X
ifdef GGML_CUDA_MMV_Y
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(GGML_CUDA_MMV_Y)
else ifdef GGML_CUDA_DMMV_Y
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=$(GGML_CUDA_DMMV_Y) # for backwards compatibility
else
MK_NVCCFLAGS += -DGGML_CUDA_MMV_Y=1
endif # GGML_CUDA_MMV_Y
ifdef GGML_CUDA_F16
MK_NVCCFLAGS += -DGGML_CUDA_F16
endif # GGML_CUDA_F16
@ -695,12 +651,6 @@ ifdef GGML_CUDA_DMMV_F16
MK_NVCCFLAGS += -DGGML_CUDA_F16
endif # GGML_CUDA_DMMV_F16
ifdef GGML_CUDA_KQUANTS_ITER
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=$(GGML_CUDA_KQUANTS_ITER)
else
MK_NVCCFLAGS += -DK_QUANTS_PER_ITERATION=2
endif
ifdef GGML_CUDA_PEER_MAX_BATCH_SIZE
MK_NVCCFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(GGML_CUDA_PEER_MAX_BATCH_SIZE)
else
@ -724,15 +674,9 @@ define NVCC_COMPILE
$(NVCC) -I. -Icommon -D_XOPEN_SOURCE=600 -D_GNU_SOURCE -DNDEBUG -DGGML_USE_CUDA -I/usr/local/cuda/include -I/opt/cuda/include -I/usr/local/cuda/targets/aarch64-linux/include -std=c++11 -O3 $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endef # NVCC_COMPILE
else
ifdef GGML_MUSA
define NVCC_COMPILE
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -c $< -o $@
endef # NVCC_COMPILE
else
define NVCC_COMPILE
$(NVCC) $(NVCCFLAGS) $(CPPFLAGS) -Xcompiler "$(CUDA_CXXFLAGS)" -c $< -o $@
endef # NVCC_COMPILE
endif # GGML_MUSA
endif # JETSON_EOL_MODULE_DETECT
ggml/src/ggml-cuda/%.o: \
@ -742,8 +686,8 @@ ggml/src/ggml-cuda/%.o: \
ggml/src/ggml-cuda/common.cuh
$(NVCC_COMPILE)
ggml/src/ggml-cuda.o: \
ggml/src/ggml-cuda.cu \
ggml/src/ggml-cuda/ggml-cuda.o: \
ggml/src/ggml-cuda/ggml-cuda.cu \
ggml/include/ggml-cuda.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h \
@ -756,7 +700,7 @@ endif # GGML_CUDA
ifdef GGML_VULKAN
MK_CPPFLAGS += -DGGML_USE_VULKAN
MK_LDFLAGS += $(shell pkg-config --libs vulkan)
OBJ_GGML += ggml/src/ggml-vulkan.o ggml/src/ggml-vulkan-shaders.o
OBJ_GGML_EXT += ggml/src/ggml-vulkan.o ggml/src/ggml-vulkan-shaders.o
ifdef GGML_VULKAN_CHECK_RESULTS
MK_CPPFLAGS += -DGGML_VULKAN_CHECK_RESULTS
@ -786,10 +730,10 @@ GLSLC_CMD = glslc
_ggml_vk_genshaders_cmd = $(shell pwd)/vulkan-shaders-gen
_ggml_vk_header = ggml/src/ggml-vulkan-shaders.hpp
_ggml_vk_source = ggml/src/ggml-vulkan-shaders.cpp
_ggml_vk_input_dir = ggml/src/vulkan-shaders
_ggml_vk_input_dir = ggml/src/ggml-vulkan/vulkan-shaders
_ggml_vk_shader_deps = $(echo $(_ggml_vk_input_dir)/*.comp)
ggml/src/ggml-vulkan.o: ggml/src/ggml-vulkan.cpp ggml/include/ggml-vulkan.h $(_ggml_vk_header) $(_ggml_vk_source)
ggml/src/ggml-vulkan.o: ggml/src/ggml-vulkan/ggml-vulkan.cpp ggml/include/ggml-vulkan.h $(_ggml_vk_header) $(_ggml_vk_source)
$(CXX) $(CXXFLAGS) $(shell pkg-config --cflags vulkan) -c $< -o $@
$(_ggml_vk_header): $(_ggml_vk_source)
@ -801,8 +745,8 @@ $(_ggml_vk_source): $(_ggml_vk_shader_deps) vulkan-shaders-gen
--target-hpp $(_ggml_vk_header) \
--target-cpp $(_ggml_vk_source)
vulkan-shaders-gen: ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
$(CXX) $(CXXFLAGS) -o $@ $(LDFLAGS) ggml/src/vulkan-shaders/vulkan-shaders-gen.cpp
vulkan-shaders-gen: ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp
$(CXX) $(CXXFLAGS) -o $@ $(LDFLAGS) ggml/src/ggml-vulkan/vulkan-shaders/vulkan-shaders-gen.cpp
endif # GGML_VULKAN
@ -815,11 +759,7 @@ ifdef GGML_HIPBLAS
AMDGPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
endif
GGML_CUDA_DMMV_X ?= 32
GGML_CUDA_MMV_Y ?= 1
GGML_CUDA_KQUANTS_ITER ?= 2
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUDA
MK_CPPFLAGS += -DGGML_USE_HIP -DGGML_USE_CUDA
ifdef GGML_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
@ -832,13 +772,6 @@ endif # GGML_HIP_UMA
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(GGML_CUDA_DMMV_X)
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(GGML_CUDA_MMV_Y)
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(GGML_CUDA_KQUANTS_ITER)
ifdef GGML_CUDA_FORCE_DMMV
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
endif # GGML_CUDA_FORCE_DMMV
ifdef GGML_CUDA_FORCE_MMQ
HIPFLAGS += -DGGML_CUDA_FORCE_MMQ
@ -852,12 +785,12 @@ ifdef GGML_CUDA_NO_PEER_COPY
HIPFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # GGML_CUDA_NO_PEER_COPY
OBJ_GGML += ggml/src/ggml-cuda.o
OBJ_GGML += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML += $(OBJ_CUDA_TMPL)
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
ggml/src/ggml-cuda.o: \
ggml/src/ggml-cuda.cu \
ggml/src/ggml-cuda/ggml-cuda.o: \
ggml/src/ggml-cuda/ggml-cuda.cu \
ggml/include/ggml-cuda.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h \
@ -874,37 +807,123 @@ ggml/src/ggml-cuda/%.o: \
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif # GGML_HIPBLAS
ifdef GGML_MUSA
ifeq ($(wildcard /opt/musa),)
MUSA_PATH ?= /usr/local/musa
else
MUSA_PATH ?= /opt/musa
endif
MTGPU_TARGETS ?= mp_21 mp_22
MK_CPPFLAGS += -DGGML_USE_MUSA -DGGML_USE_CUDA
MK_LDFLAGS += -L$(MUSA_PATH)/lib -Wl,-rpath=$(MUSA_PATH)/lib
MK_LDFLAGS += -lmusa -lmusart -lmublas
ifndef GGML_NO_OPENMP
# For Ubuntu Focal
MK_CPPFLAGS += -I/usr/lib/llvm-10/include/openmp
MK_LDFLAGS += -L/usr/lib/llvm-10/lib
# For Ubuntu Jammy
MK_CPPFLAGS += -I/usr/lib/llvm-14/lib/clang/14.0.0/include
MK_LDFLAGS += -L/usr/lib/llvm-14/lib
endif # GGML_NO_OPENMP
CC := $(MUSA_PATH)/bin/clang
CXX := $(MUSA_PATH)/bin/clang++
MCC := $(CCACHE) $(MUSA_PATH)/bin/mcc
MUSAFLAGS += $(addprefix --cuda-gpu-arch=, $(MTGPU_TARGETS))
ifdef GGML_CUDA_FORCE_MMQ
MUSAFLAGS += -DGGML_CUDA_FORCE_MMQ
endif # GGML_CUDA_FORCE_MMQ
ifdef GGML_CUDA_FORCE_CUBLAS
MUSAFLAGS += -DGGML_CUDA_FORCE_CUBLAS
endif # GGML_CUDA_FORCE_CUBLAS
ifdef GGML_CUDA_F16
MUSAFLAGS += -DGGML_CUDA_F16
endif # GGML_CUDA_F16
ifdef GGML_CUDA_DMMV_F16
MUSAFLAGS += -DGGML_CUDA_F16
endif # GGML_CUDA_DMMV_F16
ifdef GGML_CUDA_PEER_MAX_BATCH_SIZE
MUSAFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=$(GGML_CUDA_PEER_MAX_BATCH_SIZE)
else
MUSAFLAGS += -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128
endif # GGML_CUDA_PEER_MAX_BATCH_SIZE
ifdef GGML_CUDA_NO_PEER_COPY
MUSAFLAGS += -DGGML_CUDA_NO_PEER_COPY
endif # GGML_CUDA_NO_PEER_COPY
ifdef GGML_CUDA_FA_ALL_QUANTS
MUSAFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
endif # GGML_CUDA_FA_ALL_QUANTS
OBJ_GGML_EXT += ggml/src/ggml-cuda/ggml-cuda.o
OBJ_GGML_EXT += $(patsubst %.cu,%.o,$(wildcard ggml/src/ggml-cuda/*.cu))
OBJ_GGML_EXT += $(OBJ_CUDA_TMPL)
ggml/src/ggml-cuda/ggml-cuda.o: \
ggml/src/ggml-cuda/ggml-cuda.cu \
ggml/include/ggml-cuda.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h \
ggml/src/ggml-backend-impl.h \
ggml/src/ggml-common.h \
$(wildcard ggml/src/ggml-cuda/*.cuh)
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -x musa -mtgpu -c -o $@ $<
ggml/src/ggml-cuda/%.o: \
ggml/src/ggml-cuda/%.cu \
ggml/include/ggml.h \
ggml/src/ggml-common.h \
ggml/src/ggml-cuda/common.cuh
$(MCC) $(CXXFLAGS) $(MUSAFLAGS) -x musa -mtgpu -c -o $@ $<
endif # GGML_MUSA
ifdef GGML_METAL
MK_CPPFLAGS += -DGGML_USE_METAL
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
OBJ_GGML += ggml/src/ggml-metal.o
OBJ_GGML_EXT += ggml/src/ggml-metal/ggml-metal.o
ifdef GGML_METAL_USE_BF16
MK_CPPFLAGS += -DGGML_METAL_USE_BF16
endif # GGML_METAL_USE_BF16
ifdef GGML_METAL_NDEBUG
MK_CPPFLAGS += -DGGML_METAL_NDEBUG
endif
ifdef GGML_METAL_EMBED_LIBRARY
MK_CPPFLAGS += -DGGML_METAL_EMBED_LIBRARY
OBJ_GGML += ggml/src/ggml-metal-embed.o
OBJ_GGML_EXT += ggml/src/ggml-metal-embed.o
endif
endif # GGML_METAL
ifdef GGML_METAL
ggml/src/ggml-metal.o: \
ggml/src/ggml-metal.m \
ggml/src/ggml-metal/ggml-metal.o: \
ggml/src/ggml-metal/ggml-metal.m \
ggml/src/ggml-metal/ggml-metal-impl.h \
ggml/include/ggml-metal.h \
ggml/include/ggml.h
$(CC) $(CFLAGS) -c $< -o $@
ifdef GGML_METAL_EMBED_LIBRARY
ggml/src/ggml-metal-embed.o: \
ggml/src/ggml-metal.metal \
ggml/src/ggml-metal/ggml-metal.metal \
ggml/src/ggml-metal/ggml-metal-impl.h \
ggml/src/ggml-common.h
@echo "Embedding Metal library"
@sed -e '/#include "ggml-common.h"/r ggml/src/ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml/src/ggml-metal.metal > ggml/src/ggml-metal-embed.metal
@sed -e '/__embed_ggml-common.h__/r ggml/src/ggml-common.h' -e '/__embed_ggml-common.h__/d' < ggml/src/ggml-metal/ggml-metal.metal > ggml/src/ggml-metal/ggml-metal-embed.metal.tmp
@sed -e '/#include "ggml-metal-impl.h"/r ggml/src/ggml-metal/ggml-metal-impl.h' -e '/#include "ggml-metal-impl.h"/d' < ggml/src/ggml-metal/ggml-metal-embed.metal.tmp > ggml/src/ggml-metal/ggml-metal-embed.metal
$(eval TEMP_ASSEMBLY=$(shell mktemp -d))
@echo ".section __DATA, __ggml_metallib" > $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".globl _ggml_metallib_start" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_start:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".incbin \"ggml/src/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".incbin \"ggml/src/ggml-metal/ggml-metal-embed.metal\"" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo ".globl _ggml_metallib_end" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
@echo "_ggml_metallib_end:" >> $(TEMP_ASSEMBLY)/ggml-metal-embed.s
$(CC) $(CFLAGS) -c $(TEMP_ASSEMBLY)/ggml-metal-embed.s -o $@
@ -913,31 +932,42 @@ ggml/src/ggml-metal-embed.o: \
endif
endif # GGML_METAL
OBJ_GGML += \
ggml/src/ggml.o \
ggml/src/ggml-cpu.o \
ggml/src/ggml-alloc.o \
ggml/src/ggml-backend.o \
ggml/src/ggml-quants.o \
ggml/src/ggml-aarch64.o
DIR_GGML = ggml
DIR_LLAMA = src
DIR_COMMON = common
OBJ_GGML = \
$(DIR_GGML)/src/ggml.o \
$(DIR_GGML)/src/ggml-aarch64.o \
$(DIR_GGML)/src/ggml-alloc.o \
$(DIR_GGML)/src/ggml-backend.o \
$(DIR_GGML)/src/ggml-backend-reg.o \
$(DIR_GGML)/src/ggml-opt.o \
$(DIR_GGML)/src/ggml-quants.o \
$(DIR_GGML)/src/ggml-threading.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-cpp.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-aarch64.o \
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-quants.o \
$(OBJ_GGML_EXT)
OBJ_LLAMA = \
src/llama.o \
src/llama-vocab.o \
src/llama-grammar.o \
src/llama-sampling.o \
src/unicode.o \
src/unicode-data.o
$(DIR_LLAMA)/llama.o \
$(DIR_LLAMA)/llama-vocab.o \
$(DIR_LLAMA)/llama-grammar.o \
$(DIR_LLAMA)/llama-sampling.o \
$(DIR_LLAMA)/unicode.o \
$(DIR_LLAMA)/unicode-data.o
OBJ_COMMON = \
common/common.o \
common/arg.o \
common/log.o \
common/console.o \
common/ngram-cache.o \
common/sampling.o \
common/build-info.o \
common/json-schema-to-grammar.o
$(DIR_COMMON)/common.o \
$(DIR_COMMON)/arg.o \
$(DIR_COMMON)/log.o \
$(DIR_COMMON)/console.o \
$(DIR_COMMON)/ngram-cache.o \
$(DIR_COMMON)/sampling.o \
$(DIR_COMMON)/build-info.o \
$(DIR_COMMON)/json-schema-to-grammar.o
OBJ_ALL = $(OBJ_GGML) $(OBJ_LLAMA) $(OBJ_COMMON)
@ -993,7 +1023,6 @@ $(info I CXX: $(shell $(CXX) --version | head -n 1))
ifdef GGML_CUDA
$(info I NVCC: $(shell $(NVCC) --version | tail -n 1))
CUDA_VERSION := $(shell $(NVCC) --version | grep -oP 'release (\K[0-9]+\.[0-9])')
ifndef GGML_MUSA
ifeq ($(shell awk -v "v=$(CUDA_VERSION)" 'BEGIN { print (v < 11.7) }'),1)
ifndef CUDA_DOCKER_ARCH
@ -1003,7 +1032,6 @@ endif # CUDA_POWER_ARCH
endif # CUDA_DOCKER_ARCH
endif # eq ($(shell echo "$(CUDA_VERSION) < 11.7" | bc),1)
endif # GGML_MUSA
endif # GGML_CUDA
$(info )
@ -1040,224 +1068,78 @@ endif
# Build libraries
#
# ggml
# Libraries
LIB_GGML = libggml.so
LIB_GGML_S = libggml.a
ggml/src/ggml.o: \
ggml/src/ggml.c \
ggml/include/ggml.h
$(CC) $(CFLAGS) -c $< -o $@
LIB_LLAMA = libllama.so
LIB_LLAMA_S = libllama.a
ggml/src/ggml-cpu.o: \
ggml/src/ggml-cpu.c \
ggml/include/ggml.h \
ggml/src/ggml-common.h
$(CC) $(CFLAGS) -c $< -o $@
LIB_COMMON = libcommon.so
LIB_COMMON_S = libcommon.a
ggml/src/ggml-alloc.o: \
ggml/src/ggml-alloc.c \
ggml/include/ggml.h \
ggml/include/ggml-alloc.h
$(CC) $(CFLAGS) -c $< -o $@
# Targets
BUILD_TARGETS += $(LIB_GGML) $(LIB_GGML_S) $(LIB_LLAMA) $(LIB_LLAMA_S) $(LIB_COMMON) $(LIB_COMMON_S)
ggml/src/ggml-backend.o: \
ggml/src/ggml-backend.cpp \
ggml/src/ggml-backend-impl.h \
ggml/include/ggml.h \
ggml/include/ggml-backend.h
$(CXX) $(CXXFLAGS) -c $< -o $@
# Dependency files
DEP_FILES = $(OBJ_GGML:.o=.d) $(OBJ_LLAMA:.o=.d) $(OBJ_COMMON:.o=.d)
ggml/src/ggml-quants.o: \
ggml/src/ggml-quants.c \
ggml/include/ggml.h \
ggml/src/ggml-quants.h \
ggml/src/ggml-common.h
$(CC) $(CFLAGS) -c $< -o $@
# Default target
all: $(BUILD_TARGETS)
ggml/src/ggml-aarch64.o: \
ggml/src/ggml-aarch64.c \
ggml/include/ggml.h \
ggml/src/ggml-aarch64.h \
ggml/src/ggml-common.h
$(CC) $(CFLAGS) -c $< -o $@
ggml/src/ggml-blas.o: \
ggml/src/ggml-blas.cpp \
ggml/include/ggml-blas.h
$(CXX) $(CXXFLAGS) -c $< -o $@
ifndef GGML_NO_LLAMAFILE
ggml/src/llamafile/sgemm.o: \
ggml/src/llamafile/sgemm.cpp \
ggml/src/llamafile/sgemm.h \
ggml/include/ggml.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif # GGML_NO_LLAMAFILE
ifndef GGML_NO_AMX
ggml/src/ggml-amx.o: \
ggml/src/ggml-amx.cpp \
ggml/include/ggml-amx.h
$(CXX) $(CXXFLAGS) -c $< -o $@
ggml/src/ggml-amx/mmq.o: \
ggml/src/ggml-amx/mmq.cpp \
ggml/src/ggml-amx/mmq.h \
ggml/include/ggml.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif
ifdef GGML_RPC
ggml/src/ggml-rpc.o: \
ggml/src/ggml-rpc.cpp \
ggml/include/ggml-rpc.h
$(CXX) $(CXXFLAGS) -c $< -o $@
endif # GGML_RPC
$(LIB_GGML): \
$(OBJ_GGML)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
$(LIB_GGML_S): \
$(OBJ_GGML)
ar rcs $(LIB_GGML_S) $^
# llama
src/unicode.o: \
src/unicode.cpp \
src/unicode.h
$(CXX) $(CXXFLAGS) -c $< -o $@
src/unicode-data.o: \
src/unicode-data.cpp \
src/unicode-data.h
$(CXX) $(CXXFLAGS) -c $< -o $@
src/llama.o: \
src/llama.cpp \
src/llama-impl.h \
src/llama-vocab.h \
src/llama-grammar.h \
src/llama-sampling.h \
src/unicode.h \
include/llama.h \
ggml/include/ggml-cuda.h \
ggml/include/ggml-metal.h \
# Note: need this exception because `ggml-cpu.c` and `ggml-cpu.cpp` both produce the same obj/dep files
# g++ -M -I ./ggml/include/ -I ./ggml/src ggml/src/ggml-cpu/ggml-cpu.cpp | grep ggml
$(DIR_GGML)/src/ggml-cpu/ggml-cpu-cpp.o: \
ggml/src/ggml-cpu/ggml-cpu.cpp \
ggml/include/ggml-backend.h \
ggml/include/ggml.h \
ggml/include/ggml-alloc.h \
ggml/include/ggml-backend.h
ggml/src/ggml-backend-impl.h \
ggml/include/ggml-cpu.h \
ggml/src/ggml-impl.h
$(CXX) $(CXXFLAGS) -c $< -o $@
src/llama-vocab.o: \
src/llama-vocab.cpp \
src/llama-vocab.h \
src/llama-impl.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
# Rules for building object files
$(DIR_GGML)/%.o: $(DIR_GGML)/%.c
$(CC) $(CFLAGS) -MMD -c $< -o $@
src/llama-grammar.o: \
src/llama-grammar.cpp \
src/llama-grammar.h \
src/llama-impl.h \
src/llama-vocab.h \
src/llama-sampling.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
$(DIR_GGML)/%.o: $(DIR_GGML)/%.cpp
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
src/llama-sampling.o: \
src/llama-sampling.cpp \
src/llama-sampling.h \
src/llama-impl.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
$(DIR_LLAMA)/%.o: $(DIR_LLAMA)/%.cpp
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
$(LIB_LLAMA): \
$(OBJ_LLAMA) \
$(LIB_GGML)
$(DIR_COMMON)/%.o: $(DIR_COMMON)/%.cpp
$(CXX) $(CXXFLAGS) -MMD -c $< -o $@
# Rules for building libraries
$(LIB_GGML): $(OBJ_GGML)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
$(LIB_LLAMA_S): \
$(OBJ_LLAMA)
$(LIB_GGML_S): $(OBJ_GGML)
ar rcs $(LIB_GGML_S) $^
$(LIB_LLAMA): $(OBJ_LLAMA) $(LIB_GGML)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
$(LIB_LLAMA_S): $(OBJ_LLAMA)
ar rcs $(LIB_LLAMA_S) $^
# common
common/common.o: \
common/common.cpp \
common/common.h \
common/console.h \
common/sampling.h \
common/json.hpp \
common/json-schema-to-grammar.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/arg.o: \
common/arg.cpp \
common/arg.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/log.o: \
common/log.cpp \
common/log.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/sampling.o: \
common/sampling.cpp \
common/sampling.h \
include/llama.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/console.o: \
common/console.cpp \
common/console.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/json-schema-to-grammar.o: \
common/json-schema-to-grammar.cpp \
common/json-schema-to-grammar.h
$(CXX) $(CXXFLAGS) -c $< -o $@
common/ngram-cache.o: \
common/ngram-cache.cpp \
common/ngram-cache.h
$(CXX) $(CXXFLAGS) -c $< -o $@
$(LIB_COMMON): \
$(OBJ_COMMON) \
$(LIB_LLAMA) \
$(LIB_GGML)
$(LIB_COMMON): $(OBJ_COMMON) $(LIB_LLAMA) $(LIB_GGML)
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
$(LIB_COMMON_S): \
$(OBJ_COMMON)
$(LIB_COMMON_S): $(OBJ_COMMON)
ar rcs $(LIB_COMMON_S) $^
# Include dependency files
-include $(DEP_FILES)
# Clean rule
clean:
rm -vrf *.dot $(BUILD_TARGETS) $(TEST_TARGETS)
rm -rvf src/*.o
rm -rvf tests/*.o
rm -rvf examples/*.o
rm -rvf common/*.o
rm -rvf *.a
rm -rvf *.dll
rm -rvf *.so
rm -rvf *.dot
rm -rvf ggml/*.a
rm -rvf ggml/*.dll
rm -rvf ggml/*.so
rm -vrf ggml/src/*.o
rm -rvf ggml/src/llamafile/*.o
rm -rvf common/build-info.cpp
rm -vrf ggml/src/ggml-metal-embed.metal
rm -vrf ggml/src/ggml-cuda/*.o
rm -vrf ggml/src/ggml-cuda/template-instances/*.o
rm -vrf ggml/src/ggml-amx/*.o
rm -rvf $(BUILD_TARGETS)
rm -rvf $(TEST_TARGETS)
rm -f vulkan-shaders-gen ggml/src/ggml-vulkan-shaders.hpp ggml/src/ggml-vulkan-shaders.cpp
rm -rvf $(LEGACY_TARGETS_CLEAN)
find examples pocs -type f -name "*.o" -delete
rm -vrf $(BUILD_TARGETS) $(TEST_TARGETS)
rm -rvf *.a *.dll *.so *.dot
find ggml src common tests examples pocs -type f -name "*.o" -delete
find ggml src common tests examples pocs -type f -name "*.d" -delete
#
# Examples
@ -1455,22 +1337,13 @@ llama-server: \
examples/server/server.cpp \
examples/server/utils.hpp \
examples/server/httplib.h \
examples/server/colorthemes.css.hpp \
examples/server/style.css.hpp \
examples/server/theme-beeninorder.css.hpp \
examples/server/theme-ketivah.css.hpp \
examples/server/theme-mangotango.css.hpp \
examples/server/theme-playground.css.hpp \
examples/server/theme-polarnight.css.hpp \
examples/server/theme-snowstorm.css.hpp \
examples/server/index.html.hpp \
examples/server/index-new.html.hpp \
examples/server/index.js.hpp \
examples/server/completion.js.hpp \
examples/server/system-prompts.js.hpp \
examples/server/prompt-formats.js.hpp \
examples/server/json-schema-to-grammar.mjs.hpp \
examples/server/loading.html.hpp \
examples/server/deps_daisyui.min.css.hpp \
examples/server/deps_markdown-it.js.hpp \
examples/server/deps_tailwindcss.js.hpp \
examples/server/deps_vue.esm-browser.js.hpp \
common/json.hpp \
common/stb_image.h \
$(OBJ_ALL)
@ -1572,11 +1445,6 @@ tests/test-json-schema-to-grammar: tests/test-json-schema-to-grammar.cpp \
$(CXX) $(CXXFLAGS) -Iexamples/server -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-grad0: tests/test-grad0.cpp \
$(OBJ_GGML)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
tests/test-opt: tests/test-opt.cpp \
$(OBJ_GGML)
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)

View file

@ -10,11 +10,16 @@ var sources = [
"src/unicode.cpp",
"src/unicode-data.cpp",
"ggml/src/ggml.c",
"ggml/src/ggml-cpu.c",
"ggml/src/ggml-aarch64.c",
"ggml/src/ggml-alloc.c",
"ggml/src/ggml-backend.cpp",
"ggml/src/ggml-backend-reg.cpp",
"ggml/src/ggml-cpu/ggml-cpu.c",
"ggml/src/ggml-cpu/ggml-cpu.cpp",
"ggml/src/ggml-cpu/ggml-cpu-aarch64.c",
"ggml/src/ggml-cpu/ggml-cpu-quants.c",
"ggml/src/ggml-threading.cpp",
"ggml/src/ggml-quants.c",
"ggml/src/ggml-aarch64.c",
]
var resources: [Resource] = []
@ -22,6 +27,7 @@ var linkerSettings: [LinkerSetting] = []
var cSettings: [CSetting] = [
.unsafeFlags(["-Wno-shorten-64-to-32", "-O3", "-DNDEBUG"]),
.unsafeFlags(["-fno-objc-arc"]),
.headerSearchPath("ggml/src"),
// NOTE: NEW_LAPACK will required iOS version 16.4+
// We should consider add this in the future when we drop support for iOS 14
// (ref: ref: https://developer.apple.com/documentation/accelerate/1513264-cblas_sgemm?language=objc)
@ -30,8 +36,9 @@ var cSettings: [CSetting] = [
]
#if canImport(Darwin)
sources.append("ggml/src/ggml-metal.m")
resources.append(.process("ggml/src/ggml-metal.metal"))
sources.append("ggml/src/ggml-common.h")
sources.append("ggml/src/ggml-metal/ggml-metal.m")
resources.append(.process("ggml/src/ggml-metal/ggml-metal.metal"))
linkerSettings.append(.linkedFramework("Accelerate"))
cSettings.append(
contentsOf: [
@ -61,13 +68,15 @@ let package = Package(
name: "llama",
path: ".",
exclude: [
"build",
"cmake",
"examples",
"scripts",
"models",
"tests",
"CMakeLists.txt",
"Makefile"
"Makefile",
"ggml/src/ggml-metal-embed.metal"
],
sources: sources,
resources: resources,

View file

@ -131,6 +131,7 @@ Typically finetunes of the base models below are supported as well.
- Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp)
- Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig)
- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart)
- Flutter: [xuegao-tzx/Fllama](https://github.com/xuegao-tzx/Fllama)
- PHP (API bindings and features built on top of llama.cpp): [distantmagic/resonance](https://github.com/distantmagic/resonance) [(more info)](https://github.com/ggerganov/llama.cpp/pull/6326)
- Guile Scheme: [guile_llama_cpp](https://savannah.nongnu.org/projects/guile-llama-cpp)
- Swift [srgtuszy/llama-cpp-swift](https://github.com/srgtuszy/llama-cpp-swift)
@ -458,14 +459,14 @@ To learn more how to measure perplexity using llama.cpp, [read this documentatio
- Make sure to read this: [Inference at the edge](https://github.com/ggerganov/llama.cpp/discussions/205)
- A bit of backstory for those who are interested: [Changelog podcast](https://changelog.com/podcast/532)
## Other documentations
## Other documentation
- [main (cli)](./examples/main/README.md)
- [server](./examples/server/README.md)
- [jeopardy](./examples/jeopardy/README.md)
- [GBNF grammars](./grammars/README.md)
**Development documentations**
**Development documentation**
- [How to build](./docs/build.md)
- [Running on Docker](./docs/docker.md)

View file

@ -39,7 +39,7 @@ SRC=`pwd`
CMAKE_EXTRA="-DLLAMA_FATAL_WARNINGS=ON"
if [ ! -z ${GG_BUILD_METAL} ]; then
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON"
CMAKE_EXTRA="${CMAKE_EXTRA} -DGGML_METAL=ON -DGGML_METAL_USE_BF16=ON"
fi
if [ ! -z ${GG_BUILD_CUDA} ]; then

View file

@ -3,18 +3,60 @@ set(LLAMA_BUILD_COMMIT @LLAMA_BUILD_COMMIT@)
set(LLAMA_BUILD_NUMBER @LLAMA_BUILD_NUMBER@)
set(LLAMA_SHARED_LIB @BUILD_SHARED_LIBS@)
set(GGML_BLAS @GGML_BLAS@)
set(GGML_CUDA @GGML_CUDA@)
set(GGML_METAL @GGML_METAL@)
set(GGML_HIPBLAS @GGML_HIPBLAS@)
set(GGML_STATIC @GGML_STATIC@)
set(GGML_NATIVE @GGML_NATIVE@)
set(GGML_LTO @GGML_LTO@)
set(GGML_CCACHE @GGML_CCACHE@)
set(GGML_AVX @GGML_AVX@)
set(GGML_AVX2 @GGML_AVX2@)
set(GGML_AVX512 @GGML_AVX512@)
set(GGML_AVX512_VBMI @GGML_AVX512_VBMI@)
set(GGML_AVX512_VNNI @GGML_AVX512_VNNI@)
set(GGML_AVX512_BF16 @GGML_AVX512_BF16@)
set(GGML_AMX_TILE @GGML_AMX_TILE@)
set(GGML_AMX_INT8 @GGML_AMX_INT8@)
set(GGML_AMX_BF16 @GGML_AMX_BF16@)
set(GGML_FMA @GGML_FMA@)
set(GGML_LASX @GGML_LASX@)
set(GGML_LSX @GGML_LSX@)
set(GGML_RVV @GGML_RVV@)
set(GGML_SVE @GGML_SVE@)
set(GGML_ACCELERATE @GGML_ACCELERATE@)
set(GGML_VULKAN @GGML_VULKAN@)
set(GGML_OPENMP @GGML_OPENMP@)
set(GGML_CPU_HBM @GGML_CPU_HBM@)
set(GGML_BLAS_VENDOR @GGML_BLAS_VENDOR@)
set(GGML_CUDA_FORCE_MMQ @GGML_CUDA_FORCE_MMQ@)
set(GGML_CUDA_FORCE_CUBLAS @GGML_CUDA_FORCE_CUBLAS@)
set(GGML_CUDA_F16 @GGML_CUDA_F16@)
set(GGML_CUDA_PEER_MAX_BATCH_SIZE @GGML_CUDA_PEER_MAX_BATCH_SIZE@)
set(GGML_CUDA_NO_PEER_COPY @GGML_CUDA_NO_PEER_COPY@)
set(GGML_CUDA_NO_VMM @GGML_CUDA_NO_VMM@)
set(GGML_CUDA_FA_ALL_QUANTS @GGML_CUDA_FA_ALL_QUANTS@)
set(GGML_CUDA_GRAPHS @GGML_CUDA_GRAPHS@)
set(GGML_HIP_UMA @GGML_HIP_UMA@)
set(GGML_VULKAN_CHECK_RESULTS @GGML_VULKAN_CHECK_RESULTS@)
set(GGML_VULKAN_DEBUG @GGML_VULKAN_DEBUG@)
set(GGML_VULKAN_MEMORY_DEBUG @GGML_VULKAN_MEMORY_DEBUG@)
set(GGML_VULKAN_SHADER_DEBUG_INFO @GGML_VULKAN_SHADER_DEBUG_INFO@)
set(GGML_VULKAN_PERF @GGML_VULKAN_PERF@)
set(GGML_VULKAN_VALIDATE @GGML_VULKAN_VALIDATE@)
set(GGML_SYCL @GGML_SYCL@)
set(GGML_OPENMP @GGML_OPENMP@)
set(GGML_VULKAN_RUN_TESTS @GGML_VULKAN_RUN_TESTS@)
set(GGML_METAL_USE_BF16 @GGML_METAL_USE_BF16@)
set(GGML_METAL_NDEBUG @GGML_METAL_NDEBUG@)
set(GGML_METAL_SHADER_DEBUG @GGML_METAL_SHADER_DEBUG@)
set(GGML_METAL_EMBED_LIBRARY @GGML_METAL_EMBED_LIBRARY@)
set(GGML_METAL_MACOSX_VERSION_MIN @GGML_METAL_MACOSX_VERSION_MIN@)
set(GGML_METAL_STD @GGML_METAL_STD@)
set(GGML_SYCL_F16 @GGML_SYCL_F16@)
set(GGML_SYCL_TARGET @GGML_SYCL_TARGET@)
set(GGML_SYCL_DEVICE_ARCH @GGML_SYCL_DEVICE_ARCH@)
@PACKAGE_INIT@
@ -22,65 +64,111 @@ set_and_check(LLAMA_INCLUDE_DIR "@PACKAGE_LLAMA_INCLUDE_INSTALL_DIR@")
set_and_check(LLAMA_LIB_DIR "@PACKAGE_LLAMA_LIB_INSTALL_DIR@")
set_and_check(LLAMA_BIN_DIR "@PACKAGE_LLAMA_BIN_INSTALL_DIR@")
# Ensure transient dependencies satisfied
find_package(Threads REQUIRED)
if (APPLE AND GGML_ACCELERATE)
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
set(_llama_link_deps "")
set(_llama_link_opts "")
foreach(_ggml_lib ggml ggml-base)
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
find_library(${_ggml_lib_var} ${_ggml_lib}
REQUIRED
HINTS ${LLAMA_LIB_DIR}
NO_CMAKE_FIND_ROOT_PATH
)
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
message(STATUS "Found ${${_ggml_lib_var}}")
endforeach()
foreach(backend amx blas cann cpu cuda hip kompute metal musa rpc sycl vulkan)
string(TOUPPER "GGML_${backend}" backend_id)
set(_ggml_lib "ggml-${backend}")
string(REPLACE "-" "_" _ggml_lib_var "${_ggml_lib}_LIBRARY")
find_library(${_ggml_lib_var} ${_ggml_lib}
HINTS ${LLAMA_LIB_DIR}
NO_CMAKE_FIND_ROOT_PATH
)
if(${_ggml_lib_var})
list(APPEND _llama_link_deps "${${_ggml_lib_var}}")
set(${backend_id} ON)
message(STATUS "Found backend ${${_ggml_lib_var}}")
else()
set(${backend_id} OFF)
endif()
endforeach()
if (NOT LLAMA_SHARED_LIB)
if (APPLE AND GGML_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate REQUIRED)
endif()
list(APPEND _llama_link_deps ${ACCELERATE_FRAMEWORK})
endif()
if (GGML_BLAS)
if (GGML_OPENMP)
find_package(OpenMP REQUIRED)
list(APPEND _llama_link_deps OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
endif()
if (GGML_CPU_HBM)
find_library(memkind memkind REQUIRED)
list(APPEND _llama_link_deps memkind)
endif()
if (GGML_BLAS)
find_package(BLAS REQUIRED)
endif()
list(APPEND _llama_link_deps ${BLAS_LIBRARIES})
list(APPEND _llama_link_opts ${BLAS_LINKER_FLAGS})
endif()
if (GGML_CUDA)
if (GGML_CUDA)
find_package(CUDAToolkit REQUIRED)
endif()
endif()
if (GGML_METAL)
if (GGML_METAL)
find_library(FOUNDATION_LIBRARY Foundation REQUIRED)
find_library(METAL_FRAMEWORK Metal REQUIRED)
find_library(METALKIT_FRAMEWORK MetalKit REQUIRED)
endif()
list(APPEND _llama_link_deps ${FOUNDATION_LIBRARY}
${METAL_FRAMEWORK} ${METALKIT_FRAMEWORK})
endif()
if (GGML_VULKAN)
if (GGML_VULKAN)
find_package(Vulkan REQUIRED)
endif()
list(APPEND _llama_link_deps Vulkan::Vulkan)
endif()
if (GGML_HIPBLAS)
if (GGML_HIP)
find_package(hip REQUIRED)
find_package(hipblas REQUIRED)
find_package(rocblas REQUIRED)
endif()
list(APPEND _llama_link_deps hip::host roc::rocblas roc::hipblas)
endif()
if (GGML_SYCL)
if (GGML_SYCL)
find_package(DNNL)
if (${DNNL_FOUND} AND GGML_SYCL_TARGET STREQUAL "INTEL")
list(APPEND _llama_link_deps DNNL::dnnl)
endif()
if (WIN32)
find_package(IntelSYCL REQUIRED)
find_package(MKL REQUIRED)
list(APPEND _llama_link_deps IntelSYCL::SYCL_CXX MKL::MKL MKL::MKL_SYCL)
endif()
endif()
endif()
if (GGML_OPENMP)
find_package(OpenMP REQUIRED)
endif()
find_library(ggml_LIBRARY ggml
REQUIRED
HINTS ${LLAMA_LIB_DIR})
find_library(llama_LIBRARY llama
REQUIRED
HINTS ${LLAMA_LIB_DIR})
set(_llama_link_deps "${ggml_LIBRARY}" "@GGML_LINK_LIBRARIES@")
set(_llama_transient_defines "@GGML_TRANSIENT_DEFINES@")
HINTS ${LLAMA_LIB_DIR}
NO_CMAKE_FIND_ROOT_PATH
)
add_library(llama UNKNOWN IMPORTED)
set_target_properties(llama
PROPERTIES
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
INTERFACE_LINK_OPTIONS "${_llama_link_opts}"
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
IMPORTED_LOCATION "${llama_LIBRARY}"

View file

@ -1939,17 +1939,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.simple_io = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
add_opt(common_arg(
{"-ld", "--logdir"}, "LOGDIR",
"path under which to save YAML logs (no logging if unset)",
[](common_params & params, const std::string & value) {
params.logdir = value;
if (params.logdir.back() != DIRECTORY_SEPARATOR) {
params.logdir += DIRECTORY_SEPARATOR;
}
}
));
add_opt(common_arg(
{"--positive-file"}, "FNAME",
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),

View file

@ -875,6 +875,12 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
if (params.ctx_shift && !llama_kv_cache_can_shift(lctx)) {
LOG_ERR("%s: KV cache shifting is not supported for this model (--no-context-shift to disable)'\n", __func__);
llama_free_model(model);
return iparams;
}
if (!params.control_vectors.empty()) {
if (params.control_vector_layer_start <= 0) params.control_vector_layer_start = 1;
if (params.control_vector_layer_end <= 0) params.control_vector_layer_end = llama_n_layer(model);
@ -1890,218 +1896,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
//
// YAML utils
//
void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%e, ", data[i]);
}
fprintf(stream, "%e]\n", data.back());
}
void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%d, ", data[i]);
}
fprintf(stream, "%d]\n", data.back());
}
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
std::string data_str(data == NULL ? "" : data);
if (data_str.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
size_t pos_start = 0;
size_t pos_found = 0;
if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
data_str = "\"" + data_str + "\"";
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
if (data_str.find('\n') == std::string::npos) {
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
fprintf(stream, "%s: |\n", prop_name);
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
pos_start = pos_found + 1;
}
}
void yaml_dump_non_result_info(FILE * stream, const common_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
ggml_cpu_init(); // some ARM features are detected at runtime
const auto & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_cuda: %s\n", ggml_cpu_has_cuda() ? "true" : "false");
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
fprintf(stream, "cpu_has_riscv_v: %s\n", ggml_cpu_has_riscv_v() ? "true" : "false");
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
#ifdef NDEBUG
fprintf(stream, "debug: false\n");
#else
fprintf(stream, "debug: true\n");
#endif // NDEBUG
fprintf(stream, "model_desc: %s\n", model_desc);
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
#ifdef __OPTIMIZE__
fprintf(stream, "optimize: true\n");
#else
fprintf(stream, "optimize: false\n");
#endif // __OPTIMIZE__
fprintf(stream, "time: %s\n", timestamp.c_str());
fprintf(stream, "\n");
fprintf(stream, "###############\n");
fprintf(stream, "# User Inputs #\n");
fprintf(stream, "###############\n");
fprintf(stream, "\n");
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
fprintf(stream, "dry_allowed_length: %d # default: 2\n", sparams.dry_allowed_length);
fprintf(stream, "dry_base: %.2f # default: 1.75\n", sparams.dry_base);
fprintf(stream, "dry_multiplier: %.1f # default: 0.0\n", sparams.dry_multiplier);
fprintf(stream, "dry_penalty_last_n: %d # default: -1 (0 = disable, -1 = context size)\n", sparams.dry_penalty_last_n);
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false");
yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
fprintf(stream, "logit_bias:\n");
for (const auto & logit_bias : sparams.logit_bias) {
fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias);
}
fprintf(stream, "lora:\n");
for (auto & la : params.lora_adapters) {
if (la.scale == 1.0f) {
fprintf(stream, " - %s\n", la.path.c_str());
}
}
fprintf(stream, "lora_scaled:\n");
for (auto & la : params.lora_adapters) {
if (la.scale != 1.0f) {
fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale);
}
}
fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false");
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
fprintf(stream, "reverse_prompt:\n");
for (std::string ap : params.antiprompt) {
size_t pos = 0;
while ((pos = ap.find('\n', pos)) != std::string::npos) {
ap.replace(pos, 1, "\\n");
pos += 1;
}
fprintf(stream, " - %s\n", ap.c_str());
}
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency());
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
fprintf(stream, "xtc_probability: %f # default: 0.0\n", sparams.xtc_probability);
fprintf(stream, "xtc_threshold: %f # default: 0.1\n", sparams.xtc_threshold);
fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
}

View file

@ -178,7 +178,7 @@ struct common_params {
float yarn_beta_fast = 32.0f; // YaRN low correction dim
float yarn_beta_slow = 1.0f; // YaRN high correction dim
int32_t yarn_orig_ctx = 0; // YaRN original context length
float defrag_thold = -1.0f; // KV cache defragmentation threshold
float defrag_thold = 0.1f; // KV cache defragmentation threshold
struct cpu_params cpuparams;
struct cpu_params cpuparams_batch;
@ -209,7 +209,6 @@ struct common_params {
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
@ -584,15 +583,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
static const char * const LLM_KV_SPLIT_NO = "split.no";
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
//
// YAML utils
//
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
void yaml_dump_non_result_info(
FILE * stream, const common_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);

View file

@ -3040,6 +3040,11 @@ class OlmoModel(Model):
return [(self.map_tensor_name(name), data_torch)]
@Model.register("Olmo1124ForCausalLM")
class Olmo1124Model(Model):
model_arch = gguf.MODEL_ARCH.OLMO_1124
@Model.register("OlmoeForCausalLM")
class OlmoeModel(Model):
model_arch = gguf.MODEL_ARCH.OLMOE
@ -3748,10 +3753,7 @@ class JaisModel(Model):
# Embeddings scale
self.embeddings_scale = 1.0
# note: For some JAIS flavors, output is tied to (same as) wte in original model
self.output_is_wte = False
if 'mup_embeddings_scale' in self.hparams:
self.output_is_wte = True # Hack (?)
self.embeddings_scale = self.hparams['mup_embeddings_scale']
elif 'embeddings_scale' in self.hparams:
self.embeddings_scale = self.hparams['embeddings_scale']
@ -3808,10 +3810,7 @@ class JaisModel(Model):
if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
tensors.append((new_name, data_torch * self.embeddings_scale))
if self.output_is_wte:
tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
assert not self.output_is_wte
tensors.append((new_name, data_torch * self.width_scale))
else:
tensors.append((new_name, data_torch))

View file

@ -34,13 +34,16 @@ The SYCL backend would be broken by some PRs due to no online CI.
The following release is verified with good quality:
|Commit ID|Tag|Release|Verified Platform|
|-|-|-|-|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1|
|Commit ID|Tag|Release|Verified Platform| Update date|
|-|-|-|-|-|
|3bcd40b3c593d14261fb2abfabad3c0fb5b9e318|b4040 |[llama-b4040-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b4040/llama-b4040-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1| 2024-11-19|
|fb76ec31a9914b7761c1727303ab30380fd4f05c|b3038 |[llama-b3038-bin-win-sycl-x64.zip](https://github.com/ggerganov/llama.cpp/releases/download/b3038/llama-b3038-bin-win-sycl-x64.zip) |Arc770/Linux/oneAPI 2024.1<br>MTL Arc GPU/Windows 11/oneAPI 2024.1||
## News
- 2024.11
- Use syclcompat to improve the performance on some platforms. This requires to use oneAPI 2025.0 or newer.
- 2024.8
- Use oneDNN as the default GEMM library, improve the compatibility for new Intel GPUs.
@ -310,12 +313,14 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithCublas/include:$CPLUS_INCLUDE_
export CPLUS_INCLUDE_DIR=/path/to/oneMKL/include:$CPLUS_INCLUDE_DIR
# Build LLAMA with Nvidia BLAS acceleration through SYCL
# Setting GGML_SYCL_DEVICE_ARCH is optional but can improve performance
GGML_SYCL_DEVICE_ARCH=sm_80 # Example architecture
# Option 1: Use FP32 (recommended for better performance in most cases)
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Option 2: Use FP16
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=NVIDIA -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL_F16=ON
# build all binary
cmake --build build --config Release -j -v
@ -333,8 +338,9 @@ export CPLUS_INCLUDE_DIR=/path/to/oneMKL/buildWithrocBLAS/include:$CPLUS_INCLUDE
## AMD
# Use FP32, FP16 is not supported
# Find your GGML_SYCL_HIP_TARGET with rocminfo, under the key 'Name:'
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_HIP_TARGET=${GGML_SYCL_HIP_TARGET} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# Find your GGML_SYCL_DEVICE_ARCH with rocminfo, under the key 'Name:'
GGML_SYCL_DEVICE_ARCH=gfx90a # Example architecture
cmake -B build -DGGML_SYCL=ON -DGGML_SYCL_TARGET=AMD -DGGML_SYCL_DEVICE_ARCH=${GGML_SYCL_DEVICE_ARCH} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx
# build all binary
cmake --build build --config Release -j -v
@ -644,6 +650,7 @@ use 1 SYCL GPUs: [0] with Max compute units:512
|--------------------|---------------------------------------|---------------------------------------------|
| GGML_SYCL | ON (mandatory) | Enable build with SYCL code path.<br>FP32 path - recommended for better perforemance than FP16 on quantized model|
| GGML_SYCL_TARGET | INTEL *(default)* \| NVIDIA \| AMD | Set the SYCL target device type. |
| GGML_SYCL_DEVICE_ARCH | Optional (except for AMD) | Set the SYCL device architecture, optional except for AMD. Setting the device architecture can improve the performance. See the table [--offload-arch](https://github.com/intel/llvm/blob/sycl/sycl/doc/design/OffloadDesign.md#--offload-arch) for a list of valid architectures. |
| GGML_SYCL_F16 | OFF *(default)* \|ON *(optional)* | Enable FP16 build with SYCL code path. |
| CMAKE_C_COMPILER | `icx` *(Linux)*, `icx/cl` *(Windows)* | Set `icx` compiler for SYCL code path. |
| CMAKE_CXX_COMPILER | `icpx` *(Linux)*, `icx` *(Windows)* | Set `icpx/icx` compiler for SYCL code path. |

View file

@ -186,13 +186,9 @@ The following compilation options are also available to tweak performance:
| Option | Legal values | Default | Description |
|-------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_FORCE_DMMV | Boolean | false | Force the use of dequantization + matrix vector multiplication kernels instead of using kernels that do matrix vector multiplication on quantized data. By default the decision is made based on compute capability (MMVQ for 6.1/Pascal/GTX 1000 or higher). Does not affect k-quants. |
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the CUDA dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the CUDA mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. |
| GGML_CUDA_FORCE_MMQ | Boolean | false | Force the use of custom matrix multiplication kernels for quantized models instead of FP16 cuBLAS even if there is no int8 tensor core implementation available (affects V100, RDNA3). MMQ kernels are enabled by default on GPUs with int8 tensor core support. With MMQ force enabled, speed for large batch sizes will be worse but VRAM consumption will be lower. |
| GGML_CUDA_FORCE_CUBLAS | Boolean | false | Force the use of FP16 cuBLAS instead of custom matrix multiplication kernels for quantized models |
| GGML_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| GGML_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
| GGML_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
@ -230,7 +226,7 @@ You can download it from your Linux distro's package manager or from here: [ROCm
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build --config Release -- -j 16
```
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DGGML_HIP_UMA=ON`.
@ -247,7 +243,7 @@ You can download it from your Linux distro's package manager or from here: [ROCm
```bash
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
cmake -S . -B build -DGGML_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
cmake -S . -B build -DGGML_HIP=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
&& cmake --build build -- -j 16
```
@ -259,7 +255,7 @@ You can download it from your Linux distro's package manager or from here: [ROCm
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
```bash
set PATH=%HIP_PATH%\bin;%PATH%
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DGGML_HIP=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
cmake --build build
```
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
@ -268,13 +264,6 @@ You can download it from your Linux distro's package manager or from here: [ROCm
The environment variable [`HIP_VISIBLE_DEVICES`](https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html#hip-visible-devices) can be used to specify which GPU(s) will be used.
If your GPU is not officially supported you can use the environment variable [`HSA_OVERRIDE_GFX_VERSION`] set to a similar GPU, for example 10.3.0 on RDNA2 (e.g. gfx1030, gfx1031, or gfx1035) or 11.0.0 on RDNA3.
The following compilation options are also available to tweak performance (yes, they refer to CUDA, not HIP, because it uses the same code as the cuBLAS version above):
| Option | Legal values | Default | Description |
|------------------------|------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GGML_CUDA_DMMV_X | Positive integer >= 32 | 32 | Number of values in x direction processed by the HIP dequantization + matrix vector multiplication kernel per iteration. Increasing this value can improve performance on fast GPUs. Power of 2 heavily recommended. Does not affect k-quants. |
| GGML_CUDA_MMV_Y | Positive integer | 1 | Block size in y direction for the HIP mul mat vec kernels. Increasing this value can improve performance on fast GPUs. Power of 2 recommended. Does not affect k-quants. |
| GGML_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per HIP thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
### Vulkan
@ -282,9 +271,9 @@ The following compilation options are also available to tweak performance (yes,
#### w64devkit
Download and extract [w64devkit](https://github.com/skeeto/w64devkit/releases).
Download and extract [`w64devkit`](https://github.com/skeeto/w64devkit/releases).
Download and install the [Vulkan SDK](https://vulkan.lunarg.com/sdk/home#windows). When selecting components, only the Vulkan SDK Core is required.
Download and install the [`Vulkan SDK`](https://vulkan.lunarg.com/sdk/home#windows) with the default settings.
Launch `w64devkit.exe` and run the following commands to copy Vulkan dependencies:
```sh
@ -302,6 +291,29 @@ EOF
```
Switch into the `llama.cpp` directory and run `make GGML_VULKAN=1`.
#### Git Bash MINGW64
Download and install [`Git-SCM`](https://git-scm.com/downloads/win) with the default settings
Download and install [`Visual Studio Community Edition`](https://visualstudio.microsoft.com/) and make sure you select `C++`
Download and install [`CMake`](https://cmake.org/download/) with the default settings
Download and install the [`Vulkan SDK`](https://vulkan.lunarg.com/sdk/home#windows) with the default settings.
Go into your `llama.cpp` directory and right click, select `Open Git Bash Here` and then run the following commands
```
cmake -B build -DGGML_VULKAN=ON
cmake --build build --config Release
```
Now you can load the model in conversation mode using `Vulkan`
```
build/bin/release/llama-cli -m "[PATH TO MODEL]" -ngl 100 -c 16384 -t 10 -n -2 -cnv
```
#### MSYS2
Install [MSYS2](https://www.msys2.org/) and then run the following commands in a UCRT terminal to install dependencies.
```sh
@ -375,7 +387,7 @@ cmake --build build --config release
You can test with:
`./build/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -ngl 32`
`./build/bin/llama-cli -m PATH_TO_MODEL -p "Building a website can be done in 10 steps:" -ngl 32`
If the fllowing info is output on screen, you are using `llama.cpp by CANN backend`:
```bash

View file

@ -23,8 +23,9 @@ CUR_PROMPT_CACHE="${CHAT_SAVE_DIR}/current-cache.bin"
NEXT_PROMPT_FILE="${CHAT_SAVE_DIR}/next-prompt.txt"
NEXT_PROMPT_CACHE="${CHAT_SAVE_DIR}/next-cache.bin"
SESSION_SIZE_MSG_PATTERN='main: session file matches [[:digit:]]+ / [[:digit:]]+'
SAMPLE_TIME_MSG_PATTERN='sample time =[[:space:]]+[[:digit:]]+.[[:digit:]]+ ms /[[:space:]]+[[:digit:]]+'
SESSION_AND_SAMPLE_PATTERN='main: session file matches [[:digit:]]+ / [[:digit:]]+'\
'|'\
'sampling time =[[:space:]]+[[:digit:]]+.[[:digit:]]+ ms /[[:space:]]+[[:digit:]]+'
SED_DELETE_MESSAGES="/^(${USER_NAME}:|${AI_NAME}:|\\.\\.\\.)/,\$d"
CTX_SIZE=2048
@ -129,15 +130,12 @@ while read -e line; do
printf ' '
# HACK get num tokens from debug message
# TODO get both messages in one go
if ! session_size_msg="$(tail -n30 "$LOG" | grep -oE "$SESSION_SIZE_MSG_PATTERN")" ||
! sample_time_msg="$(tail -n10 "$LOG" | grep -oE "$SAMPLE_TIME_MSG_PATTERN")"; then
if ! session_and_sample_msg=$(tail -n30 "$LOG" | grep -oE "$SESSION_AND_SAMPLE_PATTERN"); then
echo >&2 "Couldn't get number of tokens from ./llama-cli output!"
exit 1
fi
n_tokens=$(($(cut -d/ -f2 <<<"$session_size_msg") + $(cut -d/ -f2 <<<"$sample_time_msg")))
n_tokens=$(awk '{sum+=$1} END {print sum}' <<< "$(cut -d/ -f2 <<< "$session_and_sample_msg")")
if ((n_tokens > CTX_ROTATE_POINT)); then
tail -c+$((n_prompt_len_pre + 1)) "$CUR_PROMPT_FILE" >>"$NEXT_PROMPT_FILE"

View file

@ -840,6 +840,8 @@ class OutputFile:
self.gguf.add_base_model_version(key, base_model_entry["version"])
if "organization" in base_model_entry:
self.gguf.add_base_model_organization(key, base_model_entry["organization"])
if "description" in base_model_entry:
self.gguf.add_base_model_description(key, base_model_entry["description"])
if "url" in base_model_entry:
self.gguf.add_base_model_url(key, base_model_entry["url"])
if "doi" in base_model_entry:
@ -849,12 +851,32 @@ class OutputFile:
if "repo_url" in base_model_entry:
self.gguf.add_base_model_repo_url(key, base_model_entry["repo_url"])
if metadata.datasets is not None:
self.gguf.add_dataset_count(len(metadata.datasets))
for key, dataset_entry in enumerate(metadata.datasets):
if "name" in dataset_entry:
self.gguf.add_dataset_name(key, dataset_entry["name"])
if "author" in dataset_entry:
self.gguf.add_dataset_author(key, dataset_entry["author"])
if "version" in dataset_entry:
self.gguf.add_dataset_version(key, dataset_entry["version"])
if "organization" in dataset_entry:
self.gguf.add_dataset_organization(key, dataset_entry["organization"])
if "description" in dataset_entry:
self.gguf.add_dataset_description(key, dataset_entry["description"])
if "url" in dataset_entry:
self.gguf.add_dataset_url(key, dataset_entry["url"])
if "doi" in dataset_entry:
self.gguf.add_dataset_doi(key, dataset_entry["doi"])
if "uuid" in dataset_entry:
self.gguf.add_dataset_uuid(key, dataset_entry["uuid"])
if "repo_url" in dataset_entry:
self.gguf.add_dataset_repo_url(key, dataset_entry["repo_url"])
if metadata.tags is not None:
self.gguf.add_tags(metadata.tags)
if metadata.languages is not None:
self.gguf.add_languages(metadata.languages)
if metadata.datasets is not None:
self.gguf.add_datasets(metadata.datasets)
def add_meta_arch(self, params: Params) -> None:
# Metadata About The Neural Architecture Itself

View file

@ -43,50 +43,6 @@ static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
static void write_logfile(
const llama_context * ctx, const common_params & params, const llama_model * model,
const std::vector<llama_token> & input_tokens, const std::string & output,
const std::vector<llama_token> & output_tokens
) {
if (params.logdir.empty()) {
return;
}
const std::string timestamp = string_get_sortable_timestamp();
const bool success = fs_create_directory_with_parents(params.logdir);
if (!success) {
LOG_ERR("%s: warning: failed to create logdir %s, cannot write logfile\n",
__func__, params.logdir.c_str());
return;
}
const std::string logfile_path = params.logdir + timestamp + ".yml";
FILE * logfile = fopen(logfile_path.c_str(), "w");
if (logfile == NULL) {
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
return;
}
fprintf(logfile, "binary: infill\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "# Generation Results #\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
@ -96,7 +52,6 @@ static void sigint_handler(int signo) {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
// make sure all logs are flushed
LOG("Interrupted by user\n");
@ -625,7 +580,6 @@ int main(int argc, char ** argv) {
LOG("\n");
common_perf_print(ctx, smpl);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
llama_free(ctx);
llama_free_model(model);

View file

@ -6,28 +6,28 @@
#include <clocale>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <cstdlib>
#include <iterator>
#include <map>
#include <numeric>
#include <regex>
#include <sstream>
#include <string>
#include <vector>
#include <thread>
#include <vector>
#include "common.h"
#include "ggml.h"
#include "llama.h"
#include "common.h"
#ifdef _WIN32
#define WIN32_LEAN_AND_MEAN
#ifndef NOMINMAX
# define WIN32_LEAN_AND_MEAN
# ifndef NOMINMAX
# define NOMINMAX
#endif
#include <windows.h>
# endif
# include <windows.h>
#endif
// utils
@ -36,8 +36,7 @@ static uint64_t get_time_ns() {
return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
}
template<class T>
static std::string join(const std::vector<T> & values, const std::string & delim) {
template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
std::ostringstream str;
for (size_t i = 0; i < values.size(); i++) {
str << values[i];
@ -48,30 +47,27 @@ static std::string join(const std::vector<T> & values, const std::string & delim
return str.str();
}
template<typename T, typename F>
static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
std::vector<std::string> str_values;
std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
return str_values;
}
template<typename T>
static T avg(const std::vector<T> & v) {
template <typename T> static T avg(const std::vector<T> & v) {
if (v.empty()) {
return 0;
}
T sum = std::accumulate(v.begin(), v.end(), T(0));
return sum / (T)v.size();
return sum / (T) v.size();
}
template<typename T>
static T stdev(const std::vector<T> & v) {
template <typename T> static T stdev(const std::vector<T> & v) {
if (v.size() <= 1) {
return 0;
}
T mean = avg(v);
T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
return stdev;
}
@ -100,17 +96,24 @@ static std::string get_gpu_info() {
}
// command line params
enum output_formats {NONE, CSV, JSON, JSONL, MARKDOWN, SQL};
enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
static const char * output_format_str(output_formats format) {
switch (format) {
case NONE: return "none";
case CSV: return "csv";
case JSON: return "json";
case JSONL: return "jsonl";
case MARKDOWN: return "md";
case SQL: return "sql";
default: GGML_ABORT("invalid output format");
case NONE:
return "none";
case CSV:
return "csv";
case JSON:
return "json";
case JSONL:
return "jsonl";
case MARKDOWN:
return "md";
case SQL:
return "sql";
default:
GGML_ABORT("invalid output format");
}
}
@ -135,10 +138,14 @@ static bool output_format_from_str(const std::string & s, output_formats & forma
static const char * split_mode_str(llama_split_mode mode) {
switch (mode) {
case LLAMA_SPLIT_MODE_NONE: return "none";
case LLAMA_SPLIT_MODE_LAYER: return "layer";
case LLAMA_SPLIT_MODE_ROW: return "row";
default: GGML_ABORT("invalid split mode");
case LLAMA_SPLIT_MODE_NONE:
return "none";
case LLAMA_SPLIT_MODE_LAYER:
return "layer";
case LLAMA_SPLIT_MODE_ROW:
return "row";
default:
GGML_ABORT("invalid split mode");
}
}
@ -181,27 +188,27 @@ struct cmd_params {
};
static const cmd_params cmd_params_defaults = {
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
/* n_prompt */ {512},
/* n_gen */ {128},
/* model */ { "models/7B/ggml-model-q4_0.gguf" },
/* n_prompt */ { 512 },
/* n_gen */ { 128 },
/* n_pg */ {},
/* n_batch */ {2048},
/* n_ubatch */ {512},
/* type_k */ {GGML_TYPE_F16},
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {cpu_get_num_math()},
/* cpu_mask */ {"0x0"},
/* cpu_strict */ {false},
/* poll */ {50},
/* n_gpu_layers */ {99},
/* rpc_servers */ {""},
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* main_gpu */ {0},
/* no_kv_offload */ {false},
/* flash_attn */ {false},
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
/* use_mmap */ {true},
/* embeddings */ {false},
/* n_batch */ { 2048 },
/* n_ubatch */ { 512 },
/* type_k */ { GGML_TYPE_F16 },
/* type_v */ { GGML_TYPE_F16 },
/* n_threads */ { cpu_get_num_math() },
/* cpu_mask */ { "0x0" },
/* cpu_strict */ { false },
/* poll */ { 50 },
/* n_gpu_layers */ { 99 },
/* rpc_servers */ { "" },
/* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
/* main_gpu */ { 0 },
/* no_kv_offload */ { false },
/* flash_attn */ { false },
/* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
/* use_mmap */ { true },
/* embeddings */ { false },
/* numa */ GGML_NUMA_STRATEGY_DISABLED,
/* reps */ 5,
/* prio */ GGML_SCHED_PRIO_NORMAL,
@ -218,44 +225,68 @@ static void print_usage(int /* argc */, char ** argv) {
printf("options:\n");
printf(" -h, --help\n");
printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
printf(" -p, --n-prompt <n> (default: %s)\n",
join(cmd_params_defaults.n_prompt, ",").c_str());
printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n", join(cmd_params_defaults.cpu_mask, ",").c_str());
printf(" --cpu-strict <0|1> (default: %s)\n", join(cmd_params_defaults.cpu_strict, ",").c_str());
printf(" -pg <pp,tg> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
printf(" -b, --batch-size <n> (default: %s)\n",
join(cmd_params_defaults.n_batch, ",").c_str());
printf(" -ub, --ubatch-size <n> (default: %s)\n",
join(cmd_params_defaults.n_ubatch, ",").c_str());
printf(" -ctk, --cache-type-k <t> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
printf(" -ctv, --cache-type-v <t> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
printf(" -t, --threads <n> (default: %s)\n",
join(cmd_params_defaults.n_threads, ",").c_str());
printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
join(cmd_params_defaults.cpu_mask, ",").c_str());
printf(" --cpu-strict <0|1> (default: %s)\n",
join(cmd_params_defaults.cpu_strict, ",").c_str());
printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
join(cmd_params_defaults.n_gpu_layers, ",").c_str());
if (llama_supports_rpc()) {
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
join(cmd_params_defaults.rpc_servers, ",").c_str());
}
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
printf(" -mg, --main-gpu <i> (default: %s)\n",
join(cmd_params_defaults.main_gpu, ",").c_str());
printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
join(cmd_params_defaults.no_kv_offload, ",").c_str());
printf(" -fa, --flash-attn <0|1> (default: %s)\n",
join(cmd_params_defaults.flash_attn, ",").c_str());
printf(" -mmp, --mmap <0|1> (default: %s)\n",
join(cmd_params_defaults.use_mmap, ",").c_str());
printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -embd, --embeddings <0|1> (default: %s)\n",
join(cmd_params_defaults.embeddings, ",").c_str());
printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n",
output_format_str(cmd_params_defaults.output_format));
printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n",
output_format_str(cmd_params_defaults.output_format_stderr));
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
printf("\n");
printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
printf(
"Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter "
"multiple times.\n");
}
static ggml_type ggml_type_from_name(const std::string & s) {
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "bf16") {
return GGML_TYPE_BF16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
@ -278,7 +309,6 @@ static ggml_type ggml_type_from_name(const std::string & s) {
return GGML_TYPE_COUNT;
}
static cmd_params parse_cmd_params(int argc, char ** argv) {
cmd_params params;
std::string arg;
@ -335,7 +365,7 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
invalid_param = true;
break;
}
params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
} else if (arg == "-b" || arg == "--batch-size") {
if (++i >= argc) {
invalid_param = true;
@ -473,10 +503,16 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
break;
} else {
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { invalid_param = true; break; }
/**/ if (value == "distribute" || value == "") {
params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
} else if (value == "isolate") {
params.numa = GGML_NUMA_STRATEGY_ISOLATE;
} else if (value == "numactl") {
params.numa = GGML_NUMA_STRATEGY_NUMACTL;
} else {
invalid_param = true;
break;
}
}
} else if (arg == "-fa" || arg == "--flash-attn") {
if (++i >= argc) {
@ -506,9 +542,9 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
for (auto ts : string_split<std::string>(argv[i], split_delim)) {
// split string by ; and /
const std::regex regex{R"([;/]+)"};
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
const std::regex regex{ R"([;/]+)" };
std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
std::vector<std::string> split_arg{ it, {} };
GGML_ASSERT(split_arg.size() <= llama_max_devices());
std::vector<float> tensor_split(llama_max_devices());
@ -567,27 +603,69 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
}
// set defaults
if (params.model.empty()) { params.model = cmd_params_defaults.model; }
if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
if (params.cpu_mask.empty()) { params.cpu_mask = cmd_params_defaults.cpu_mask; }
if (params.cpu_strict.empty()) { params.cpu_strict = cmd_params_defaults.cpu_strict; }
if (params.poll.empty()) { params.poll = cmd_params_defaults.poll; }
if (params.model.empty()) {
params.model = cmd_params_defaults.model;
}
if (params.n_prompt.empty()) {
params.n_prompt = cmd_params_defaults.n_prompt;
}
if (params.n_gen.empty()) {
params.n_gen = cmd_params_defaults.n_gen;
}
if (params.n_pg.empty()) {
params.n_pg = cmd_params_defaults.n_pg;
}
if (params.n_batch.empty()) {
params.n_batch = cmd_params_defaults.n_batch;
}
if (params.n_ubatch.empty()) {
params.n_ubatch = cmd_params_defaults.n_ubatch;
}
if (params.type_k.empty()) {
params.type_k = cmd_params_defaults.type_k;
}
if (params.type_v.empty()) {
params.type_v = cmd_params_defaults.type_v;
}
if (params.n_gpu_layers.empty()) {
params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
}
if (params.rpc_servers.empty()) {
params.rpc_servers = cmd_params_defaults.rpc_servers;
}
if (params.split_mode.empty()) {
params.split_mode = cmd_params_defaults.split_mode;
}
if (params.main_gpu.empty()) {
params.main_gpu = cmd_params_defaults.main_gpu;
}
if (params.no_kv_offload.empty()) {
params.no_kv_offload = cmd_params_defaults.no_kv_offload;
}
if (params.flash_attn.empty()) {
params.flash_attn = cmd_params_defaults.flash_attn;
}
if (params.tensor_split.empty()) {
params.tensor_split = cmd_params_defaults.tensor_split;
}
if (params.use_mmap.empty()) {
params.use_mmap = cmd_params_defaults.use_mmap;
}
if (params.embeddings.empty()) {
params.embeddings = cmd_params_defaults.embeddings;
}
if (params.n_threads.empty()) {
params.n_threads = cmd_params_defaults.n_threads;
}
if (params.cpu_mask.empty()) {
params.cpu_mask = cmd_params_defaults.cpu_mask;
}
if (params.cpu_strict.empty()) {
params.cpu_strict = cmd_params_defaults.cpu_strict;
}
if (params.poll.empty()) {
params.poll = cmd_params_defaults.poll;
}
return params;
}
@ -630,12 +708,8 @@ struct cmd_params_instance {
}
bool equal_mparams(const cmd_params_instance & other) const {
return model == other.model &&
n_gpu_layers == other.n_gpu_layers &&
rpc_servers == other.rpc_servers &&
split_mode == other.split_mode &&
main_gpu == other.main_gpu &&
use_mmap == other.use_mmap &&
return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers &&
split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
tensor_split == other.tensor_split;
}
@ -659,6 +733,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
std::vector<cmd_params_instance> instances;
// this ordering minimizes the number of times that each model needs to be reloaded
// clang-format off
for (const auto & m : params.model)
for (const auto & nl : params.n_gpu_layers)
for (const auto & rpc : params.rpc_servers)
@ -764,6 +839,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
instances.push_back(instance);
}
}
// clang-format on
return instances;
}
@ -771,13 +847,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
struct test {
static const std::string build_commit;
static const int build_number;
static const bool cuda;
static const bool vulkan;
static const bool kompute;
static const bool metal;
static const bool sycl;
static const bool gpu_blas;
static const bool blas;
static const std::string cpu_info;
static const std::string gpu_info;
std::string model_filename;
@ -790,7 +859,6 @@ struct test {
std::string cpu_mask;
bool cpu_strict;
int poll;
bool has_rpc;
ggml_type type_k;
ggml_type type_v;
int n_gpu_layers;
@ -819,7 +887,6 @@ struct test {
cpu_mask = inst.cpu_mask;
cpu_strict = inst.cpu_strict;
poll = inst.poll;
has_rpc = !inst.rpc_servers.empty();
type_k = inst.type_k;
type_v = inst.type_v;
n_gpu_layers = inst.n_gpu_layers;
@ -840,28 +907,21 @@ struct test {
(void) ctx;
}
uint64_t avg_ns() const {
return ::avg(samples_ns);
}
uint64_t avg_ns() const { return ::avg(samples_ns); }
uint64_t stdev_ns() const {
return ::stdev(samples_ns);
}
uint64_t stdev_ns() const { return ::stdev(samples_ns); }
std::vector<double> get_ts() const {
int n_tokens = n_prompt + n_gen;
std::vector<double> ts;
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
[n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
return ts;
}
double avg_ts() const {
return ::avg(get_ts());
}
double avg_ts() const { return ::avg(get_ts()); }
double stdev_ts() const {
return ::stdev(get_ts());
}
double stdev_ts() const { return ::stdev(get_ts()); }
static std::string get_backend() {
std::vector<std::string> backends;
@ -877,38 +937,27 @@ struct test {
static const std::vector<std::string> & get_fields() {
static const std::vector<std::string> fields = {
"build_commit", "build_number",
"cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
"cpu_info", "gpu_info",
"model_filename", "model_type", "model_size", "model_n_params",
"n_batch", "n_ubatch",
"n_threads", "cpu_mask", "cpu_strict", "poll",
"type_k", "type_v",
"n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload", "flash_attn",
"tensor_split", "use_mmap", "embeddings",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
"model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
"cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
"split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap",
"embeddings", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns",
"avg_ts", "stddev_ts",
};
return fields;
}
enum field_type {STRING, BOOL, INT, FLOAT};
enum field_type { STRING, BOOL, INT, FLOAT };
static field_type get_field_type(const std::string & field) {
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
field == "n_threads" || field == "poll" ||
field == "model_size" || field == "model_n_params" ||
field == "n_gpu_layers" || field == "main_gpu" ||
field == "n_prompt" || field == "n_gen" ||
field == "avg_ns" || field == "stddev_ns") {
if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" ||
field == "stddev_ns") {
return INT;
}
if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
field == "cpu_strict" ||
field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
field == "use_mmap" || field == "embeddings") {
return BOOL;
}
if (field == "avg_ts" || field == "stddev_ts") {
@ -933,22 +982,38 @@ struct test {
tensor_split_str += "/";
}
}
std::vector<std::string> values = {
build_commit, std::to_string(build_number),
std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
cpu_info, gpu_info,
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
std::to_string(n_batch), std::to_string(n_ubatch),
std::to_string(n_threads), cpu_mask, std::to_string(cpu_strict), std::to_string(poll),
ggml_type_name(type_k), ggml_type_name(type_v),
std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts())
};
std::vector<std::string> values = { build_commit,
std::to_string(build_number),
cpu_info,
gpu_info,
get_backend(),
model_filename,
model_type,
std::to_string(model_size),
std::to_string(model_n_params),
std::to_string(n_batch),
std::to_string(n_ubatch),
std::to_string(n_threads),
cpu_mask,
std::to_string(cpu_strict),
std::to_string(poll),
ggml_type_name(type_k),
ggml_type_name(type_v),
std::to_string(n_gpu_layers),
split_mode_str(split_mode),
std::to_string(main_gpu),
std::to_string(no_kv_offload),
std::to_string(flash_attn),
tensor_split_str,
std::to_string(use_mmap),
std::to_string(embeddings),
std::to_string(n_prompt),
std::to_string(n_gen),
test_time,
std::to_string(avg_ns()),
std::to_string(stdev_ns()),
std::to_string(avg_ts()),
std::to_string(stdev_ts()) };
return values;
}
@ -956,21 +1021,14 @@ struct test {
std::map<std::string, std::string> map;
auto fields = get_fields();
auto values = get_values();
std::transform(fields.begin(), fields.end(), values.begin(),
std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
std::make_pair<const std::string &, const std::string &>);
return map;
}
};
const std::string test::build_commit = LLAMA_COMMIT;
const int test::build_number = LLAMA_BUILD_NUMBER;
const bool test::cuda = !!ggml_cpu_has_cuda();
const bool test::vulkan = !!ggml_cpu_has_vulkan();
const bool test::kompute = !!ggml_cpu_has_kompute();
const bool test::metal = !!ggml_cpu_has_metal();
const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
const bool test::blas = !!ggml_cpu_has_blas();
const bool test::sycl = !!ggml_cpu_has_sycl();
const std::string test::cpu_info = get_cpu_info();
const std::string test::gpu_info = get_gpu_info();
@ -978,9 +1036,12 @@ struct printer {
virtual ~printer() {}
FILE * fout;
virtual void print_header(const cmd_params & params) { (void) params; }
virtual void print_test(const test & t) = 0;
virtual void print_footer() { }
virtual void print_footer() {}
};
struct csv_printer : public printer {
@ -1009,7 +1070,6 @@ struct csv_printer : public printer {
}
};
static std::string escape_json(const std::string & value) {
std::string escaped;
for (auto c : value) {
@ -1050,7 +1110,8 @@ struct json_printer : public printer {
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
assert(fields.size() == values.size());
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
format_json_value(fields.at(i), values.at(i)).c_str());
}
}
@ -1068,12 +1129,9 @@ struct json_printer : public printer {
fflush(fout);
}
void print_footer() override {
fprintf(fout, "\n]\n");
}
void print_footer() override { fprintf(fout, "\n]\n"); }
};
struct jsonl_printer : public printer {
void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
assert(fields.size() == values.size());
@ -1133,7 +1191,7 @@ struct markdown_printer : public printer {
return 13;
}
int width = std::max((int)field.length(), 10);
int width = std::max((int) field.length(), 10);
if (test::get_field_type(field) == test::STRING) {
return -width;
@ -1175,7 +1233,8 @@ struct markdown_printer : public printer {
fields.emplace_back("size");
fields.emplace_back("params");
fields.emplace_back("backend");
bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
test::get_backend().find("BLAS") != std::string::npos;
if (!is_cpu_backend) {
fields.emplace_back("n_gpu_layers");
}
@ -1250,14 +1309,14 @@ struct markdown_printer : public printer {
if (field == "model") {
value = t.model_type;
} else if (field == "size") {
if (t.model_size < 1024*1024*1024) {
if (t.model_size < 1024 * 1024 * 1024) {
snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
} else {
snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
}
value = buf;
} else if (field == "params") {
if (t.model_n_params < 1000*1000*1000) {
if (t.model_n_params < 1000 * 1000 * 1000) {
snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
} else {
snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
@ -1265,9 +1324,6 @@ struct markdown_printer : public printer {
value = buf;
} else if (field == "backend") {
value = test::get_backend();
if (t.has_rpc) {
value += "+RPC";
}
} else if (field == "test") {
if (t.n_prompt > 0 && t.n_gen == 0) {
snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
@ -1322,7 +1378,8 @@ struct sql_printer : public printer {
std::vector<std::string> fields = test::get_fields();
fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
for (size_t i = 0; i < fields.size(); i++) {
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
i < fields.size() - 1 ? "," : "");
}
fprintf(fout, ");\n");
fprintf(fout, "\n");
@ -1451,7 +1508,7 @@ int main(int argc, char ** argv) {
int params_idx = 0;
auto params_count = params_instances.size();
for (const auto & inst : params_instances) {
params_idx ++;
params_idx++;
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count);
}
@ -1494,7 +1551,7 @@ int main(int argc, char ** argv) {
tpp.poll = t.poll;
tpp.prio = params.prio;
struct ggml_threadpool* threadpool = ggml_threadpool_new(&tpp);
struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp);
if (!threadpool) {
fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
exit(1);
@ -1524,13 +1581,15 @@ int main(int argc, char ** argv) {
if (t.n_prompt > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count, i + 1, params.reps);
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count, i + 1, params.reps);
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_gen(ctx, t.n_gen, t.n_threads);
}

View file

@ -62,49 +62,6 @@ static bool file_is_empty(const std::string & path) {
return f.tellg() == 0;
}
static void write_logfile(
const llama_context * ctx, const common_params & params, const llama_model * model,
const std::vector<llama_token> & input_tokens, const std::string & output,
const std::vector<llama_token> & output_tokens
) {
if (params.logdir.empty()) {
return;
}
const std::string timestamp = string_get_sortable_timestamp();
const bool success = fs_create_directory_with_parents(params.logdir);
if (!success) {
LOG_ERR("%s: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str());
return;
}
const std::string logfile_path = params.logdir + timestamp + ".yml";
FILE * logfile = fopen(logfile_path.c_str(), "w");
if (logfile == NULL) {
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
return;
}
fprintf(logfile, "binary: main\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "# Generation Results #\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
@ -115,7 +72,6 @@ static void sigint_handler(int signo) {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
// make sure all logs are flushed
LOG("Interrupted by user\n");
@ -926,7 +882,6 @@ int main(int argc, char ** argv) {
LOG("\n\n");
common_perf_print(ctx, smpl);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
common_sampler_free(smpl);

View file

@ -34,55 +34,6 @@ struct results_log_softmax {
float prob;
};
static void write_logfile(
const llama_context * ctx, const common_params & params, const llama_model * model,
const struct results_perplexity & results
) {
if (params.logdir.empty()) {
return;
}
if (params.hellaswag) {
LOG_WRN("%s: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
return;
}
const std::string timestamp = string_get_sortable_timestamp();
const bool success = fs_create_directory_with_parents(params.logdir);
if (!success) {
LOG_WRN("%s: failed to create logdir %s, cannot write logfile\n",
__func__, params.logdir.c_str());
return;
}
const std::string logfile_path = params.logdir + timestamp + ".yml";
FILE * logfile = fopen(logfile_path.c_str(), "w");
if (logfile == NULL) {
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
return;
}
fprintf(logfile, "binary: main\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "# Perplexity Results #\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
yaml_dump_vector_float(logfile, "logits", results.logits);
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
yaml_dump_vector_float(logfile, "probs", results.probs);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
static std::vector<float> softmax(const std::vector<float>& logits) {
std::vector<float> probs(logits.size());
float max_logit = logits[0];
@ -2072,8 +2023,6 @@ int main(int argc, char ** argv) {
LOG("\n");
llama_perf_context_print(ctx);
write_logfile(ctx, params, model, results);
llama_free(ctx);
llama_free_model(model);

View file

@ -142,7 +142,7 @@ static bool tensor_is_contiguous(const struct ggml_tensor * tensor) {
}
static void test_roundtrip_on_chunk(
const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits & qfns, bool use_reference,
const ggml_tensor * layer, int64_t offset, int64_t chunk_size, const ggml_type_traits & qfns, const ggml_type_traits_cpu & qfns_cpu, bool use_reference,
float * input_scratch, char * quantized_scratch, float * output_scratch, error_stats & stats
) {
if (layer->type == GGML_TYPE_F16) {
@ -156,7 +156,7 @@ static void test_roundtrip_on_chunk(
if (use_reference) {
qfns.from_float_ref(input_scratch, quantized_scratch, chunk_size);
} else {
qfns.from_float(input_scratch, quantized_scratch, chunk_size);
qfns_cpu.from_float(input_scratch, quantized_scratch, chunk_size);
}
qfns.to_float(quantized_scratch, output_scratch, chunk_size);
@ -166,7 +166,7 @@ static void test_roundtrip_on_chunk(
// Run quantization function for a single layer and update error stats
static void test_roundtrip_on_layer(
std::string & name, bool print_layer_stats, const ggml_type_traits & qfns, bool use_reference,
std::string & name, bool print_layer_stats, const ggml_type_traits & qfns, const ggml_type_traits_cpu & qfns_cpu, bool use_reference,
const ggml_tensor * layer, std::vector<float> & input_scratch, std::vector<char> & quantized_scratch,
std::vector<float> & output_scratch, error_stats & total_error, int max_thread = 0
) {
@ -187,13 +187,13 @@ static void test_roundtrip_on_layer(
int num_chunks = (nelements + chunk_size - 1)/chunk_size;
if (num_chunks < 2 || max_thread < 2) {
test_roundtrip_on_chunk(layer, 0, nelements, qfns, use_reference, input_scratch_ptr, quantized_scratch.data(),
test_roundtrip_on_chunk(layer, 0, nelements, qfns, qfns_cpu, use_reference, input_scratch_ptr, quantized_scratch.data(),
output_scratch.data(), print_layer_stats ? layer_error : total_error);
} else {
auto & stats = print_layer_stats ? layer_error : total_error;
std::mutex mutex;
uint64_t counter = 0;
auto compute = [&mutex, &counter, &stats, &qfns, nelements, layer, use_reference, input_scratch_ptr,
auto compute = [&mutex, &counter, &stats, &qfns, &qfns_cpu, nelements, layer, use_reference, input_scratch_ptr,
&quantized_scratch, &output_scratch, chunk_size] () {
error_stats local_stats {};
while (true) {
@ -205,7 +205,7 @@ static void test_roundtrip_on_layer(
}
lock.unlock();
uint64_t chunk = offset + chunk_size < nelements ? chunk_size : nelements - offset;
test_roundtrip_on_chunk(layer, offset, chunk, qfns, use_reference, input_scratch_ptr + offset,
test_roundtrip_on_chunk(layer, offset, chunk, qfns, qfns_cpu, use_reference, input_scratch_ptr + offset,
quantized_scratch.data() + 4*offset, output_scratch.data() + offset, local_stats);
}
};
@ -372,7 +372,8 @@ int main(int argc, char ** argv) {
continue;
}
const auto * qfns = ggml_get_type_traits(type);
if (qfns->from_float && qfns->to_float) {
const auto * qfns_cpu = ggml_get_type_traits_cpu(type);
if (qfns_cpu->from_float && qfns->to_float) {
if (params.verbose) {
printf("testing %s ...\n", ggml_type_name(type));
}
@ -393,7 +394,7 @@ int main(int argc, char ** argv) {
test_roundtrip_on_layer(
layer_name,
params.per_layer_stats,
*qfns,
*qfns, *qfns_cpu,
params.reference,
kv_tensor.second,
input_scratch,

View file

@ -15,22 +15,13 @@ set(TARGET_SRCS
httplib.h
)
set(PUBLIC_ASSETS
colorthemes.css
style.css
theme-beeninorder.css
theme-ketivah.css
theme-mangotango.css
theme-playground.css
theme-polarnight.css
theme-snowstorm.css
index.html
index-new.html
index.js
completion.js
system-prompts.js
prompt-formats.js
json-schema-to-grammar.mjs
loading.html
deps_daisyui.min.css
deps_markdown-it.js
deps_tailwindcss.js
deps_vue.esm-browser.js
)
foreach(asset ${PUBLIC_ASSETS})

View file

@ -39,7 +39,7 @@ The project is under active development, and we are [looking for feedback and co
| `--cpu-strict-batch <0\|1>` | use strict CPU placement (default: same as --cpu-strict) |
| `--prio-batch N` | set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: 0)<br/> |
| `--poll-batch <0\|1>` | use polling to wait for work (default: same as --poll) |
| `-c, --ctx-size N` | size of the prompt context (default: 0, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE) |
| `-c, --ctx-size N` | size of the prompt context (default: 4096, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE) |
| `-n, --predict, --n-predict N` | number of tokens to predict (default: -1, -1 = infinity, -2 = until context filled)<br/>(env: LLAMA_ARG_N_PREDICT) |
| `-b, --batch-size N` | logical maximum batch size (default: 2048)<br/>(env: LLAMA_ARG_BATCH) |
| `-ub, --ubatch-size N` | physical maximum batch size (default: 512)<br/>(env: LLAMA_ARG_UBATCH) |
@ -64,7 +64,7 @@ The project is under active development, and we are [looking for feedback and co
| `-nkvo, --no-kv-offload` | disable KV offload<br/>(env: LLAMA_ARG_NO_KV_OFFLOAD) |
| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: -1.0, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: 0.1, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
| `--no-mmap` | do not memory-map model (slower load but may reduce pageouts if not using mlock)<br/>(env: LLAMA_ARG_NO_MMAP) |
@ -85,7 +85,6 @@ The project is under active development, and we are [looking for feedback and co
| `-hfr, --hf-repo REPO` | Hugging Face model repository (default: unused)<br/>(env: LLAMA_ARG_HF_REPO) |
| `-hff, --hf-file FILE` | Hugging Face model file (default: unused)<br/>(env: LLAMA_ARG_HF_FILE) |
| `-hft, --hf-token TOKEN` | Hugging Face access token (default: value from HF_TOKEN environment variable)<br/>(env: HF_TOKEN) |
| `-ld, --logdir LOGDIR` | path under which to save YAML logs (no logging if unset) |
| `--log-disable` | Log disable |
| `--log-file FNAME` | Log to file |
| `--log-colors` | Enable colored logging<br/>(env: LLAMA_LOG_COLORS) |
@ -99,25 +98,27 @@ The project is under active development, and we are [looking for feedback and co
| Argument | Explanation |
| -------- | ----------- |
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: top_k;typ_p;top_p;min_p;temperature) |
| `--samplers SAMPLERS` | samplers that will be used for generation in the order, separated by ';'<br/>(default: dry;top_k;typ_p;top_p;min_p;xtc;temperature) |
| `-s, --seed SEED` | RNG seed (default: -1, use random seed for -1) |
| `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: kfypmt) |
| `--sampling-seq SEQUENCE` | simplified sequence for samplers that will be used (default: dkypmxt) |
| `--ignore-eos` | ignore end of stream token and continue generating (implies --logit-bias EOS-inf) |
| `--penalize-nl` | penalize newline tokens (default: false) |
| `--temp N` | temperature (default: 0.8) |
| `--top-k N` | top-k sampling (default: 40, 0 = disabled) |
| `--top-p N` | top-p sampling (default: 0.9, 1.0 = disabled) |
| `--min-p N` | min-p sampling (default: 0.1, 0.0 = disabled) |
| `--xtc-probability N` | xtc probability (default: 0.0, 0.0 = disabled) |
| `--xtc-threshold N` | xtc threshold (default: 0.1, 1.0 = disabled) |
| `--typical N` | locally typical sampling, parameter p (default: 1.0, 1.0 = disabled) |
| `--repeat-last-n N` | last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size) |
| `--repeat-penalty N` | penalize repeat sequence of tokens (default: 1.0, 1.0 = disabled) |
| `--presence-penalty N` | repeat alpha presence penalty (default: 0.0, 0.0 = disabled) |
| `--frequency-penalty N` | repeat alpha frequency penalty (default: 0.0, 0.0 = disabled) |
| `--dry-multiplier N` | DRY sampling multiplier (default: 0.0, 0.0 = disabled) |
| `--dry-base N` | DRY sampling base value (default: 1.75) |
| `--dry-allowed-length N` | allowed length for DRY sampling (default: 2) |
| `--dry-penalty-last-n N` | DRY penalty for the last n tokens (default: -1, 0 = disable, -1 = context size) |
| `--dry-sequence-breaker STRING` | add sequence breaker for DRY sampling, clearing out default breakers (`['\n', ':', '"', '*']`) in the process; use `"none"` to not use any sequence breakers
| `--dry-multiplier N` | set DRY sampling multiplier (default: 0.0, 0.0 = disabled) |
| `--dry-base N` | set DRY sampling base value (default: 1.75) |
| `--dry-allowed-length N` | set allowed length for DRY sampling (default: 2) |
| `--dry-penalty-last-n N` | set DRY penalty for the last n tokens (default: -1, 0 = disable, -1 = context size) |
| `--dry-sequence-breaker STRING` | add sequence breaker for DRY sampling, clearing out default breakers ('\n', ':', '"', '*') in the process; use "none" to not use any sequence breakers<br/> |
| `--dynatemp-range N` | dynamic temperature range (default: 0.0, 0.0 = disabled) |
| `--dynatemp-exp N` | dynamic temperature exponent (default: 1.0) |
| `--mirostat N` | use Mirostat sampling.<br/>Top K, Nucleus and Locally Typical samplers are ignored if used.<br/>(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) |
@ -381,6 +382,10 @@ node index.js
`dry_sequence_breakers`: Specify an array of sequence breakers for DRY sampling. Only a JSON array of strings is accepted. Default: `['\n', ':', '"', '*']`
`xtc_probability`: Set the chance for token removal via XTC sampler. Default: `0.0`, which is disabled.
`xtc_threshold`: Set a minimum probability threshold for tokens to be removed via XTC sampler. Default: `0.1` (> `0.5` disables XTC)
`mirostat`: Enable Mirostat sampling, controlling perplexity during text generation. Default: `0`, where `0` is disabled, `1` is Mirostat, and `2` is Mirostat 2.0.
`mirostat_tau`: Set the Mirostat target entropy, parameter tau. Default: `5.0`
@ -409,7 +414,7 @@ node index.js
`cache_prompt`: Re-use KV cache from a previous request if possible. This way the common prefix does not have to be re-processed, only the suffix that differs between the requests. Because (depending on the backend) the logits are **not** guaranteed to be bit-for-bit identical for different batch sizes (prompt processing vs. token generation) enabling this option can cause nondeterministic results. Default: `false`
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["top_k", "typical_p", "top_p", "min_p", "temperature"]` - these are all the available values.
`samplers`: The order the samplers should be applied in. An array of strings representing sampler type names. If a sampler is not set, it will not be used. If a sampler is specified more than once, it will be applied multiple times. Default: `["dry", "top_k", "typ_p", "top_p", "min_p", "xtc", "temperature"]` - these are all the available values.
**Response format**
@ -928,6 +933,16 @@ Apart from error types supported by OAI, we also have custom types that are spec
}
```
### Legacy completion web UI
A new chat-based UI has replaced the old completion-based since [this PR](https://github.com/ggerganov/llama.cpp/pull/10175). If you want to use the old completion, start the server with `--path ./examples/server/public_legacy`
For example:
```sh
./llama-server -m my_model.gguf -c 8192 --path ./examples/server/public_legacy
```
### Extending or building alternative Web Front End
You can extend the front end by running the server binary with `--path` set to `./your-directory` and importing `/completion.js` to get access to the llamaComplete() method.

View file

@ -1,7 +1,7 @@
import * as readline from 'node:readline'
import { stdin, stdout } from 'node:process'
import { readFileSync } from 'node:fs'
import { SchemaConverter } from './public/json-schema-to-grammar.mjs'
import { SchemaConverter } from './public_legacy/json-schema-to-grammar.mjs'
const args = process.argv.slice(2);
const grammarJsonSchemaFile = args.find(

View file

@ -6,5 +6,20 @@ DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"
PUBLIC=$DIR/public
echo "download js bundle files"
curl https://npm.reversehttp.com/@preact/signals-core,@preact/signals,htm/preact,preact,preact/hooks > $PUBLIC/index.js
echo >> $PUBLIC/index.js # add newline
# Note for contributors: Always pin to a specific version "maj.min.patch" to avoid breaking the CI
curl -L https://cdn.tailwindcss.com/3.4.14 > $PUBLIC/deps_tailwindcss.js
echo >> $PUBLIC/deps_tailwindcss.js # add newline
curl -L https://cdnjs.cloudflare.com/ajax/libs/daisyui/4.12.14/styled.min.css > $PUBLIC/deps_daisyui.min.css
curl -L https://cdnjs.cloudflare.com/ajax/libs/daisyui/4.12.14/themes.min.css >> $PUBLIC/deps_daisyui.min.css
echo >> $PUBLIC/deps_daisyui.min.css # add newline
curl -L https://unpkg.com/vue@3.5.12/dist/vue.esm-browser.js > $PUBLIC/deps_vue.esm-browser.js
echo >> $PUBLIC/deps_vue.esm-browser.js # add newline
curl -L https://cdnjs.cloudflare.com/ajax/libs/markdown-it/13.0.2/markdown-it.js > $PUBLIC/deps_markdown-it.js
echo >> $PUBLIC/deps_markdown-it.js # add newline
ls -lah $PUBLIC

View file

@ -1,12 +1,16 @@
const paramDefaults = {
stream: true,
n_predict: 500,
temperature: 0.2,
stop: ["</s>"]
};
let generation_settings = null;
export class CompletionError extends Error {
constructor(message, name, data) {
super(message);
this.name = name;
}
};
// Completes the prompt as a generator. Recommended for most use cases.
//
@ -29,7 +33,7 @@ export async function* llama(prompt, params = {}, config = {}) {
const completionParams = { ...paramDefaults, ...params, prompt };
const response = await fetch(`${api_url}/completion`, {
const response = await fetch(`${api_url}${config.endpoint || '/completion'}`, {
method: 'POST',
body: JSON.stringify(completionParams),
headers: {
@ -41,6 +45,18 @@ export async function* llama(prompt, params = {}, config = {}) {
signal: controller.signal,
});
const status = response.status;
if (status !== 200) {
try {
const body = await response.json();
if (body && body.error && body.error.message) {
throw new CompletionError(body.error.message, 'ServerError');
}
} catch (err) {
throw new CompletionError(err.message, 'ServerError');
}
}
const reader = response.body.getReader();
const decoder = new TextDecoder();
@ -78,7 +94,12 @@ export async function* llama(prompt, params = {}, config = {}) {
for (const line of lines) {
const match = regex.exec(line);
if (match) {
result[match[1]] = match[2]
result[match[1]] = match[2];
if (result.data === '[DONE]') {
cont = false;
break;
}
// since we know this is llama.cpp, let's just decode the json in data
if (result.data) {
result.data = JSON.parse(result.data);

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load diff

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,209 @@
const paramDefaults = {
stream: true,
n_predict: 500,
temperature: 0.2,
stop: ["</s>"]
};
let generation_settings = null;
// Completes the prompt as a generator. Recommended for most use cases.
//
// Example:
//
// import { llama } from '/completion.js'
//
// const request = llama("Tell me a joke", {n_predict: 800})
// for await (const chunk of request) {
// document.write(chunk.data.content)
// }
//
export async function* llama(prompt, params = {}, config = {}) {
let controller = config.controller;
const api_url = config.api_url?.replace(/\/+$/, '') || "";
if (!controller) {
controller = new AbortController();
}
const completionParams = { ...paramDefaults, ...params, prompt };
const response = await fetch(`${api_url}${config.endpoint || '/completion'}`, {
method: 'POST',
body: JSON.stringify(completionParams),
headers: {
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Accept': 'text/event-stream',
...(params.api_key ? {'Authorization': `Bearer ${params.api_key}`} : {})
},
signal: controller.signal,
});
const reader = response.body.getReader();
const decoder = new TextDecoder();
let content = "";
let leftover = ""; // Buffer for partially read lines
try {
let cont = true;
while (cont) {
const result = await reader.read();
if (result.done) {
break;
}
// Add any leftover data to the current chunk of data
const text = leftover + decoder.decode(result.value);
// Check if the last character is a line break
const endsWithLineBreak = text.endsWith('\n');
// Split the text into lines
let lines = text.split('\n');
// If the text doesn't end with a line break, then the last line is incomplete
// Store it in leftover to be added to the next chunk of data
if (!endsWithLineBreak) {
leftover = lines.pop();
} else {
leftover = ""; // Reset leftover if we have a line break at the end
}
// Parse all sse events and add them to result
const regex = /^(\S+):\s(.*)$/gm;
for (const line of lines) {
const match = regex.exec(line);
if (match) {
result[match[1]] = match[2];
if (result.data === '[DONE]') {
cont = false;
break;
}
// since we know this is llama.cpp, let's just decode the json in data
if (result.data) {
result.data = JSON.parse(result.data);
content += result.data.content;
// yield
yield result;
// if we got a stop token from server, we will break here
if (result.data.stop) {
if (result.data.generation_settings) {
generation_settings = result.data.generation_settings;
}
cont = false;
break;
}
}
if (result.error) {
try {
result.error = JSON.parse(result.error);
if (result.error.message.includes('slot unavailable')) {
// Throw an error to be caught by upstream callers
throw new Error('slot unavailable');
} else {
console.error(`llama.cpp error [${result.error.code} - ${result.error.type}]: ${result.error.message}`);
}
} catch(e) {
console.error(`llama.cpp error ${result.error}`)
}
}
}
}
}
} catch (e) {
if (e.name !== 'AbortError') {
console.error("llama error: ", e);
}
throw e;
}
finally {
controller.abort();
}
return content;
}
// Call llama, return an event target that you can subscribe to
//
// Example:
//
// import { llamaEventTarget } from '/completion.js'
//
// const conn = llamaEventTarget(prompt)
// conn.addEventListener("message", (chunk) => {
// document.write(chunk.detail.content)
// })
//
export const llamaEventTarget = (prompt, params = {}, config = {}) => {
const eventTarget = new EventTarget();
(async () => {
let content = "";
for await (const chunk of llama(prompt, params, config)) {
if (chunk.data) {
content += chunk.data.content;
eventTarget.dispatchEvent(new CustomEvent("message", { detail: chunk.data }));
}
if (chunk.data.generation_settings) {
eventTarget.dispatchEvent(new CustomEvent("generation_settings", { detail: chunk.data.generation_settings }));
}
if (chunk.data.timings) {
eventTarget.dispatchEvent(new CustomEvent("timings", { detail: chunk.data.timings }));
}
}
eventTarget.dispatchEvent(new CustomEvent("done", { detail: { content } }));
})();
return eventTarget;
}
// Call llama, return a promise that resolves to the completed text. This does not support streaming
//
// Example:
//
// llamaPromise(prompt).then((content) => {
// document.write(content)
// })
//
// or
//
// const content = await llamaPromise(prompt)
// document.write(content)
//
export const llamaPromise = (prompt, params = {}, config = {}) => {
return new Promise(async (resolve, reject) => {
let content = "";
try {
for await (const chunk of llama(prompt, params, config)) {
content += chunk.data.content;
}
resolve(content);
} catch (error) {
reject(error);
}
});
};
/**
* (deprecated)
*/
export const llamaComplete = async (params, controller, callback) => {
for await (const chunk of llama(params.prompt, params, { controller })) {
callback(chunk);
}
}
// Get the model info from the server. This is useful for getting the context window and so on.
export const llamaModelInfo = async (config = {}) => {
if (!generation_settings) {
const api_url = config.api_url?.replace(/\/+$/, '') || "";
const props = await fetch(`${api_url}/props`).then(r => r.json());
generation_settings = props.default_generation_settings;
}
return generation_settings;
}

View file

Before

Width:  |  Height:  |  Size: 4 KiB

After

Width:  |  Height:  |  Size: 4 KiB

Before After
Before After

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,12 @@
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="refresh" content="5">
</head>
<body>
<div id="loading">
The model is loading. Please wait.<br/>
The user interface will appear soon.
</div>
</body>
</html>

View file

@ -14,22 +14,13 @@
#define MIMETYPE_JSON "application/json; charset=utf-8"
// auto generated files (update with ./deps.sh)
#include "colorthemes.css.hpp"
#include "style.css.hpp"
#include "theme-beeninorder.css.hpp"
#include "theme-ketivah.css.hpp"
#include "theme-mangotango.css.hpp"
#include "theme-playground.css.hpp"
#include "theme-polarnight.css.hpp"
#include "theme-snowstorm.css.hpp"
#include "index.html.hpp"
#include "index-new.html.hpp"
#include "index.js.hpp"
#include "completion.js.hpp"
#include "system-prompts.js.hpp"
#include "prompt-formats.js.hpp"
#include "json-schema-to-grammar.mjs.hpp"
#include "loading.html.hpp"
#include "deps_daisyui.min.css.hpp"
#include "deps_markdown-it.js.hpp"
#include "deps_tailwindcss.js.hpp"
#include "deps_vue.esm-browser.js.hpp"
#include <atomic>
#include <condition_variable>
@ -111,6 +102,12 @@ struct server_task_result {
bool error;
};
struct server_static_file {
const unsigned char * data;
unsigned int size;
const char * mime_type;
};
struct slot_params {
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
@ -664,11 +661,16 @@ struct server_context {
}
bool validate_model_chat_template() const {
std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
std::string template_key = "tokenizer.chat_template";
int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
if (res >= 0) {
llama_chat_message chat[] = {{"user", "test"}};
const int res = llama_chat_apply_template(model, nullptr, chat, 1, true, nullptr, 0);
return res > 0;
std::string tmpl = std::string(model_template.data(), model_template.size());
int32_t chat_res = llama_chat_apply_template(model, tmpl.c_str(), chat, 1, true, nullptr, 0);
return chat_res > 0;
}
return false;
}
void init() {
@ -925,7 +927,8 @@ struct server_context {
{
const auto & samplers = data.find("samplers");
if (samplers != data.end() && samplers->is_array()) {
if (samplers != data.end()) {
if (samplers->is_array()) {
std::vector<std::string> sampler_names;
for (const auto & name : *samplers) {
if (name.is_string()) {
@ -933,6 +936,13 @@ struct server_context {
}
}
slot.sparams.samplers = common_sampler_types_from_names(sampler_names, false);
} else if (samplers->is_string()){
std::string sampler_string;
for (const auto & name : *samplers) {
sampler_string += name;
}
slot.sparams.samplers = common_sampler_types_from_chars(sampler_string);
}
} else {
slot.sparams.samplers = default_sparams.samplers;
}
@ -2263,6 +2273,16 @@ int main(int argc, char ** argv) {
LOG_INF("%s\n", common_params_get_system_info(params).c_str());
LOG_INF("\n");
// static files
std::map<std::string, server_static_file> static_files = {
{ "/", { index_html, index_html_len, "text/html; charset=utf-8" }},
{ "/completion.js", { completion_js, completion_js_len, "text/javascript; charset=utf-8" }},
{ "/deps_daisyui.min.css", { deps_daisyui_min_css, deps_daisyui_min_css_len, "text/css; charset=utf-8" }},
{ "/deps_markdown-it.js", { deps_markdown_it_js, deps_markdown_it_js_len, "text/javascript; charset=utf-8" }},
{ "/deps_tailwindcss.js", { deps_tailwindcss_js, deps_tailwindcss_js_len, "text/javascript; charset=utf-8" }},
{ "/deps_vue.esm-browser.js", { deps_vue_esm_browser_js, deps_vue_esm_browser_js_len, "text/javascript; charset=utf-8" }},
};
std::unique_ptr<httplib::Server> svr;
#ifdef CPPHTTPLIB_OPENSSL_SUPPORT
if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
@ -2285,16 +2305,6 @@ int main(int argc, char ** argv) {
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
svr->set_default_headers({{"Server", "llama.cpp"}});
// CORS preflight
svr->Options(R"(.*)", [](const httplib::Request &, httplib::Response & res) {
// Access-Control-Allow-Origin is already set by middleware
res.set_header("Access-Control-Allow-Credentials", "true");
res.set_header("Access-Control-Allow-Methods", "POST");
res.set_header("Access-Control-Allow-Headers", "*");
return res.set_content("", "text/html"); // blank response, no data
});
svr->set_logger(log_server_request);
auto res_error = [](httplib::Response & res, const json & error_data) {
@ -2353,7 +2363,7 @@ int main(int argc, char ** argv) {
// Middlewares
//
auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
auto middleware_validate_api_key = [&params, &res_error, &static_files](const httplib::Request & req, httplib::Response & res) {
static const std::unordered_set<std::string> public_endpoints = {
"/health",
"/models",
@ -2365,8 +2375,8 @@ int main(int argc, char ** argv) {
return true;
}
// If path is public, skip validation
if (public_endpoints.find(req.path) != public_endpoints.end()) {
// If path is public or is static file, skip validation
if (public_endpoints.find(req.path) != public_endpoints.end() || static_files.find(req.path) != static_files.end()) {
return true;
}
@ -2407,6 +2417,14 @@ int main(int argc, char ** argv) {
// register server middlewares
svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
// If this is OPTIONS request, skip validation because browsers don't include Authorization header
if (req.method == "OPTIONS") {
res.set_header("Access-Control-Allow-Credentials", "true");
res.set_header("Access-Control-Allow-Methods", "GET, POST");
res.set_header("Access-Control-Allow-Headers", "*");
res.set_content("", "text/html"); // blank response, no data
return httplib::Server::HandlerResponse::Handled; // skip further processing
}
if (!middleware_server_state(req, res)) {
return httplib::Server::HandlerResponse::Handled;
}
@ -3102,13 +3120,6 @@ int main(int argc, char ** argv) {
res.status = 200; // HTTP OK
};
auto handle_static_file = [](unsigned char * content, size_t len, const char * mime_type) {
return [content, len, mime_type](const httplib::Request &, httplib::Response & res) {
res.set_content(reinterpret_cast<const char*>(content), len, mime_type);
return false;
};
};
//
// Router
//
@ -3116,33 +3127,20 @@ int main(int argc, char ** argv) {
// register static assets routes
if (!params.public_path.empty()) {
// Set the base directory for serving static files
svr->set_base_dir(params.public_path);
bool is_found = svr->set_mount_point("/", params.public_path);
if (!is_found) {
LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
return 1;
}
if (!params.api_keys.empty()) {
// for now, if API key is set, web UI is unusable
svr->Get("/", [&](const httplib::Request &, httplib::Response & res) {
return res.set_content("Web UI is disabled because API key is set.", "text/html; charset=utf-8");
});
} else {
// using embedded static files
svr->Get("/", handle_static_file(index_html, index_html_len, "text/html; charset=utf-8"));
svr->Get("/index.js", handle_static_file(index_js, index_js_len, "text/javascript; charset=utf-8"));
svr->Get("/completion.js", handle_static_file(completion_js, completion_js_len, "text/javascript; charset=utf-8"));
svr->Get("/json-schema-to-grammar.mjs", handle_static_file(json_schema_to_grammar_mjs, json_schema_to_grammar_mjs_len, "text/javascript; charset=utf-8"));
// add new-ui files
svr->Get("/colorthemes.css", handle_static_file(colorthemes_css, colorthemes_css_len, "text/css; charset=utf-8"));
svr->Get("/style.css", handle_static_file(style_css, style_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-beeninorder.css", handle_static_file(theme_beeninorder_css, theme_beeninorder_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-ketivah.css", handle_static_file(theme_ketivah_css, theme_ketivah_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-mangotango.css", handle_static_file(theme_mangotango_css, theme_mangotango_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-playground.css", handle_static_file(theme_playground_css, theme_playground_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-polarnight.css", handle_static_file(theme_polarnight_css, theme_polarnight_css_len, "text/css; charset=utf-8"));
svr->Get("/theme-snowstorm.css", handle_static_file(theme_snowstorm_css, theme_snowstorm_css_len, "text/css; charset=utf-8"));
svr->Get("/index-new.html", handle_static_file(index_new_html, index_new_html_len, "text/html; charset=utf-8"));
svr->Get("/system-prompts.js", handle_static_file(system_prompts_js, system_prompts_js_len, "text/javascript; charset=utf-8"));
svr->Get("/prompt-formats.js", handle_static_file(prompt_formats_js, prompt_formats_js_len, "text/javascript; charset=utf-8"));
for (const auto & it : static_files) {
const server_static_file & static_file = it.second;
svr->Get(it.first.c_str(), [&static_file](const httplib::Request &, httplib::Response & res) {
res.set_content(reinterpret_cast<const char*>(static_file.data), static_file.size, static_file.mime_type);
return false;
});
}
}
// register API routes

View file

@ -64,5 +64,5 @@ Feature: Security
| localhost | Access-Control-Allow-Origin | localhost |
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
| origin | Access-Control-Allow-Credentials | true |
| web.mydomain.fr | Access-Control-Allow-Methods | POST |
| web.mydomain.fr | Access-Control-Allow-Methods | GET, POST |
| web.mydomain.fr | Access-Control-Allow-Headers | * |

View file

@ -267,11 +267,12 @@ int main(int argc, char ** argv) {
for (size_t i = 0; i < dist_tgt.size; i++) {
if (dist_tgt.data[i].id == drafts[s].tokens[i_dft]) {
p_tgt = dist_tgt.data[i].p;
break;
}
}
for (size_t i = 0; i < dist_dft.size; i++) {
if (dist_dft.data[i].id == drafts[s].tokens[i_dft]) {
p_dft = dist_dft.data[i].p;
}
if (p_tgt && p_dft) {
break;
}
}

6
flake.lock generated
View file

@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1730200266,
"narHash": "sha256-l253w0XMT8nWHGXuXqyiIC/bMvh1VRszGXgdpQlfhvU=",
"lastModified": 1731676054,
"narHash": "sha256-OZiZ3m8SCMfh3B6bfGC/Bm4x3qc1m2SVEAlkV6iY7Yg=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "807e9154dcb16384b1b765ebe9cd2bba2ac287fd",
"rev": "5e4fbfb6b3de1aa2872b76d49fafc942626e2add",
"type": "github"
},
"original": {

View file

@ -92,6 +92,7 @@ else()
endif()
option(GGML_CPU_HBM "ggml: use memkind for CPU HBM" OFF)
option(GGML_CPU_AARCH64 "ggml: use runtime weight conversion of Q4_0 to Q4_X_X" ON)
option(GGML_AVX "ggml: enable AVX" ${INS_ENB})
option(GGML_AVX2 "ggml: enable AVX2" ${INS_ENB})
@ -108,6 +109,7 @@ if (NOT MSVC)
endif()
option(GGML_LASX "ggml: enable lasx" ON)
option(GGML_LSX "ggml: enable lsx" ON)
option(GGML_RVV "ggml: enable rvv" ON)
option(GGML_SVE "ggml: enable SVE" OFF)
if (WIN32)
@ -116,6 +118,7 @@ endif()
# ggml core
set(GGML_SCHED_MAX_COPIES "4" CACHE STRING "ggml: max input copies for pipeline parallelism")
option(GGML_CPU "ggml: enable CPU backend" ON)
# 3rd party libs / backends
option(GGML_ACCELERATE "ggml: enable Accelerate framework" ON)
@ -126,14 +129,9 @@ option(GGML_LLAMAFILE "ggml: use LLAMAFILE"
option(GGML_CUDA "ggml: use CUDA" OFF)
option(GGML_MUSA "ggml: use MUSA" OFF)
option(GGML_CUDA_FORCE_DMMV "ggml: use dmmv instead of mmvq CUDA kernels" OFF)
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
set (GGML_CUDA_DMMV_X "32" CACHE STRING "ggml: x stride for dmmv CUDA kernels")
set (GGML_CUDA_MMV_Y "1" CACHE STRING "ggml: y block size for mmv CUDA kernels")
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
set (GGML_CUDA_KQUANTS_ITER "2" CACHE STRING
"ggml: iters./thread per block for Q2_K/Q6_K")
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"ggml: max. batch size for using peer access")
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
@ -141,7 +139,7 @@ option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM"
option(GGML_CUDA_FA_ALL_QUANTS "ggml: compile all quants for FlashAttention" OFF)
option(GGML_CUDA_GRAPHS "ggml: use CUDA graphs (llama.cpp only)" ${GGML_CUDA_GRAPHS_DEFAULT})
option(GGML_HIPBLAS "ggml: use hipBLAS" OFF)
option(GGML_HIP "ggml: use HIP" OFF)
option(GGML_HIP_UMA "ggml: use HIP unified memory architecture" OFF)
option(GGML_VULKAN "ggml: use Vulkan" OFF)
option(GGML_VULKAN_CHECK_RESULTS "ggml: run Vulkan op checks" OFF)
@ -153,6 +151,7 @@ option(GGML_VULKAN_VALIDATE "ggml: enable Vulkan validation"
option(GGML_VULKAN_RUN_TESTS "ggml: run Vulkan tests" OFF)
option(GGML_KOMPUTE "ggml: use Kompute" OFF)
option(GGML_METAL "ggml: use Metal" ${GGML_METAL_DEFAULT})
option(GGML_METAL_USE_BF16 "ggml: use bfloat if available" OFF)
option(GGML_METAL_NDEBUG "ggml: disable Metal debugging" OFF)
option(GGML_METAL_SHADER_DEBUG "ggml: compile Metal with -fno-fast-math" OFF)
option(GGML_METAL_EMBED_LIBRARY "ggml: embed Metal library" ${GGML_METAL})
@ -166,6 +165,8 @@ option(GGML_SYCL "ggml: use SYCL"
option(GGML_SYCL_F16 "ggml: use 16 bit floats for sycl calculations" OFF)
set (GGML_SYCL_TARGET "INTEL" CACHE STRING
"ggml: sycl target device")
set (GGML_SYCL_DEVICE_ARCH "" CACHE STRING
"ggml: sycl device architecture")
# extra artifacts
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
@ -218,13 +219,14 @@ include(CMakePackageConfigHelpers)
# all public headers
set(GGML_PUBLIC_HEADERS
include/ggml.h
include/ggml-cpu.h
include/ggml-alloc.h
include/ggml-backend.h
include/ggml-blas.h
include/ggml-cann.h
include/ggml-cuda.h
include/ggml.h
include/ggml-kompute.h
include/ggml-opt.h
include/ggml-metal.h
include/ggml-rpc.h
include/ggml-sycl.h
@ -234,15 +236,14 @@ set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
#if (GGML_METAL)
# set_target_properties(ggml PROPERTIES RESOURCE "${CMAKE_CURRENT_SOURCE_DIR}/src/ggml-metal.metal")
#endif()
install(TARGETS ggml PUBLIC_HEADER)
if (BUILD_SHARED_LIBS)
install(TARGETS ggml LIBRARY)
endif()
install(TARGETS ggml LIBRARY PUBLIC_HEADER)
install(TARGETS ggml-base LIBRARY)
# FIXME: this should be done in the backend cmake files
if (GGML_METAL)
# FIXME: does this need to be installed with GGML_METAL_EMBED_LIBRARY?
install(
FILES src/ggml-metal.metal
FILES src/ggml-metal/ggml-metal.metal
PERMISSIONS
OWNER_READ
OWNER_WRITE

View file

@ -9,16 +9,16 @@ extern "C" {
#endif
// buffer_type API
GGML_API ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void);
GGML_API bool ggml_backend_is_amx(ggml_backend_t backend);
GGML_BACKEND_API bool ggml_backend_is_amx(ggml_backend_t backend);
// backend API
GGML_API ggml_backend_t ggml_backend_amx_init(void);
GGML_BACKEND_API ggml_backend_t ggml_backend_amx_init(void);
GGML_API void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads);
GGML_BACKEND_API void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads);
GGML_API ggml_backend_reg_t ggml_backend_amx_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_amx_reg(void);
#ifdef __cplusplus
}

View file

@ -3,6 +3,20 @@
#include "ggml.h"
#include "ggml-alloc.h"
#ifdef GGML_BACKEND_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef GGML_BACKEND_BUILD
# define GGML_BACKEND_API __declspec(dllexport) extern
# else
# define GGML_BACKEND_API __declspec(dllimport) extern
# endif
# else
# define GGML_BACKEND_API __attribute__ ((visibility ("default"))) extern
# endif
#else
# define GGML_BACKEND_API extern
#endif
#ifdef __cplusplus
extern "C" {
#endif
@ -72,7 +86,7 @@ extern "C" {
GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
// "offset" refers to the offset of the tensor data for setting/getting data
// "offset" refers to the offset in tensor->data for setting/getting data
GGML_API void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
GGML_API void ggml_backend_tensor_memset( struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
@ -228,14 +242,20 @@ extern "C" {
ggml_backend_sched_reserve(sched, reserve_graph);
// compute
graph = build_graph(sched);
ggml_backend_sched_graph_compute(sched, graph);
graph = build_graph(sched); // the graph and its tensors are single-use in terms of allocation, multi-use in terms of computation
for (int i = 0; i < 10; ++i) {
ggml_backend_sched_graph_compute(sched, graph); // on the first iteration the graph is allocated automatically
}
// if there are graph inputs:
ggml_backend_sched_reset(sched);
ggml_backend_sched_alloc_graph(sched, graph);
ggml_backend_tensor_set(input_tensor, ...);
ggml_backend_sched_graph_compute(sched, graph);
graph = build_graph(sched); // get a new graph that is not allocated (the metadata for the old graph is freed once ggml_free is called)
ggml_backend_sched_reset(sched); // clear the allocation of the previous graph
ggml_backend_sched_alloc_graph(sched, graph); // explicitly allocate the new graph but do not execute it
ggml_backend_tensor_set(input_tensor, ...); // copy data to the newly allocated graph tensors
ggml_backend_sched_graph_compute(sched, graph); // execute the graph
// as an alternative to the above it is also possible to assign the inputs to a dedicated context and
// allocate them statically via ggml_backend_alloc_ctx_tensors
}
*/
@ -250,7 +270,7 @@ extern "C" {
//
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
// Initialize a backend scheduler
// Initialize a backend scheduler, backends with low index are given priority over backends with high index
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel);
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
@ -275,7 +295,9 @@ extern "C" {
GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph);
GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched);
// Reset all assignments and allocators - must be called before changing the node backends
// Reset all assignments and allocators - must be called before changing the node backends or allocating a new graph.
// This in effect deallocates all tensors that were previously allocated and leaves them with dangling pointers.
// The correct way to use this API is to discard the deallocated tensors and create new ones.
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
// Set a callback to be called for each resulting node during graph compute

View file

@ -9,15 +9,15 @@ extern "C" {
#endif
// backend API
GGML_API ggml_backend_t ggml_backend_blas_init(void);
GGML_BACKEND_API ggml_backend_t ggml_backend_blas_init(void);
GGML_API bool ggml_backend_is_blas(ggml_backend_t backend);
GGML_BACKEND_API bool ggml_backend_is_blas(ggml_backend_t backend);
// number of threads used for conversion to float
// for openblas and blis, this will also set the number of threads used for blas operations
GGML_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
GGML_BACKEND_API void ggml_backend_blas_set_n_threads(ggml_backend_t backend_blas, int n_threads);
GGML_API ggml_backend_reg_t ggml_backend_blas_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_blas_reg(void);
#ifdef __cplusplus

View file

@ -34,7 +34,7 @@ extern "C" {
*/
#define GGML_CANN_MAX_DEVICES 16
GGML_API ggml_backend_reg_t ggml_backend_cann_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cann_reg(void);
/**
* @brief Initializes the CANN backend for a specified device.
@ -46,7 +46,7 @@ GGML_API ggml_backend_reg_t ggml_backend_cann_reg(void);
* @param device The index of the device to initialize.
* @return A pointer to the initialized backend instance, or nullptr on failure.
*/
GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device);
GGML_BACKEND_API ggml_backend_t ggml_backend_cann_init(int32_t device);
/**
* @brief Checks if a given backend is a CANN backend.
@ -57,7 +57,7 @@ GGML_API ggml_backend_t ggml_backend_cann_init(int32_t device);
* @param backend The backend instance to check.
* @return True if the backend is a CANN backend, false otherwise.
*/
GGML_API bool ggml_backend_is_cann(ggml_backend_t backend);
GGML_BACKEND_API bool ggml_backend_is_cann(ggml_backend_t backend);
/**
* @brief Retrieves the CANN buffer type for a specified device.
@ -69,7 +69,7 @@ GGML_API bool ggml_backend_is_cann(ggml_backend_t backend);
* @return A pointer to the buffer type interface for the specified device, or
* nullptr if the device index is out of range.
*/
GGML_API ggml_backend_buffer_type_t
GGML_BACKEND_API ggml_backend_buffer_type_t
ggml_backend_cann_buffer_type(int32_t device);
/**
@ -80,14 +80,14 @@ ggml_backend_cann_buffer_type(int32_t device);
*
* @return The number of CANN devices available.
*/
GGML_API int32_t ggml_backend_cann_get_device_count(void);
GGML_BACKEND_API int32_t ggml_backend_cann_get_device_count(void);
/**
* @brief pinned host buffer for use with the CPU backend for faster copies between CPU and NPU.
*
* @return A pointer to the host buffer type interface.
*/
GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
/**
* @brief Retrieves the description of a specific CANN device.
@ -99,7 +99,7 @@ GGML_API ggml_backend_buffer_type_t ggml_backend_cann_host_buffer_type(void);
* @param description Pointer to a buffer where the description will be written.
* @param description_size Size of the description buffer.
*/
GGML_API void ggml_backend_cann_get_device_description(
GGML_BACKEND_API void ggml_backend_cann_get_device_description(
int32_t device, char* description, size_t description_size);
/**
@ -114,7 +114,7 @@ GGML_API void ggml_backend_cann_get_device_description(
* @param total Pointer to a variable where the total memory size will be
* stored.
*/
GGML_API void ggml_backend_cann_get_device_memory(int32_t device,
GGML_BACKEND_API void ggml_backend_cann_get_device_memory(int32_t device,
size_t* free,
size_t* total);

View file

@ -54,54 +54,77 @@ extern "C" {
GGML_NUMA_STRATEGY_COUNT
};
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_BACKEND_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
GGML_BACKEND_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
GGML_BACKEND_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
GGML_BACKEND_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
GGML_BACKEND_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
GGML_BACKEND_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
GGML_BACKEND_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
GGML_BACKEND_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
GGML_BACKEND_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_BACKEND_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
GGML_BACKEND_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
GGML_BACKEND_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
GGML_BACKEND_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_BACKEND_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
GGML_BACKEND_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
GGML_BACKEND_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
GGML_BACKEND_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
GGML_BACKEND_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
GGML_BACKEND_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
GGML_BACKEND_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
GGML_BACKEND_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
GGML_BACKEND_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan(
GGML_BACKEND_API struct ggml_cplan ggml_graph_plan(
const struct ggml_cgraph * cgraph,
int n_threads, /* = GGML_DEFAULT_N_THREADS */
struct ggml_threadpool * threadpool /* = NULL */ );
GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
GGML_BACKEND_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
GGML_BACKEND_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
// TODO: move to backend interface
GGML_API int ggml_cpu_has_neon (void);
GGML_API int ggml_cpu_has_sve (void);
GGML_API int ggml_cpu_has_matmul_int8(void);
// get the sve vector length in bytes
GGML_API int ggml_cpu_get_sve_cnt(void);
//
// system info
//
// x86
GGML_BACKEND_API int ggml_cpu_has_sse3 (void);
GGML_BACKEND_API int ggml_cpu_has_ssse3 (void);
GGML_BACKEND_API int ggml_cpu_has_avx (void);
GGML_BACKEND_API int ggml_cpu_has_avx2 (void);
GGML_BACKEND_API int ggml_cpu_has_f16c (void);
GGML_BACKEND_API int ggml_cpu_has_fma (void);
GGML_BACKEND_API int ggml_cpu_has_avx_vnni (void);
GGML_BACKEND_API int ggml_cpu_has_avx512 (void);
GGML_BACKEND_API int ggml_cpu_has_avx512_vbmi(void);
GGML_BACKEND_API int ggml_cpu_has_avx512_vnni(void);
GGML_BACKEND_API int ggml_cpu_has_avx512_bf16(void);
GGML_BACKEND_API int ggml_cpu_has_amx_int8 (void);
// ARM
GGML_BACKEND_API int ggml_cpu_has_neon (void);
GGML_BACKEND_API int ggml_cpu_has_arm_fma (void);
GGML_BACKEND_API int ggml_cpu_has_fp16_va (void);
GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
GGML_BACKEND_API int ggml_cpu_has_sve (void);
GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
// other
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
// Internal types and functions exposed for tests and benchmarks
@ -115,6 +138,7 @@ extern "C" {
const void * GGML_RESTRICT y, int nr, int nc);
struct ggml_type_traits_cpu {
ggml_from_float_t from_float;
ggml_from_float_to_mat_t from_float_to_mat;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
@ -124,27 +148,30 @@ extern "C" {
ggml_gemm_t gemm;
};
GGML_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
GGML_BACKEND_API const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type);
GGML_API void ggml_cpu_init(void);
GGML_BACKEND_API void ggml_cpu_init(void);
//
// CPU backend
//
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_BACKEND_API ggml_backend_t ggml_backend_cpu_init(void);
GGML_API bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
GGML_BACKEND_API bool ggml_backend_is_cpu (ggml_backend_t backend);
GGML_BACKEND_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads);
GGML_BACKEND_API void ggml_backend_cpu_set_threadpool (ggml_backend_t backend_cpu, ggml_threadpool_t threadpool);
GGML_BACKEND_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data);
GGML_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cpu_reg(void);
#ifdef GGML_USE_CPU_HBM
GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void);
#endif
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cpu_aarch64_buffer_type(void);
GGML_BACKEND_API bool ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft);
#ifdef __cplusplus
}
#endif

View file

@ -7,7 +7,7 @@
extern "C" {
#endif
#ifdef GGML_USE_HIPBLAS
#ifdef GGML_USE_HIP
#define GGML_CUDA_NAME "ROCm"
#define GGML_CUBLAS_NAME "hipBLAS"
#elif defined(GGML_USE_MUSA)
@ -20,27 +20,27 @@ extern "C" {
#define GGML_CUDA_MAX_DEVICES 16
// backend API
GGML_API ggml_backend_t ggml_backend_cuda_init(int device);
GGML_BACKEND_API ggml_backend_t ggml_backend_cuda_init(int device);
GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend);
GGML_BACKEND_API bool ggml_backend_is_cuda(ggml_backend_t backend);
// device buffer
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void);
GGML_API int ggml_backend_cuda_get_device_count(void);
GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
GGML_BACKEND_API int ggml_backend_cuda_get_device_count(void);
GGML_BACKEND_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size);
GGML_BACKEND_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total);
GGML_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
GGML_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
GGML_BACKEND_API bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
GGML_BACKEND_API void ggml_backend_cuda_unregister_host_buffer(void * buffer);
GGML_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_cuda_reg(void);
#ifdef __cplusplus
}

View file

@ -37,13 +37,13 @@ struct ggml_vk_device ggml_vk_current_device(void);
// forward declaration
typedef struct ggml_backend * ggml_backend_t;
GGML_API ggml_backend_t ggml_backend_kompute_init(int device);
GGML_BACKEND_API ggml_backend_t ggml_backend_kompute_init(int device);
GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
GGML_BACKEND_API bool ggml_backend_is_kompute(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
GGML_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_kompute_reg(void);
#ifdef __cplusplus
}

View file

@ -39,27 +39,27 @@ extern "C" {
// user-code should use only these functions
//
GGML_API ggml_backend_t ggml_backend_metal_init(void);
GGML_BACKEND_API ggml_backend_t ggml_backend_metal_init(void);
GGML_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_DEPRECATED(
GGML_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
GGML_BACKEND_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
"obsoleted by the new device interface - https://github.com/ggerganov/llama.cpp/pull/9713");
GGML_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
GGML_BACKEND_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
GGML_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
// helper to check if the device supports a specific family
// ideally, the user code should be doing these checks
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
GGML_BACKEND_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
GGML_BACKEND_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
GGML_API ggml_backend_reg_t ggml_backend_metal_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_metal_reg(void);
#ifdef __cplusplus
}

216
ggml/include/ggml-opt.h Normal file
View file

@ -0,0 +1,216 @@
// This file contains functionality for training models using GGML.
// It is not strictly needed vs. just vanilla GGML but it provides a more high-level interface for common needs such as datasets.
// At the bottom of this file especially there are relatively high-level functions that are suitable use or adaptation in user code.
//
// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
struct ggml_opt_dataset;
struct ggml_opt_context;
struct ggml_opt_result;
typedef struct ggml_opt_dataset * ggml_opt_dataset_t;
typedef struct ggml_opt_context * ggml_opt_context_t;
typedef struct ggml_opt_result * ggml_opt_result_t;
// ====== Loss ======
// built-in loss types, i.e. the built-in quantities minimized by the optimizer
// custom loss types can be defined via mean or sum which simply reduce the outputs for all datapoints to a single value
enum ggml_opt_loss_type {
GGML_OPT_LOSS_TYPE_MEAN,
GGML_OPT_LOSS_TYPE_SUM,
GGML_OPT_LOSS_TYPE_CROSS_ENTROPY,
GGML_OPT_LOSS_TYPE_MEAN_SQUARED_ERROR,
};
// ====== Dataset ======
GGML_API ggml_opt_dataset_t ggml_opt_dataset_init(
int64_t ne_datapoint, // number of elements per datapoint
int64_t ne_label, // number of elements per label
int64_t ndata, // total number of datapoints/labels
int64_t ndata_shard); // number of datapoints/labels per shard (unit at which the dataset is shuffled/copied)
GGML_API void ggml_opt_dataset_free(ggml_opt_dataset_t dataset);
// get underlying tensors that store the data
GGML_API struct ggml_tensor * ggml_opt_dataset_data (ggml_opt_dataset_t dataset); // shape = [ne_datapoint, ndata]
GGML_API struct ggml_tensor * ggml_opt_dataset_labels(ggml_opt_dataset_t dataset); // shape = [nd_label, ndata]
// shuffle idata first datapoints from dataset with RNG from opt_ctx, shuffle all datapoints if idata is negative
GGML_API void ggml_opt_dataset_shuffle(ggml_opt_context_t opt_ctx, ggml_opt_dataset_t dataset, int64_t idata);
// get batch at position ibatch from dataset and copy the data to data_batch and labels_batch
GGML_API void ggml_opt_dataset_get_batch(
ggml_opt_dataset_t dataset,
struct ggml_tensor * data_batch, // shape = [ne_datapoint, ndata_batch]
struct ggml_tensor * labels_batch, // shape = [ne_label, ndata_batch]
int64_t ibatch);
// ====== Model / Context ======
enum ggml_opt_build_type {
GGML_OPT_BUILD_TYPE_FORWARD,
GGML_OPT_BUILD_TYPE_GRAD,
GGML_OPT_BUILD_TYPE_OPT,
};
// parameters that control which optimizer is used and how said optimizer tries to find the minimal loss
struct ggml_opt_optimizer_params {
// AdamW optimizer parameters
struct {
float alpha; // learning rate
float beta1;
float beta2;
float eps; // epsilon for numerical stability
float wd; // weight decay for AdamW, use 0.0f to disable
} adamw;
};
// callback to calculate optimizer parameters prior to a backward pass
// userdata can be used to pass arbitrary data
typedef struct ggml_opt_optimizer_params (*ggml_opt_get_optimizer_params)(void * userdata);
// returns the default optimizer params (constant)
// userdata is not used
GGML_API struct ggml_opt_optimizer_params ggml_opt_get_default_optimizer_params(void * userdata);
// parameters for initializing a new optimization context
struct ggml_opt_params {
ggml_backend_sched_t backend_sched; // defines which backends are used to construct the compute graphs
struct ggml_context * ctx_compute; // created in user code, holds non-static tensors
// the forward graph is defined by inputs and outputs
// those tensors and all tensors inbetween are not intended to be reusable between multiple optimization contexts
struct ggml_tensor * inputs;
struct ggml_tensor * outputs;
enum ggml_opt_loss_type loss_type;
enum ggml_opt_build_type build_type;
int32_t opt_period; // after how many gradient accumulation steps an optimizer step should be done
ggml_opt_get_optimizer_params get_opt_pars; // callback for calculating optimizer parameters
void * get_opt_pars_ud; // userdata for calculating optimizer parameters
};
// get parameters for an optimization context with defaults set where possible
// parameters for which no sensible defaults exist are supplied as arguments to this function
GGML_API ggml_opt_params ggml_opt_default_params(
ggml_backend_sched_t backend_sched,
struct ggml_context * ctx_compute,
struct ggml_tensor * inputs,
struct ggml_tensor * outputs,
enum ggml_opt_loss_type loss_type);
GGML_API ggml_opt_context_t ggml_opt_init(struct ggml_opt_params params);
GGML_API void ggml_opt_free(ggml_opt_context_t opt_ctx);
// set gradients to zero, initilize loss, and optionally reset the optimizer
GGML_API void ggml_opt_reset(ggml_opt_context_t opt_ctx, bool optimizer);
// get underlying tensors that store data
GGML_API struct ggml_tensor * ggml_opt_inputs( ggml_opt_context_t opt_ctx); // forward graph input tensor
GGML_API struct ggml_tensor * ggml_opt_outputs( ggml_opt_context_t opt_ctx); // forward graph output tensor
GGML_API struct ggml_tensor * ggml_opt_labels( ggml_opt_context_t opt_ctx); // labels to compare outputs against
GGML_API struct ggml_tensor * ggml_opt_loss( ggml_opt_context_t opt_ctx); // scalar tensor that contains the loss
GGML_API struct ggml_tensor * ggml_opt_pred( ggml_opt_context_t opt_ctx); // predictions made by outputs
GGML_API struct ggml_tensor * ggml_opt_ncorrect(ggml_opt_context_t opt_ctx); // number of matching predictions between outputs and labels
GGML_API struct ggml_tensor * ggml_opt_grad_acc(ggml_opt_context_t opt_ctx, struct ggml_tensor * node);
// ====== Optimization Result ======
GGML_API ggml_opt_result_t ggml_opt_result_init();
GGML_API void ggml_opt_result_free(ggml_opt_result_t result);
GGML_API void ggml_opt_result_reset(ggml_opt_result_t result);
// get data from result, uncertainties are optional and can be ignored by passing NULL
GGML_API void ggml_opt_result_ndata( ggml_opt_result_t result, int64_t * ndata); // writes 1 value, number of datapoints
GGML_API void ggml_opt_result_loss( ggml_opt_result_t result, double * loss, double * unc); // writes 1 value
GGML_API void ggml_opt_result_pred( ggml_opt_result_t result, int32_t * pred); // writes ndata values
GGML_API void ggml_opt_result_accuracy(ggml_opt_result_t result, double * accuracy, double * unc); // writes 1 value
// ====== Computation ======
// do forward pass, increment result if not NULL
GGML_API void ggml_opt_forward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
// do forward pass, increment result if not NULL, do backward pass
GGML_API void ggml_opt_forward_backward(ggml_opt_context_t opt_ctx, ggml_opt_result_t result);
// ############################################################################
// ## The high-level functions start here. They do not depend on any private ##
// ## functions or structs and can be copied to and adapted for user code. ##
// ############################################################################
// ====== Intended Usage ======
//
// 1. Select the appropriate loss for your problem.
// 2. Create a dataset and set the data for the "data" tensor. Also set the "labels" tensor if your loss needs them.
// Setting the shard size to 1 will be fine, it's the granularity with which data is shuffled/loaded (bigger values are faster).
// 3. Create a GGML graph for your model with no_alloc == true. Use two separate contexts for the tensors.
// The first context should contain the model parameters and inputs and be allocated statically in user code.
// The second context should contain all other tensors and will be (re)allocated automatically.
// Due to this automated allocation the data of the second context is not defined when accessed in user code.
// Note that the second dimension of the inputs/outputs are interpreted as the number of datapoints in those tensors.
// 4. Call ggml_opt_fit. If you need more control you can use ggml_opt_epoch instead.
// signature for a callback while evaluating opt_ctx on dataset, called after an evaluation
typedef void (*ggml_opt_epoch_callback)(
bool train, // true after training evaluation, false after validation evaluation
ggml_opt_context_t opt_ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result, // result associated with the dataset subsection
int64_t ibatch, // number of batches that have been evaluated so far
int64_t ibatch_max, // total number of batches in this dataset subsection
int64_t t_start_us); // time at which the evaluation on the dataset subsection was started
// do training on front of dataset, do evaluation only on back of dataset
GGML_API void ggml_opt_epoch(
ggml_opt_context_t opt_ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result_train, // result to increment during training, ignored if NULL
ggml_opt_result_t result_eval, // result to increment during evaluation, ignored if NULL
int64_t idata_split, // data index at which to split training and evaluation
ggml_opt_epoch_callback callback_train,
ggml_opt_epoch_callback callback_eval);
// callback that prints a progress bar on stderr
GGML_API void ggml_opt_epoch_callback_progress_bar(
bool train,
ggml_opt_context_t opt_ctx,
ggml_opt_dataset_t dataset,
ggml_opt_result_t result,
int64_t ibatch,
int64_t ibatch_max,
int64_t t_start_us);
// fit model defined by inputs and outputs to dataset
GGML_API void ggml_opt_fit(
ggml_backend_sched_t backend_sched, // backend scheduler for constructing the compute graphs
ggml_context * ctx_compute, // context with temporarily allocated tensors to calculate the outputs
ggml_tensor * inputs, // input tensor with shape [ne_datapoint, ndata_batch]
ggml_tensor * outputs, // output tensor, must have shape [ne_label, ndata_batch] if labels are used
ggml_opt_dataset_t dataset, // dataset with data and optionally also labels
enum ggml_opt_loss_type loss_type, // loss to minimize
ggml_opt_get_optimizer_params get_opt_pars, // callback to get optimizer params, userdata is pointer to epoch (of type int64_t)
int64_t nepoch, // how many times the dataset should be iterated over
int64_t nbatch_logical, // datapoints optimizer step, must be a multiple of ndata_batch in inputs/outputs
float val_split, // fraction of the dataset to use for validation, must be in [0.0f, 1.0f)
bool silent); // whether or not info prints to stderr should be suppressed
#ifdef __cplusplus
}
#endif

View file

@ -10,18 +10,18 @@ extern "C" {
#define GGML_RPC_MAX_SERVERS 16
// backend API
GGML_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
GGML_API bool ggml_backend_is_rpc(ggml_backend_t backend);
GGML_BACKEND_API ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
GGML_BACKEND_API bool ggml_backend_is_rpc(ggml_backend_t backend);
GGML_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
GGML_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
GGML_BACKEND_API void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
GGML_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
GGML_BACKEND_API void ggml_backend_rpc_start_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
GGML_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_rpc_reg(void);
GGML_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
GGML_BACKEND_API ggml_backend_dev_t ggml_backend_rpc_add_device(const char * endpoint);
#ifdef __cplusplus
}

View file

@ -17,32 +17,32 @@ extern "C" {
#endif
// backend API
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
GGML_BACKEND_API ggml_backend_t ggml_backend_sycl_init(int device);
GGML_API bool ggml_backend_is_sycl(ggml_backend_t backend);
GGML_BACKEND_API bool ggml_backend_is_sycl(ggml_backend_t backend);
// devide buffer
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
GGML_API void ggml_backend_sycl_get_gpu_list(int *id_list, int max_len);
GGML_API void ggml_backend_sycl_get_device_description(int device,
GGML_BACKEND_API void ggml_backend_sycl_print_sycl_devices(void);
GGML_BACKEND_API void ggml_backend_sycl_get_gpu_list(int *id_list, int max_len);
GGML_BACKEND_API void ggml_backend_sycl_get_device_description(int device,
char *description,
size_t description_size);
GGML_API int ggml_backend_sycl_get_device_count();
GGML_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
GGML_BACKEND_API int ggml_backend_sycl_get_device_count();
GGML_BACKEND_API void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
// SYCL doesn't support registering host memory, keep here for reference
// GGML_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
// GGML_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
// GGML_BACKEND_API bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
// GGML_BACKEND_API void ggml_backend_sycl_unregister_host_buffer(void * buffer);
GGML_API ggml_backend_reg_t ggml_backend_sycl_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_sycl_reg(void);
#ifdef __cplusplus
}

View file

@ -10,21 +10,21 @@ extern "C" {
#define GGML_VK_NAME "Vulkan"
#define GGML_VK_MAX_DEVICES 16
GGML_API void ggml_vk_instance_init(void);
GGML_BACKEND_API void ggml_vk_instance_init(void);
// backend API
GGML_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
GGML_BACKEND_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
GGML_API bool ggml_backend_is_vk(ggml_backend_t backend);
GGML_API int ggml_backend_vk_get_device_count(void);
GGML_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
GGML_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
GGML_BACKEND_API bool ggml_backend_is_vk(ggml_backend_t backend);
GGML_BACKEND_API int ggml_backend_vk_get_device_count(void);
GGML_BACKEND_API void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
GGML_BACKEND_API void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
GGML_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
GGML_API ggml_backend_reg_t ggml_backend_vk_reg(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_vk_reg(void);
#ifdef __cplusplus
}

View file

@ -176,15 +176,15 @@
#ifdef GGML_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef GGML_BUILD
# define GGML_API __declspec(dllexport)
# define GGML_API __declspec(dllexport) extern
# else
# define GGML_API __declspec(dllimport)
# define GGML_API __declspec(dllimport) extern
# endif
# else
# define GGML_API __attribute__ ((visibility ("default")))
# define GGML_API __attribute__ ((visibility ("default"))) extern
# endif
#else
# define GGML_API
# define GGML_API extern
#endif
// TODO: support for clang
@ -602,7 +602,6 @@ extern "C" {
int32_t flags;
struct ggml_tensor * grad;
struct ggml_tensor * src[GGML_MAX_SRC];
// source tensor and offset for views
@ -615,7 +614,7 @@ extern "C" {
void * extra; // extra things e.g. for ggml-cuda.cu
// char padding[4];
char padding[8];
};
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
@ -1490,7 +1489,7 @@ extern "C" {
"use ggml_rope_ext_inplace instead");
// compute correction dims for YaRN RoPE scaling
void ggml_rope_yarn_corr_dims(
GGML_API void ggml_rope_yarn_corr_dims(
int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
// rotary position embedding backward, i.e compute dx from dy
@ -1746,6 +1745,9 @@ extern "C" {
struct ggml_tensor * a,
enum ggml_prec prec);
GGML_API enum ggml_prec ggml_flash_attn_ext_get_prec(
const struct ggml_tensor * a);
// TODO: needs to be adapted to ggml_flash_attn_ext
GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,
@ -1982,28 +1984,20 @@ extern "C" {
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * grad,
float alpha,
float beta1,
float beta2,
float eps,
float wd); // weight decay
struct ggml_tensor * m,
struct ggml_tensor * v,
struct ggml_tensor * adamw_params); // parameters such a the learning rate
//
// automatic differentiation
//
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate);
GGML_API void ggml_build_opt_adamw(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
float alpha,
float beta1,
float beta2,
float eps,
float wd); // weight decay
GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(
struct ggml_context * ctx_static, // context for static gradients (loss + gradient accumulation)
struct ggml_context * ctx_compute, // context for gradient computation
struct ggml_cgraph * cgraph,
bool accumulate); // whether or not gradients should be accumulated, requires static allocation of tensors in ctx_static
// graph allocation in a context
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
@ -2023,7 +2017,9 @@ extern "C" {
GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
GGML_API struct ggml_tensor * ggml_graph_get_tensor (const struct ggml_cgraph * cgraph, const char * name);
GGML_API struct ggml_tensor * ggml_graph_get_grad (const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
GGML_API struct ggml_tensor * ggml_graph_get_grad_acc(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node);
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
@ -2034,198 +2030,15 @@ extern "C" {
// dump the graph into a file using the dot format
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_API void ggml_build_backward_gradient_checkpointing(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
struct ggml_cgraph * gb_tmp,
struct ggml_tensor * * checkpoints,
int n_checkpoints);
//
// optimization
//
// optimization methods
enum ggml_opt_type {
GGML_OPT_TYPE_ADAM,
GGML_OPT_TYPE_LBFGS,
};
// linesearch methods
enum ggml_linesearch {
GGML_LINESEARCH_DEFAULT = 1,
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
};
// optimization return values
enum ggml_opt_result {
GGML_OPT_RESULT_OK = 0,
GGML_OPT_RESULT_DID_NOT_CONVERGE,
GGML_OPT_RESULT_NO_CONTEXT,
GGML_OPT_RESULT_INVALID_WOLFE,
GGML_OPT_RESULT_FAIL,
GGML_OPT_RESULT_CANCEL,
GGML_LINESEARCH_FAIL = -128,
GGML_LINESEARCH_MINIMUM_STEP,
GGML_LINESEARCH_MAXIMUM_STEP,
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
GGML_LINESEARCH_INVALID_PARAMETERS,
};
typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
// TODO these functions were sandwiched in the old optimization interface, is there a better place for them?
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
// Set callback for all future logging events.
// If this is not called, or NULL is supplied, everything is output on stderr.
GGML_API void ggml_log_set(ggml_log_callback log_callback, void * user_data);
// optimization parameters
//
// see ggml.c (ggml_opt_default_params) for default values
//
struct ggml_opt_params {
enum ggml_opt_type type;
size_t graph_size;
int n_threads;
// delta-based convergence test
//
// if past == 0 - disabled
// if past > 0:
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
//
int past;
float delta;
// maximum number of iterations without improvement
//
// if 0 - disabled
// if > 0:
// assume convergence if no cost improvement in this number of iterations
//
int max_no_improvement;
bool print_forward_graph;
bool print_backward_graph;
int n_gradient_accumulation;
// ADAM parameters
struct {
int n_iter;
float sched; // schedule multiplier (fixed, decay or warmup)
float decay; // weight decay for AdamW, use 0.0f to disable
int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
float alpha; // learning rate
float beta1;
float beta2;
float eps; // epsilon for numerical stability
float eps_f; // epsilon for convergence test
float eps_g; // epsilon for convergence test
float gclip; // gradient clipping
} adam;
// LBFGS parameters
struct {
int m; // number of corrections to approximate the inv. Hessian
int n_iter;
int max_linesearch;
float eps; // convergence tolerance
float ftol; // line search tolerance
float wolfe;
float min_step;
float max_step;
enum ggml_linesearch linesearch;
} lbfgs;
};
struct ggml_opt_context {
struct ggml_context * ctx;
struct ggml_opt_params params;
int iter;
int64_t nx; // number of parameter elements
bool just_initialized;
float loss_before;
float loss_after;
struct {
struct ggml_tensor * g; // current gradient
struct ggml_tensor * m; // first moment
struct ggml_tensor * v; // second moment
struct ggml_tensor * pf; // past function values
float fx_best;
float fx_prev;
int n_no_improvement;
} adam;
struct {
struct ggml_tensor * x; // current parameters
struct ggml_tensor * xp; // previous parameters
struct ggml_tensor * g; // current gradient
struct ggml_tensor * gp; // previous gradient
struct ggml_tensor * d; // search direction
struct ggml_tensor * pf; // past function values
struct ggml_tensor * lmal; // the L-BFGS memory alpha
struct ggml_tensor * lmys; // the L-BFGS memory ys
struct ggml_tensor * lms; // the L-BFGS memory s
struct ggml_tensor * lmy; // the L-BFGS memory y
float fx_best;
float step;
int j;
int k;
int end;
int n_no_improvement;
} lbfgs;
};
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
// optimize the function defined by the tensor f
GGML_API enum ggml_opt_result ggml_opt(
struct ggml_context * ctx,
struct ggml_opt_params params,
struct ggml_tensor * f);
// initialize optimizer context
GGML_API void ggml_opt_init(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_opt_params params,
int64_t nx);
// continue optimizing the function defined by the tensor f
GGML_API enum ggml_opt_result ggml_opt_resume(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f);
// continue optimizing the function defined by the tensor f
GGML_API enum ggml_opt_result ggml_opt_resume_g(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data);
//
// quantization
//
@ -2381,38 +2194,6 @@ extern "C" {
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
//
// system info
//
GGML_API int ggml_cpu_has_avx (void);
GGML_API int ggml_cpu_has_avx_vnni (void);
GGML_API int ggml_cpu_has_avx2 (void);
GGML_API int ggml_cpu_has_avx512 (void);
GGML_API int ggml_cpu_has_avx512_vbmi(void);
GGML_API int ggml_cpu_has_avx512_vnni(void);
GGML_API int ggml_cpu_has_avx512_bf16(void);
GGML_API int ggml_cpu_has_amx_int8 (void);
GGML_API int ggml_cpu_has_fma (void);
GGML_API int ggml_cpu_has_arm_fma (void);
GGML_API int ggml_cpu_has_metal (void);
GGML_API int ggml_cpu_has_f16c (void);
GGML_API int ggml_cpu_has_fp16_va (void);
GGML_API int ggml_cpu_has_wasm_simd (void);
GGML_API int ggml_cpu_has_blas (void);
GGML_API int ggml_cpu_has_cuda (void);
GGML_API int ggml_cpu_has_vulkan (void);
GGML_API int ggml_cpu_has_kompute (void);
GGML_API int ggml_cpu_has_gpublas (void);
GGML_API int ggml_cpu_has_sse3 (void);
GGML_API int ggml_cpu_has_ssse3 (void);
GGML_API int ggml_cpu_has_riscv_v (void);
GGML_API int ggml_cpu_has_sycl (void);
GGML_API int ggml_cpu_has_rpc (void);
GGML_API int ggml_cpu_has_vsx (void);
GGML_API int ggml_cpu_has_cann (void);
GGML_API int ggml_cpu_has_llamafile (void);
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_RESTRICT
@ -2429,7 +2210,6 @@ extern "C" {
size_t type_size;
bool is_quantized;
ggml_to_float_t to_float;
ggml_from_float_t from_float;
ggml_from_float_t from_float_ref;
};

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -1,9 +1,5 @@
// SPDX-FileCopyrightText: Copyright 2024 Arm Ltd.
#pragma once
#define GGML_COMMON_DECL_C
#include "ggml-common.h"
#include "ggml.h"
// GGML internal header
@ -12,27 +8,11 @@
extern "C" {
#endif
// Quantization
void quantize_q8_0_4x4(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_q8_0_4x8(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t blck_size_interleave);
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
size_t quantize_q4_0_4x4(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_0_4x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
size_t quantize_q4_0_8x8(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix);
// GEMV
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
// GEMM
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
#ifdef __cplusplus
}
#endif

View file

@ -466,18 +466,12 @@ static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) {
return ggml_gallocr_hash_get(galloc, t)->allocated;
}
static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) {
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
hn->buffer_id = buffer_id;
hn->offset = offset;
hn->allocated = true;
}
static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) {
return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated;
}
static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) {
GGML_ASSERT(buffer_id >= 0);
struct hash_node * hn = ggml_gallocr_hash_get(galloc, node);
if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) {
@ -816,7 +810,11 @@ static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor *
}
static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct tensor_alloc * talloc) {
size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
size_t node_size = 0;
if (!node->data && !node->view_src) {
GGML_ASSERT(talloc->buffer_id >= 0); // prevent segfault when misusing the API
node_size = ggml_backend_buft_get_alloc_size(galloc->bufts[talloc->buffer_id], node);
}
return talloc->size_max >= node_size;
}

View file

@ -0,0 +1,107 @@
if (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$") AND
CMAKE_COMPILER_IS_GNUCC AND CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 11.0)
message(STATUS "Using AMX")
file(GLOB GGML_HEADERS_AMX "*.h")
list(APPEND GGML_HEADERS_AMX "../../include/ggml-amx.h")
file(GLOB GGML_SOURCES_AMX "*.cpp")
add_library(ggml-amx
${GGML_HEADERS_AMX}
${GGML_SOURCES_AMX})
target_link_libraries(ggml-amx PRIVATE ggml-base)
target_include_directories(ggml-amx PRIVATE . ..)
# this is duplicated from the CPU backend, since the AMX backend also depends on the architecture flags
# TODO: integrate AMX backend into the CPU backend
if (MSVC)
# instruction set detection for MSVC only
if (GGML_NATIVE)
# TODO: improve, should not reference files from the parent folder
include(../ggml-cpu/cmake/FindSIMD.cmake)
endif ()
if (GGML_AVX512)
list(APPEND ARCH_FLAGS /arch:AVX512)
# MSVC has no compile-time flags enabling specific
# AVX512 extensions, neither it defines the
# macros corresponding to the extensions.
# Do it manually.
if (GGML_AVX512_VBMI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
endif()
if (GGML_AVX512_VNNI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
endif()
if (GGML_AVX512_BF16)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
endif()
if (GGML_AMX_TILE)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_TILE__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_TILE__>)
endif()
if (GGML_AMX_INT8)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_INT8__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_INT8__>)
endif()
if (GGML_AMX_BF16)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_BF16__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_BF16__>)
endif()
elseif (GGML_AVX2)
list(APPEND ARCH_FLAGS /arch:AVX2)
elseif (GGML_AVX)
list(APPEND ARCH_FLAGS /arch:AVX)
endif()
else()
if (GGML_NATIVE)
list(APPEND ARCH_FLAGS -march=native)
endif()
if (GGML_F16C)
list(APPEND ARCH_FLAGS -mf16c)
endif()
if (GGML_FMA)
list(APPEND ARCH_FLAGS -mfma)
endif()
if (GGML_AVX)
list(APPEND ARCH_FLAGS -mavx)
endif()
if (GGML_AVX2)
list(APPEND ARCH_FLAGS -mavx2)
endif()
if (GGML_AVX512)
list(APPEND ARCH_FLAGS -mavx512f)
list(APPEND ARCH_FLAGS -mavx512dq)
list(APPEND ARCH_FLAGS -mavx512bw)
endif()
if (GGML_AVX512_VBMI)
list(APPEND ARCH_FLAGS -mavx512vbmi)
endif()
if (GGML_AVX512_VNNI)
list(APPEND ARCH_FLAGS -mavx512vnni)
endif()
if (GGML_AVX512_BF16)
list(APPEND ARCH_FLAGS -mavx512bf16)
endif()
if (GGML_AMX_TILE)
list(APPEND ARCH_FLAGS -mamx-tile)
endif()
if (GGML_AMX_INT8)
list(APPEND ARCH_FLAGS -mamx-int8)
endif()
if (GGML_AMX_BF16)
list(APPEND ARCH_FLAGS -mamx-bf16)
endif()
endif()
target_compile_options(ggml-amx PRIVATE ${ARCH_FLAGS})
else()
set(GGML_AMX OFF PARENT_SCOPE)
message(WARNING "AMX requires x86 and gcc version > 11.0. Turning off GGML_AMX.")
endif()

View file

@ -1,7 +1,8 @@
#pragma once
#include "ggml.h"
#include "ggml-cpu-impl.h" // <immintrin.h>
// hack until AMX is moved into the CPU backend
#include "../ggml-cpu/ggml-cpu-impl.h" // <immintrin.h>
#include <algorithm>
#include <memory>

View file

@ -317,8 +317,6 @@ static bool ggml_backend_amx_device_supports_op(ggml_backend_dev_t dev, const st
const enum ggml_type type = src0->type;
const int64_t ne0 = op->ne[0];
bool is_training = src0->grad || src1->grad;
// amx kernels enables for Q4_0, Q4_1, Q8_0, F16
// Q4_K, Q5_K, Q6_K, IQ4_XS enabled for QK_K = 256
bool has_amx_kernels = qtype_has_amx_kernels(type) || (type == GGML_TYPE_F16);
@ -326,7 +324,6 @@ static bool ggml_backend_amx_device_supports_op(ggml_backend_dev_t dev, const st
bool can_use_amx =
is_contiguous_2d(src0) && // src0 must be contiguous
is_contiguous_2d(src1) && // src1 must be contiguous
!is_training && // inference only
src1->type == GGML_TYPE_F32 && // src1 must be float32
has_amx_kernels && // with amx kernel impls
ne0 % (TILE_N * 2) == 0; // out_features is 32x
@ -421,9 +418,18 @@ ggml_backend_reg_t ggml_backend_amx_reg(void) {
#else // if defined(__AMX_INT8__)
ggml_backend_buffer_type_t ggml_backend_amx_buffer_type(void) {
return nullptr;
}
bool ggml_backend_is_amx(ggml_backend_t backend) {
GGML_UNUSED(backend);
return false;
}
ggml_backend_t ggml_backend_amx_init(void) {
fprintf(stderr, "GGML is not compiled with AMX support!\n");
return ggml_backend_t{};
return nullptr;
}
void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads) {
@ -433,4 +439,8 @@ void ggml_backend_amx_set_n_threads(ggml_backend_t backend_amx, int n_threads) {
GGML_UNUSED(n_threads);
}
ggml_backend_reg_t ggml_backend_amx_reg(void) {
return nullptr;
}
#endif

View file

@ -496,19 +496,20 @@ inline void from_float(const float * x, char * vy, int64_t k);
template <>
inline void from_float<block_q8_0>(const float * x, char * vy, int64_t k) {
quantize_row_q8_0(x, vy, k);
// FIXME: using unoptimized reference impl until moved to CPU backend
quantize_row_q8_0_ref(x, (block_q8_0 *)vy, k);
}
template <>
inline void from_float<block_q8_1>(const float * x, char * vy, int64_t k) {
quantize_row_q8_1(x, vy, k);
quantize_row_q8_1_ref(x, (block_q8_1 *)vy, k);
}
template <>
inline void from_float<block_q8_K>(const float * x, char * vy, int64_t k) {
#if 1
// TODO: this is reference impl!
quantize_row_q8_K(x, vy, k);
quantize_row_q8_K_ref(x, (block_q8_K *)vy, k);
#else
quantize_row_q8_K_vnni(x, vy, k);
#endif

View file

@ -0,0 +1,195 @@
#include "ggml-backend-impl.h"
#include "ggml-backend.h"
#include "ggml-cpu.h"
#include "ggml-impl.h"
#include <cstring>
#include <vector>
// Backend registry
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_SYCL
#include "ggml-sycl.h"
#endif
#ifdef GGML_USE_VULKAN
#include "ggml-vulkan.h"
#endif
#ifdef GGML_USE_BLAS
#include "ggml-blas.h"
#endif
#ifdef GGML_USE_RPC
#include "ggml-rpc.h"
#endif
#ifdef GGML_USE_AMX
# include "ggml-amx.h"
#endif
#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif
#ifdef GGML_USE_KOMPUTE
#include "ggml-kompute.h"
#endif
struct ggml_backend_registry {
std::vector<ggml_backend_reg_t> backends;
std::vector<ggml_backend_dev_t> devices;
ggml_backend_registry() {
#ifdef GGML_USE_CUDA
register_backend(ggml_backend_cuda_reg());
#endif
#ifdef GGML_USE_METAL
register_backend(ggml_backend_metal_reg());
#endif
#ifdef GGML_USE_SYCL
register_backend(ggml_backend_sycl_reg());
#endif
#ifdef GGML_USE_VULKAN
register_backend(ggml_backend_vk_reg());
#endif
#ifdef GGML_USE_CANN
register_backend(ggml_backend_cann_reg());
#endif
#ifdef GGML_USE_BLAS
register_backend(ggml_backend_blas_reg());
#endif
#ifdef GGML_USE_RPC
register_backend(ggml_backend_rpc_reg());
#endif
#ifdef GGML_USE_AMX
register_backend(ggml_backend_amx_reg());
#endif
#ifdef GGML_USE_KOMPUTE
register_backend(ggml_backend_kompute_reg());
#endif
register_backend(ggml_backend_cpu_reg());
}
void register_backend(ggml_backend_reg_t reg) {
if (!reg) {
return;
}
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: registered backend %s (%zu devices)\n",
__func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
#endif
backends.push_back(reg);
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
register_device(ggml_backend_reg_dev_get(reg, i));
}
}
void register_device(ggml_backend_dev_t device) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
#endif
devices.push_back(device);
}
};
static ggml_backend_registry & get_reg() {
static ggml_backend_registry reg;
return reg;
}
// Internal API
void ggml_backend_register(ggml_backend_reg_t reg) {
get_reg().register_backend(reg);
}
void ggml_backend_device_register(ggml_backend_dev_t device) {
get_reg().register_device(device);
}
// Backend (reg) enumeration
size_t ggml_backend_reg_count() {
return get_reg().backends.size();
}
ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
GGML_ASSERT(index < ggml_backend_reg_count());
return get_reg().backends[index];
}
ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
ggml_backend_reg_t reg = ggml_backend_reg_get(i);
if (std::strcmp(ggml_backend_reg_name(reg), name) == 0) {
return reg;
}
}
return NULL;
}
// Device enumeration
size_t ggml_backend_dev_count() {
return get_reg().devices.size();
}
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
GGML_ASSERT(index < ggml_backend_dev_count());
return get_reg().devices[index];
}
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
return dev;
}
}
return NULL;
}
ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
if (ggml_backend_dev_type(dev) == type) {
return dev;
}
}
return NULL;
}
// Convenience functions
ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
if (!dev) {
return NULL;
}
return ggml_backend_dev_init(dev, params);
}
ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
if (!dev) {
return NULL;
}
return ggml_backend_dev_init(dev, params);
}
ggml_backend_t ggml_backend_init_best(void) {
ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
if (!dev) {
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
}
if (!dev) {
return NULL;
}
return ggml_backend_dev_init(dev, NULL);
}

View file

@ -252,6 +252,7 @@ void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_ten
}
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
if (size == 0) {
@ -266,6 +267,7 @@ void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, siz
}
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
GGML_ASSERT(tensor);
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
if (size == 0) {
@ -279,7 +281,7 @@ void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, siz
buf->iface.get_tensor(buf, tensor, data, offset, size);
}
GGML_API void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
void ggml_backend_tensor_memset(struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
if (size == 0) {
@ -525,197 +527,6 @@ void * ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, const char * na
return reg->iface.get_proc_address(reg, name);
}
// Backend registry
#ifdef GGML_USE_CUDA
#include "ggml-cuda.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_SYCL
#include "ggml-sycl.h"
#endif
#ifdef GGML_USE_VULKAN
#include "ggml-vulkan.h"
#endif
#ifdef GGML_USE_BLAS
#include "ggml-blas.h"
#endif
#ifdef GGML_USE_RPC
#include "ggml-rpc.h"
#endif
#ifndef __AMX_INT8__
#undef GGML_USE_AMX
#endif
#ifdef GGML_USE_AMX
# include "ggml-amx.h"
#endif
#ifdef GGML_USE_CANN
#include "ggml-cann.h"
#endif
#ifdef GGML_USE_KOMPUTE
#include "ggml-kompute.h"
#endif
#include "ggml-cpu.h"
struct ggml_backend_registry {
std::vector<ggml_backend_reg_t> backends;
std::vector<ggml_backend_dev_t> devices;
ggml_backend_registry() {
#ifdef GGML_USE_CUDA
register_backend(ggml_backend_cuda_reg());
#endif
#ifdef GGML_USE_METAL
register_backend(ggml_backend_metal_reg());
#endif
#ifdef GGML_USE_SYCL
register_backend(ggml_backend_sycl_reg());
#endif
#ifdef GGML_USE_VULKAN
register_backend(ggml_backend_vk_reg());
#endif
#ifdef GGML_USE_CANN
register_backend(ggml_backend_cann_reg());
#endif
#ifdef GGML_USE_BLAS
register_backend(ggml_backend_blas_reg());
#endif
#ifdef GGML_USE_RPC
register_backend(ggml_backend_rpc_reg());
#endif
#ifdef GGML_USE_AMX
register_backend(ggml_backend_amx_reg());
#endif
#ifdef GGML_USE_KOMPUTE
register_backend(ggml_backend_kompute_reg());
#endif
register_backend(ggml_backend_cpu_reg());
}
void register_backend(ggml_backend_reg_t reg) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: registered backend %s (%zu devices)\n",
__func__, ggml_backend_reg_name(reg), ggml_backend_reg_dev_count(reg));
#endif
backends.push_back(reg);
for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); i++) {
register_device(ggml_backend_reg_dev_get(reg, i));
}
}
void register_device(ggml_backend_dev_t device) {
#ifndef NDEBUG
GGML_LOG_DEBUG("%s: registered device %s (%s)\n", __func__, ggml_backend_dev_name(device), ggml_backend_dev_description(device));
#endif
devices.push_back(device);
}
};
static ggml_backend_registry & get_reg() {
static ggml_backend_registry reg;
return reg;
}
// Internal API
void ggml_backend_register(ggml_backend_reg_t reg) {
get_reg().register_backend(reg);
}
void ggml_backend_device_register(ggml_backend_dev_t device) {
get_reg().register_device(device);
}
// Backend (reg) enumeration
size_t ggml_backend_reg_count() {
return get_reg().backends.size();
}
ggml_backend_reg_t ggml_backend_reg_get(size_t index) {
GGML_ASSERT(index < ggml_backend_reg_count());
return get_reg().backends[index];
}
ggml_backend_reg_t ggml_backend_reg_by_name(const char * name) {
for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
ggml_backend_reg_t reg = ggml_backend_reg_get(i);
if (strcmp(ggml_backend_reg_name(reg), name) == 0) {
return reg;
}
}
return NULL;
}
// Device enumeration
size_t ggml_backend_dev_count() {
return get_reg().devices.size();
}
ggml_backend_dev_t ggml_backend_dev_get(size_t index) {
GGML_ASSERT(index < ggml_backend_dev_count());
return get_reg().devices[index];
}
ggml_backend_dev_t ggml_backend_dev_by_name(const char * name) {
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
if (strcmp(ggml_backend_dev_name(dev), name) == 0) {
return dev;
}
}
return NULL;
}
ggml_backend_dev_t ggml_backend_dev_by_type(enum ggml_backend_dev_type type) {
for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
ggml_backend_dev_t dev = ggml_backend_dev_get(i);
if (ggml_backend_dev_type(dev) == type) {
return dev;
}
}
return NULL;
}
// Convenience functions
ggml_backend_t ggml_backend_init_by_name(const char * name, const char * params) {
ggml_backend_dev_t dev = ggml_backend_dev_by_name(name);
if (!dev) {
return NULL;
}
return ggml_backend_dev_init(dev, params);
}
ggml_backend_t ggml_backend_init_by_type(enum ggml_backend_dev_type type, const char * params) {
ggml_backend_dev_t dev = ggml_backend_dev_by_type(type);
if (!dev) {
return NULL;
}
return ggml_backend_dev_init(dev, params);
}
ggml_backend_t ggml_backend_init_best(void) {
ggml_backend_dev_t dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_GPU);
if (!dev) {
dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
}
if (!dev) {
return NULL;
}
return ggml_backend_dev_init(dev, NULL);
}
// multi-buffer buffer
struct ggml_backend_multi_buffer_context {
@ -880,7 +691,7 @@ static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backen
}
static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor, const struct ggml_tensor * op) {
ggml_backend_buffer_t buffer = tensor->buffer;
ggml_backend_buffer_t buffer = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
if (buffer == NULL) {
return -1;
}
@ -913,8 +724,6 @@ static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS_DEBUG*GGML
// returns the backend that should be used for the node based on the current locations
static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
// TODO: use supports_op to check if the backend supports the op
// assign pre-allocated nodes to their backend
int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor, tensor);
if (cur_backend_id != -1) {
@ -933,7 +742,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
if (tensor->buffer || (tensor->view_src && tensor->view_src->buffer)) {
// since the tensor is pre-allocated, it cannot be moved to another backend
GGML_ABORT("pre-allocated tensor in a backend that cannot run the operation");
GGML_ABORT("pre-allocated tensor (%s) in a backend that cannot run the operation", tensor->name);
}
// graph input
@ -1640,7 +1449,7 @@ ggml_backend_sched_t ggml_backend_sched_new(
bool parallel) {
GGML_ASSERT(n_backends > 0);
GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
GGML_ASSERT(ggml_backend_dev_type(ggml_backend_get_device(backends[n_backends - 1])) == GGML_BACKEND_DEVICE_TYPE_CPU);
struct ggml_backend_sched * sched = (ggml_backend_sched *) calloc(1, sizeof(struct ggml_backend_sched));
@ -1729,12 +1538,13 @@ bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph *
ggml_backend_sched_split_graph(sched, measure_graph);
ggml_backend_sched_synchronize(sched);
if (!ggml_gallocr_reserve_n(sched->galloc, &sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
return false;
}
ggml_backend_sched_reset(sched);
ggml_backend_sched_synchronize(sched);
return true;
}
@ -2036,17 +1846,6 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
return true;
}
#include "ggml-backend.h"
#include "ggml-backend-impl.h"
#include "ggml-cpu.h"
#include "ggml-impl.h"
#include <cctype>
#include <string>
// ggml-backend interface
// CPU backend - buffer
static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
@ -2120,7 +1919,9 @@ static const struct ggml_backend_buffer_i ggml_backend_cpu_buffer_from_ptr_i = {
/* .reset = */ NULL,
};
// CPU backend - buffer type
// CPU backend buffer type
// this buffer type is defined here to make it available to all backends
static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU";
@ -2161,7 +1962,7 @@ ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ NULL,
};
@ -2184,478 +1985,14 @@ static ggml_backend_buffer_type_t ggml_backend_cpu_buffer_from_ptr_type(void) {
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .device = */ NULL, // FIXME ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type;
}
#ifdef GGML_USE_CPU_HBM
// buffer type HBM
#include <hbwmalloc.h>
static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
return "CPU_HBM";
GGML_UNUSED(buft);
}
static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
hbw_free(buffer->context);
}
static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * ptr;
int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
if (result != 0) {
GGML_LOG_ERROR("failed to allocate HBM buffer of size %zu\n", size);
return NULL;
}
ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
buffer->buft = buft;
buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
return buffer;
}
ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
/* .iface = */ {
/* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
/* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
/* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
/* .get_max_size = */ NULL, // defaults to SIZE_MAX
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
/* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
},
/* .context = */ NULL,
};
return &ggml_backend_cpu_buffer_type_hbm;
}
#endif
static ggml_backend_buffer_type_t * ggml_backend_cpu_get_extra_bufts(ggml_backend_dev_t device) {
static ggml_backend_buffer_type_t bufts[] = {
#ifdef GGML_USE_CPU_HBM
ggml_backend_cpu_hbm_buffer_type(),
#endif
NULL
};
return bufts;
GGML_UNUSED(device);
}
// CPU backend - backend (stream)
struct ggml_backend_cpu_context {
int n_threads;
ggml_threadpool_t threadpool;
uint8_t * work_data;
size_t work_size;
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
static const char * ggml_backend_cpu_get_name(ggml_backend_t backend) {
return "CPU";
GGML_UNUSED(backend);
}
static void ggml_backend_cpu_free(ggml_backend_t backend) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
delete[] cpu_ctx->work_data;
delete cpu_ctx;
delete backend;
}
struct ggml_backend_plan_cpu {
struct ggml_cplan cplan;
struct ggml_cgraph cgraph;
};
static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_backend_plan_cpu * cpu_plan = new ggml_backend_plan_cpu;
cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
cpu_plan->cgraph = *cgraph; // FIXME: deep copy
if (cpu_plan->cplan.work_size > 0) {
cpu_plan->cplan.work_data = new uint8_t[cpu_plan->cplan.work_size];
if (cpu_plan->cplan.work_data == NULL) {
delete cpu_plan;
return NULL;
}
}
cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
return cpu_plan;
}
static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
delete[] cpu_plan->cplan.work_data;
delete cpu_plan;
GGML_UNUSED(backend);
}
static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
GGML_UNUSED(backend);
}
static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads, cpu_ctx->threadpool);
if (cpu_ctx->work_size < cplan.work_size) {
delete[] cpu_ctx->work_data;
cpu_ctx->work_data = new uint8_t[cplan.work_size];
if (cpu_ctx->work_data == NULL) {
cpu_ctx->work_size = 0;
return GGML_STATUS_ALLOC_FAILED;
}
cpu_ctx->work_size = cplan.work_size;
}
cplan.work_data = (uint8_t *)cpu_ctx->work_data;
cplan.abort_callback = cpu_ctx->abort_callback;
cplan.abort_callback_data = cpu_ctx->abort_callback_data;
return ggml_graph_compute(cgraph, &cplan);
}
static const struct ggml_backend_i ggml_backend_cpu_i = {
/* .get_name = */ ggml_backend_cpu_get_name,
/* .free = */ ggml_backend_cpu_free,
/* .set_tensor_async = */ NULL,
/* .get_tensor_async = */ NULL,
/* .cpy_tensor_async = */ NULL,
/* .synchronize = */ NULL,
/* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
/* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
/* .graph_plan_update = */ NULL,
/* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
/* .graph_compute = */ ggml_backend_cpu_graph_compute,
/* .event_record = */ NULL,
/* .event_wait = */ NULL,
};
static ggml_guid_t ggml_backend_cpu_guid(void) {
static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
return &guid;
}
ggml_backend_t ggml_backend_cpu_init(void) {
// initialize CPU backend now to avoid slowing the first graph computation
ggml_cpu_init();
struct ggml_backend_cpu_context * ctx = new ggml_backend_cpu_context;
if (ctx == NULL) {
return NULL;
}
ctx->n_threads = GGML_DEFAULT_N_THREADS;
ctx->threadpool = NULL;
ctx->work_data = NULL;
ctx->work_size = 0;
ctx->abort_callback = NULL;
ctx->abort_callback_data = NULL;
ggml_backend_t cpu_backend = new ggml_backend {
/* .guid = */ ggml_backend_cpu_guid(),
/* .interface = */ ggml_backend_cpu_i,
/* .device = */ ggml_backend_reg_dev_get(ggml_backend_cpu_reg(), 0),
/* .context = */ ctx,
};
if (cpu_backend == NULL) {
delete ctx;
return NULL;
}
return cpu_backend;
}
bool ggml_backend_is_cpu(ggml_backend_t backend) {
return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
}
void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
ctx->n_threads = n_threads;
}
void ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
if (ctx->threadpool && ctx->threadpool != threadpool) {
// already had a different threadpool, pause/suspend it before switching
ggml_threadpool_pause(ctx->threadpool);
}
ctx->threadpool = threadpool;
}
void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
ctx->abort_callback = abort_callback;
ctx->abort_callback_data = abort_callback_data;
}
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
return ggml_backend_buffer_init(ggml_backend_cpu_buffer_from_ptr_type(), ggml_backend_cpu_buffer_from_ptr_i, ptr, size);
}
// CPU backend - device
struct ggml_backend_cpu_device_context {
std::string description = "CPU";
ggml_backend_cpu_device_context() {
#ifdef __APPLE__
size_t len = 0;
if (!sysctlbyname("machdep.cpu.brand_string", NULL, &len, NULL, 0)) {
description.resize(len);
sysctlbyname("machdep.cpu.brand_string", &description[0], &len, NULL, 0); // NOLINT
}
#elif defined(__linux__)
FILE * f = fopen("/proc/cpuinfo", "r");
if (f) {
char buf[1024];
while (fgets(buf, sizeof(buf), f)) {
if (strncmp(buf, "model name", 10) == 0) {
char * p = strchr(buf, ':');
if (p) {
p++;
while (std::isspace(*p)) {
p++;
}
while (std::isspace(p[strlen(p) - 1])) {
p[strlen(p) - 1] = '\0';
}
description = p;
break;
}
}
}
fclose(f);
}
#elif defined(_WIN32)
HKEY hKey;
if (RegOpenKeyEx(HKEY_LOCAL_MACHINE,
TEXT("HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0"),
0,
KEY_READ,
&hKey) == ERROR_SUCCESS) {
DWORD cpu_brand_size = 0;
if (RegQueryValueExA(hKey,
TEXT("ProcessorNameString"),
NULL,
NULL,
NULL,
&cpu_brand_size) == ERROR_SUCCESS) {
description.resize(cpu_brand_size);
if (RegQueryValueExA(hKey,
TEXT("ProcessorNameString"),
NULL,
NULL,
(LPBYTE)&description[0], // NOLINT
&cpu_brand_size) == ERROR_SUCCESS) {
if (description.find('\0') != std::string::npos) {
description.resize(description.find('\0'));
}
}
}
RegCloseKey(hKey);
}
#endif
}
};
static const char * ggml_backend_cpu_device_get_name(ggml_backend_dev_t dev) {
return "CPU";
GGML_UNUSED(dev);
}
static const char * ggml_backend_cpu_device_get_description(ggml_backend_dev_t dev) {
struct ggml_backend_cpu_device_context * ctx = (struct ggml_backend_cpu_device_context *)dev->context;
return ctx->description.c_str();
}
static void ggml_backend_cpu_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
// TODO
*free = 0;
*total = 0;
GGML_UNUSED(dev);
}
static enum ggml_backend_dev_type ggml_backend_cpu_device_get_type(ggml_backend_dev_t dev) {
return GGML_BACKEND_DEVICE_TYPE_CPU;
GGML_UNUSED(dev);
}
static void ggml_backend_cpu_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
props->name = ggml_backend_cpu_device_get_name(dev);
props->description = ggml_backend_cpu_device_get_description(dev);
props->type = ggml_backend_cpu_device_get_type(dev);
ggml_backend_cpu_device_get_memory(dev, &props->memory_free, &props->memory_total);
props->caps = {
/* .async = */ false,
/* .host_buffer = */ false,
/* .buffer_from_host_ptr = */ true,
/* .events = */ false,
};
}
static ggml_backend_t ggml_backend_cpu_device_init_backend(ggml_backend_dev_t dev, const char * params) {
return ggml_backend_cpu_init();
GGML_UNUSED(dev);
GGML_UNUSED(params);
}
static ggml_backend_buffer_type_t ggml_backend_cpu_device_get_buffer_type(ggml_backend_dev_t dev) {
return ggml_backend_cpu_buffer_type();
GGML_UNUSED(dev);
}
static ggml_backend_buffer_t ggml_backend_cpu_device_buffer_from_host_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
return ggml_backend_cpu_buffer_from_ptr(ptr, size);
GGML_UNUSED(dev);
GGML_UNUSED(max_tensor_size);
}
static bool ggml_backend_cpu_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
switch (op->op) {
case GGML_OP_CPY:
return
op->type != GGML_TYPE_IQ2_XXS &&
op->type != GGML_TYPE_IQ2_XS &&
op->type != GGML_TYPE_IQ1_S &&
op->type != GGML_TYPE_IQ1_M; // missing type_traits.from_float
case GGML_OP_MUL_MAT:
return op->src[1]->type == GGML_TYPE_F32;// FIXME || op->src[1]->type == ggml_get_type_traits(op->src[0]->type)->vec_dot_type;
case GGML_OP_ROPE_BACK:
return op->src[2] == NULL && (op->op_params[2] & 4) == 0;
case GGML_OP_IM2COL_BACK:
return op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32;
case GGML_OP_OUT_PROD:
return (op->src[0]->type == GGML_TYPE_F32 || ggml_is_quantized(op->src[0]->type)) && op->src[1]->type == GGML_TYPE_F32;
default:
return true;
}
GGML_UNUSED(dev);
}
static bool ggml_backend_cpu_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
return ggml_backend_buft_is_host(buft);
GGML_UNUSED(dev);
}
static const struct ggml_backend_device_i ggml_backend_cpu_device_i = {
/* .get_name = */ ggml_backend_cpu_device_get_name,
/* .get_description = */ ggml_backend_cpu_device_get_description,
/* .get_memory = */ ggml_backend_cpu_device_get_memory,
/* .get_type = */ ggml_backend_cpu_device_get_type,
/* .get_props = */ ggml_backend_cpu_device_get_props,
/* .init_backend = */ ggml_backend_cpu_device_init_backend,
/* .get_buffer_type = */ ggml_backend_cpu_device_get_buffer_type,
/* .get_host_buffer_type = */ NULL,
/* .buffer_from_host_ptr = */ ggml_backend_cpu_device_buffer_from_host_ptr,
/* .supports_op = */ ggml_backend_cpu_device_supports_op,
/* .supports_buft = */ ggml_backend_cpu_device_supports_buft,
/* .offload_op = */ NULL,
/* .event_new = */ NULL,
/* .event_free = */ NULL,
/* .event_synchronize = */ NULL,
};
// CPU backend - backend (reg)
static const char * ggml_backend_cpu_reg_get_name(ggml_backend_reg_t reg) {
return "CPU";
GGML_UNUSED(reg);
}
static size_t ggml_backend_cpu_reg_get_device_count(ggml_backend_reg_t reg) {
return 1;
GGML_UNUSED(reg);
}
static ggml_backend_dev_t ggml_backend_cpu_reg_get_device(ggml_backend_reg_t reg, size_t index) {
GGML_ASSERT(index == 0);
static ggml_backend_cpu_device_context ctx;
static ggml_backend_device ggml_backend_cpu_device = {
/* .iface = */ ggml_backend_cpu_device_i,
/* .reg = */ reg,
/* .context = */ &ctx,
};
return &ggml_backend_cpu_device;
}
static void * ggml_backend_cpu_get_proc_address(ggml_backend_reg_t reg, const char * name) {
if (strcmp(name, "ggml_backend_set_n_threads") == 0) {
return (void *)ggml_backend_cpu_set_n_threads;
}
if (strcmp(name, "ggml_backend_dev_get_extra_bufts") == 0) {
return (void *)ggml_backend_cpu_get_extra_bufts;
}
return NULL;
GGML_UNUSED(reg);
}
static const struct ggml_backend_reg_i ggml_backend_cpu_reg_i = {
/* .get_name = */ ggml_backend_cpu_reg_get_name,
/* .get_device_count = */ ggml_backend_cpu_reg_get_device_count,
/* .get_device = */ ggml_backend_cpu_reg_get_device,
/* .get_proc_address = */ ggml_backend_cpu_get_proc_address,
};
ggml_backend_reg_t ggml_backend_cpu_reg(void) {
static struct ggml_backend_reg ggml_backend_cpu_reg = {
/* .iface = */ ggml_backend_cpu_reg_i,
/* .context = */ NULL,
};
return &ggml_backend_cpu_reg;
}

View file

@ -0,0 +1,90 @@
if (GGML_STATIC)
set(BLA_STATIC ON)
endif()
#if (CMAKE_VERSION VERSION_GREATER_EQUAL 3.22)
# set(BLA_SIZEOF_INTEGER 8)
#endif()
set(BLA_VENDOR ${GGML_BLAS_VENDOR})
find_package(BLAS)
if (BLAS_FOUND)
message(STATUS "BLAS found, Libraries: ${BLAS_LIBRARIES}")
add_library(ggml-blas
ggml-blas.cpp
)
target_link_libraries(ggml-blas PRIVATE ggml-base)
target_include_directories(ggml-blas PRIVATE . ..)
if (${GGML_BLAS_VENDOR} MATCHES "Apple")
add_compile_definitions(ACCELERATE_NEW_LAPACK)
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
add_compile_definitions(GGML_BLAS_USE_ACCELERATE)
elseif ("${BLAS_INCLUDE_DIRS}" STREQUAL "")
# BLAS_INCLUDE_DIRS is missing in FindBLAS.cmake.
# see https://gitlab.kitware.com/cmake/cmake/-/issues/20268
find_package(PkgConfig REQUIRED)
if (${GGML_BLAS_VENDOR} MATCHES "Generic")
pkg_check_modules(DepBLAS blas)
elseif (${GGML_BLAS_VENDOR} MATCHES "OpenBLAS")
# As of openblas v0.3.22, the 64-bit is named openblas64.pc
pkg_check_modules(DepBLAS openblas64)
if (NOT DepBLAS_FOUND)
pkg_check_modules(DepBLAS openblas)
endif()
elseif (${GGML_BLAS_VENDOR} MATCHES "FLAME")
add_compile_definitions(GGML_BLAS_USE_BLIS)
pkg_check_modules(DepBLAS blis)
elseif (${GGML_BLAS_VENDOR} MATCHES "ATLAS")
pkg_check_modules(DepBLAS blas-atlas)
elseif (${GGML_BLAS_VENDOR} MATCHES "FlexiBLAS")
pkg_check_modules(DepBLAS flexiblas_api)
elseif (${GGML_BLAS_VENDOR} MATCHES "Intel")
add_compile_definitions(GGML_BLAS_USE_MKL)
# all Intel* libraries share the same include path
pkg_check_modules(DepBLAS mkl-sdl)
elseif (${GGML_BLAS_VENDOR} MATCHES "NVHPC")
# this doesn't provide pkg-config
# suggest to assign BLAS_INCLUDE_DIRS on your own
if ("${NVHPC_VERSION}" STREQUAL "")
message(WARNING "Better to set NVHPC_VERSION")
else()
set(DepBLAS_FOUND ON)
set(DepBLAS_INCLUDE_DIRS "/opt/nvidia/hpc_sdk/${CMAKE_SYSTEM_NAME}_${CMAKE_SYSTEM_PROCESSOR}/${NVHPC_VERSION}/math_libs/include")
endif()
endif()
if (DepBLAS_FOUND)
set(BLAS_INCLUDE_DIRS ${DepBLAS_INCLUDE_DIRS})
else()
message(WARNING "BLAS_INCLUDE_DIRS neither been provided nor been automatically"
" detected by pkgconfig, trying to find cblas.h from possible paths...")
find_path(BLAS_INCLUDE_DIRS
NAMES cblas.h
HINTS
/usr/include
/usr/local/include
/usr/include/openblas
/opt/homebrew/opt/openblas/include
/usr/local/opt/openblas/include
/usr/include/x86_64-linux-gnu/openblas/include
)
endif()
endif()
message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}")
target_compile_options(ggml-blas PRIVATE ${BLAS_LINKER_FLAGS})
if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${GGML_BLAS_VENDOR} MATCHES "Generic" OR ${GGML_BLAS_VENDOR} MATCHES "Intel"))
add_compile_definitions(GGML_BLAS_USE_MKL)
endif()
target_link_libraries (ggml-blas PRIVATE ${BLAS_LIBRARIES})
target_include_directories(ggml-blas PRIVATE ${BLAS_INCLUDE_DIRS})
else()
message(ERROR "BLAS not found, please refer to "
"https://cmake.org/cmake/help/latest/module/FindBLAS.html#blas-lapack-vendors"
" to set correct GGML_BLAS_VENDOR")
endif()

View file

@ -6,7 +6,7 @@
#include <vector>
#include <cstring>
#if defined(GGML_USE_ACCELERATE)
#if defined(GGML_BLAS_USE_ACCELERATE)
# include <Accelerate/Accelerate.h>
#elif defined(GGML_BLAS_USE_MKL)
# include <mkl.h>
@ -320,7 +320,7 @@ static const char * ggml_backend_blas_device_get_name(ggml_backend_dev_t dev) {
}
static const char * ggml_backend_blas_device_get_description(ggml_backend_dev_t dev) {
#if defined(GGML_USE_ACCELERATE)
#if defined(GGML_BLAS_USE_ACCELERATE)
return "Accelerate";
#elif defined(GGML_BLAS_USE_MKL)
return "MKL";

View file

@ -0,0 +1,46 @@
if ("cann${CANN_INSTALL_DIR}" STREQUAL "cann" AND DEFINED ENV{ASCEND_TOOLKIT_HOME})
set(CANN_INSTALL_DIR $ENV{ASCEND_TOOLKIT_HOME})
message(STATUS "CANN: updated CANN_INSTALL_DIR from ASCEND_TOOLKIT_HOME=$ENV{ASCEND_TOOLKIT_HOME}")
endif()
if (CANN_INSTALL_DIR)
# Only Support Linux.
if (NOT UNIX)
message(FATAL_ERROR "CANN: CANN toolkit supports unix but not ${CMAKE_SYSTEM_NAME}")
endif()
# Supported platforms: x86-64, arm64
if (CMAKE_SYSTEM_PROCESSOR STREQUAL "aarch64")
elseif (CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64" OR CMAKE_SYSTEM_PROCESSOR STREQUAL "amd64")
else()
message(FATAL_ERROR "CANN: CANN toolkit supports x86-64 and arm64 but not ${CMAKE_SYSTEM_PROCESSOR}")
endif()
# Set header and libs
set(CANN_INCLUDE_DIRS
${CANN_INSTALL_DIR}/include
${CANN_INSTALL_DIR}/include/aclnn
${CANN_INSTALL_DIR}/acllib/include
)
add_subdirectory(kernels)
list(APPEND CANN_LIBRARIES
ascendcl
nnopbase
opapi
acl_op_compiler
ascendc_kernels
)
file(GLOB GGML_SOURCES_CANN "*.cpp")
add_library(ggml-cann ${GGML_SOURCES_CANN})
target_link_libraries(ggml-cann PRIVATE ggml-base ${CANN_LIBRARIES})
target_include_directories(ggml-cann PRIVATE . .. ${CANN_INCLUDE_DIRS})
target_link_directories(ggml-cann PRIVATE ${CANN_INSTALL_DIR}/lib64)
message(STATUS "CANN: CANN_INCLUDE_DIRS = ${CANN_INCLUDE_DIRS}")
message(STATUS "CANN: CANN_LIBRARIES = ${CANN_LIBRARIES}")
else()
message(FATAL_ERROR "CANN: Can't find CANN_INSTALL_DIR, did you forget to source set_var.sh?")
endif()

View file

@ -0,0 +1,266 @@
add_library(ggml-cpu
ggml-cpu.c
ggml-cpu.cpp
ggml-cpu-aarch64.c
ggml-cpu-aarch64.h
ggml-cpu-quants.c
ggml-cpu-quants.h
)
target_link_libraries(ggml-cpu PRIVATE ggml-base)
target_include_directories(ggml-cpu PRIVATE . ..)
if (APPLE AND GGML_ACCELERATE)
find_library(ACCELERATE_FRAMEWORK Accelerate)
if (ACCELERATE_FRAMEWORK)
message(STATUS "Accelerate framework found")
add_compile_definitions(GGML_USE_ACCELERATE)
add_compile_definitions(ACCELERATE_NEW_LAPACK)
add_compile_definitions(ACCELERATE_LAPACK_ILP64)
target_link_libraries(ggml-cpu PRIVATE ${ACCELERATE_FRAMEWORK})
else()
message(WARNING "Accelerate framework not found")
endif()
endif()
if (GGML_OPENMP)
find_package(OpenMP)
if (OpenMP_FOUND)
message(STATUS "OpenMP found")
add_compile_definitions(GGML_USE_OPENMP)
target_link_libraries(ggml-cpu PRIVATE OpenMP::OpenMP_C OpenMP::OpenMP_CXX)
# FIXME: should be replaced with a compiler id check
#if (GGML_MUSA)
# list(APPEND GGML_CPU_EXTRA_INCLUDES "/usr/lib/llvm-14/lib/clang/14.0.0/include")
# list(APPEND GGML_CPU_EXTRA_LIBS_PRIVATE "/usr/lib/llvm-14/lib/libomp.so")
#endif()
else()
message(WARNING "OpenMP not found")
endif()
endif()
if (GGML_LLAMAFILE)
message(STATUS "Using llamafile")
add_compile_definitions(GGML_USE_LLAMAFILE)
target_sources(ggml-cpu PRIVATE
llamafile/sgemm.cpp
llamafile/sgemm.h)
endif()
if (GGML_CPU_HBM)
find_library(memkind memkind REQUIRED)
message(STATUS "Using memkind for CPU HBM")
add_compile_definitions(GGML_USE_CPU_HBM)
target_link_libraries(ggml-cpu PUBLIC memkind)
endif()
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR
CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
(NOT CMAKE_OSX_ARCHITECTURES AND
NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
message(STATUS "ARM detected")
if (MSVC)
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
add_compile_definitions(__ARM_NEON)
add_compile_definitions(__ARM_FEATURE_FMA)
set(CMAKE_REQUIRED_FLAGS_PREV ${CMAKE_REQUIRED_FLAGS})
string(JOIN " " CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "/arch:armv8.2")
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_DOTPROD)
if (GGML_COMPILER_SUPPORT_DOTPROD)
add_compile_definitions(__ARM_FEATURE_DOTPROD)
endif ()
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
add_compile_definitions(__ARM_FEATURE_MATMUL_INT8)
endif ()
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
endif ()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_PREV})
else()
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
list(APPEND ARCH_FLAGS -mfp16-format=ieee)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
# Raspberry Pi 1, Zero
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access)
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
if ("${CMAKE_SYSTEM_NAME}" STREQUAL "Android")
# Android armeabi-v7a
list(APPEND ARCH_FLAGS -mfpu=neon-vfpv4 -mno-unaligned-access -funsafe-math-optimizations)
else()
# Raspberry Pi 2
list(APPEND ARCH_FLAGS -mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
endif()
endif()
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
# Android arm64-v8a
# Raspberry Pi 3, 4, Zero 2 (32-bit)
list(APPEND ARCH_FLAGS -mno-unaligned-access)
endif()
if (GGML_SVE)
list(APPEND ARCH_FLAGS -march=armv8.6-a+sve)
endif()
endif()
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only
if (GGML_NATIVE)
# TODO: improve, should not reference files from the parent folder
include(cmake/FindSIMD.cmake)
endif ()
if (GGML_AVX512)
list(APPEND ARCH_FLAGS /arch:AVX512)
# MSVC has no compile-time flags enabling specific
# AVX512 extensions, neither it defines the
# macros corresponding to the extensions.
# Do it manually.
if (GGML_AVX512_VBMI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VBMI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VBMI__>)
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
list(APPEND ARCH_FLAGS -mavx512vbmi)
endif()
endif()
if (GGML_AVX512_VNNI)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
list(APPEND ARCH_FLAGS -mavx512vnni)
endif()
endif()
if (GGML_AVX512_BF16)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
if (CMAKE_C_COMPILER_ID STREQUAL "Clang")
list(APPEND ARCH_FLAGS -mavx512bf16)
endif()
endif()
if (GGML_AMX_TILE)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_TILE__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_TILE__>)
endif()
if (GGML_AMX_INT8)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_INT8__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_INT8__>)
endif()
if (GGML_AMX_BF16)
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AMX_BF16__>)
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AMX_BF16__>)
endif()
elseif (GGML_AVX2)
list(APPEND ARCH_FLAGS /arch:AVX2)
elseif (GGML_AVX)
list(APPEND ARCH_FLAGS /arch:AVX)
endif()
else()
if (GGML_NATIVE)
list(APPEND ARCH_FLAGS -march=native)
endif()
if (GGML_F16C)
list(APPEND ARCH_FLAGS -mf16c)
endif()
if (GGML_FMA)
list(APPEND ARCH_FLAGS -mfma)
endif()
if (GGML_AVX)
list(APPEND ARCH_FLAGS -mavx)
endif()
if (GGML_AVX2)
list(APPEND ARCH_FLAGS -mavx2)
endif()
if (GGML_AVX512)
list(APPEND ARCH_FLAGS -mavx512f)
list(APPEND ARCH_FLAGS -mavx512dq)
list(APPEND ARCH_FLAGS -mavx512bw)
endif()
if (GGML_AVX512_VBMI)
list(APPEND ARCH_FLAGS -mavx512vbmi)
endif()
if (GGML_AVX512_VNNI)
list(APPEND ARCH_FLAGS -mavx512vnni)
endif()
if (GGML_AVX512_BF16)
list(APPEND ARCH_FLAGS -mavx512bf16)
endif()
if (GGML_AMX_TILE)
list(APPEND ARCH_FLAGS -mamx-tile)
endif()
if (GGML_AMX_INT8)
list(APPEND ARCH_FLAGS -mamx-int8)
endif()
if (GGML_AMX_BF16)
list(APPEND ARCH_FLAGS -mamx-bf16)
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
message(STATUS "PowerPC detected")
execute_process(COMMAND bash -c "grep POWER10 /proc/cpuinfo | head -n 1" OUTPUT_VARIABLE POWER10_M)
string(FIND "${POWER10_M}" "POWER10" substring_index)
if (NOT DEFINED substring_index OR "${substring_index}" STREQUAL "")
set(substring_index -1)
endif()
if (${substring_index} GREATER_EQUAL 0)
list(APPEND ARCH_FLAGS -mcpu=power10)
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64le")
list(APPEND ARCH_FLAGS -mcpu=powerpc64le)
else()
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
message(STATUS "loongarch64 detected")
list(APPEND ARCH_FLAGS -march=loongarch64)
if (GGML_LASX)
list(APPEND ARCH_FLAGS -mlasx)
endif()
if (GGML_LSX)
list(APPEND ARCH_FLAGS -mlsx)
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "riscv64")
message(STATUS "RISC-V detected")
if (GGML_RVV)
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
endif()
else()
message(STATUS "Unknown architecture")
endif()
if (GGML_CPU_AARCH64)
message(STATUS "Using runtime weight conversion of Q4_0 to Q4_0_x_x to enable optimized GEMM/GEMV kernels")
add_compile_definitions(GGML_USE_CPU_AARCH64)
endif()
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:CXX>:${ARCH_FLAGS}>")
target_compile_options(ggml-cpu PRIVATE "$<$<COMPILE_LANGUAGE:C>:${ARCH_FLAGS}>")
if (EMSCRIPTEN)
set_target_properties(ggml-cpu PROPERTIES COMPILE_FLAGS "-msimd128")
endif()

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,30 @@
#pragma once
#include "ggml.h"
// GGML internal header
#ifdef __cplusplus
extern "C" {
#endif
// Quantization
void quantize_mat_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nrows, int64_t n_per_row, int64_t blck_size_interleave);
// GEMV
void ggml_gemv_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemv_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
// GEMM
void ggml_gemm_q4_0_4x4_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_4x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_gemm_q4_0_8x8_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, const void * GGML_RESTRICT vy, int nr, int nc);
void ggml_aarch64_repack_tensor(struct ggml_tensor * cur, enum ggml_type repack_type, const void * data, size_t data_size);
enum ggml_type ggml_aarch64_get_optimal_repack_type(const struct ggml_tensor * cur);
#ifdef __cplusplus
}
#endif

Some files were not shown because too many files have changed in this diff Show more