Merge branch 'master' of github.com:ggerganov/llama.cpp into phillip-kravtsov/support-adept-persimmon-8b
This commit is contained in:
commit
d0a7143f71
54 changed files with 7981 additions and 3273 deletions
30
.github/workflows/build.yml
vendored
30
.github/workflows/build.yml
vendored
|
@ -38,13 +38,13 @@ jobs:
|
|||
- name: Build
|
||||
id: make_build
|
||||
run: |
|
||||
CC=gcc-8 make
|
||||
CC=gcc-8 make -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: make_test
|
||||
run: |
|
||||
CC=gcc-8 make tests
|
||||
make test
|
||||
CC=gcc-8 make tests -j $(nproc)
|
||||
make test -j $(nproc)
|
||||
|
||||
ubuntu-latest-cmake:
|
||||
runs-on: ubuntu-latest
|
||||
|
@ -66,7 +66,7 @@ jobs:
|
|||
mkdir build
|
||||
cd build
|
||||
cmake ..
|
||||
cmake --build . --config Release
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
|
@ -101,7 +101,7 @@ jobs:
|
|||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }}
|
||||
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
|
@ -135,7 +135,7 @@ jobs:
|
|||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_MPI=ON ..
|
||||
cmake --build . --config Release
|
||||
cmake --build . --config Release -j $(nproc)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
|
@ -160,13 +160,13 @@ jobs:
|
|||
- name: Build
|
||||
id: make_build
|
||||
run: |
|
||||
make
|
||||
make -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: make_test
|
||||
run: |
|
||||
make tests
|
||||
make test
|
||||
make tests -j $(sysctl -n hw.logicalcpu)
|
||||
make test -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
macOS-latest-cmake:
|
||||
runs-on: macos-latest
|
||||
|
@ -189,7 +189,7 @@ jobs:
|
|||
mkdir build
|
||||
cd build
|
||||
cmake -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF ..
|
||||
cmake --build . --config Release
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
|
@ -223,7 +223,7 @@ jobs:
|
|||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||
cmake --build . --config Release
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
macOS-latest-cmake-tvos:
|
||||
runs-on: macos-latest
|
||||
|
@ -251,7 +251,7 @@ jobs:
|
|||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||
cmake --build . --config Release
|
||||
cmake --build . --config Release -j $(sysctl -n hw.logicalcpu)
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
|
@ -324,7 +324,7 @@ jobs:
|
|||
mkdir build
|
||||
cd build
|
||||
cmake .. ${{ matrix.defines }}
|
||||
cmake --build . --config Release
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Add clblast.dll
|
||||
id: add_clblast_dll
|
||||
|
@ -415,7 +415,7 @@ jobs:
|
|||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_BUILD_SERVER=ON -DLLAMA_CUBLAS=ON -DBUILD_SHARED_LIBS=ON
|
||||
cmake --build . --config Release
|
||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||
|
||||
- name: Determine tag name
|
||||
id: tag
|
||||
|
@ -472,7 +472,7 @@ jobs:
|
|||
# run: |
|
||||
# sudo pkg update
|
||||
# sudo pkg install -y gmake automake autoconf pkgconf llvm15 clinfo clover opencl clblast openblas
|
||||
# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15
|
||||
# gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j `sysctl -n hw.ncpu`
|
||||
|
||||
release:
|
||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||
|
|
3
.gitignore
vendored
3
.gitignore
vendored
|
@ -45,6 +45,7 @@ models-mnt
|
|||
/main
|
||||
/metal
|
||||
/perplexity
|
||||
/q8dot
|
||||
/quantize
|
||||
/quantize-stats
|
||||
/result
|
||||
|
@ -52,6 +53,8 @@ models-mnt
|
|||
/server
|
||||
/simple
|
||||
/batched
|
||||
/export-lora
|
||||
/finetune
|
||||
/speculative
|
||||
/parallel
|
||||
/train-text-from-scratch
|
||||
|
|
|
@ -414,37 +414,38 @@ endif()
|
|||
|
||||
if (LLAMA_ALL_WARNINGS)
|
||||
if (NOT MSVC)
|
||||
set(c_flags
|
||||
-Wall
|
||||
-Wextra
|
||||
-Wpedantic
|
||||
-Wcast-qual
|
||||
-Wdouble-promotion
|
||||
-Wshadow
|
||||
-Wstrict-prototypes
|
||||
-Wpointer-arith
|
||||
-Wmissing-prototypes
|
||||
-Werror=implicit-int
|
||||
-Wno-unused-function
|
||||
)
|
||||
set(cxx_flags
|
||||
-Wall
|
||||
-Wextra
|
||||
-Wpedantic
|
||||
-Wcast-qual
|
||||
-Wmissing-declarations
|
||||
-Wno-unused-function
|
||||
-Wno-multichar
|
||||
)
|
||||
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
|
||||
# g++ only
|
||||
set(cxx_flags ${cxx_flags} -Wno-format-truncation -Wno-array-bounds)
|
||||
set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function)
|
||||
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int
|
||||
-Werror=implicit-function-declaration)
|
||||
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
|
||||
|
||||
if (CMAKE_C_COMPILER_ID MATCHES "Clang")
|
||||
set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return)
|
||||
set(cxx_flags ${cxx_flags} -Wmissing-prototypes -Wextra-semi)
|
||||
|
||||
if (
|
||||
(CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR
|
||||
(CMAKE_C_COMPILER_ID STREQUAL "AppleClang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 7.3.0)
|
||||
)
|
||||
set(c_flags ${c_flags} -Wdouble-promotion)
|
||||
endif()
|
||||
elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU")
|
||||
set(c_flags ${c_flags} -Wdouble-promotion)
|
||||
set(cxx_flags ${cxx_flags} -Wno-array-bounds)
|
||||
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0)
|
||||
set(cxx_flags ${cxx_flags} -Wno-format-truncation)
|
||||
endif()
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0)
|
||||
set(cxx_flags ${cxx_flags} -Wextra-semi)
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
# todo : msvc
|
||||
endif()
|
||||
|
||||
add_compile_options(
|
||||
${warning_flags}
|
||||
"$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
|
||||
)
|
||||
|
|
82
Makefile
82
Makefile
|
@ -1,5 +1,5 @@
|
|||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative parallel tests/test-c.o
|
||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||
|
||||
# Binaries only useful for tests
|
||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
|
||||
|
@ -19,6 +19,20 @@ ifndef UNAME_M
|
|||
UNAME_M := $(shell uname -m)
|
||||
endif
|
||||
|
||||
ifeq '' '$(findstring clang,$(shell $(CC) --version))'
|
||||
CC_IS_GCC=1
|
||||
CC_VER := $(shell $(CC) -dumpfullversion -dumpversion | awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||
else
|
||||
CC_IS_CLANG=1
|
||||
ifeq '' '$(findstring Apple LLVM,$(shell $(CC) --version))'
|
||||
CC_IS_LLVM_CLANG=1
|
||||
else
|
||||
CC_IS_APPLE_CLANG=1
|
||||
endif
|
||||
CC_VER := $(shell $(CC) --version | sed -n 's/^.* version \([0-9.]*\).*$$/\1/p' \
|
||||
| awk -F. '{ printf("%02d%02d%02d", $$1, $$2, $$3) }')
|
||||
endif
|
||||
|
||||
# Mac OS + Arm can report x86_64
|
||||
# ref: https://github.com/ggerganov/whisper.cpp/issues/66#issuecomment-1282546789
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
|
@ -87,9 +101,6 @@ CC := riscv64-unknown-linux-gnu-gcc
|
|||
CXX := riscv64-unknown-linux-gnu-g++
|
||||
endif
|
||||
|
||||
CCV := $(shell $(CC) --version | head -n 1)
|
||||
CXXV := $(shell $(CXX) --version | head -n 1)
|
||||
|
||||
#
|
||||
# Compile flags
|
||||
#
|
||||
|
@ -173,20 +184,33 @@ ifdef LLAMA_DISABLE_LOGS
|
|||
endif # LLAMA_DISABLE_LOGS
|
||||
|
||||
# warnings
|
||||
MK_CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
|
||||
-Wmissing-prototypes -Werror=implicit-int -Wno-unused-function
|
||||
MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wmissing-declarations -Wno-unused-function -Wno-multichar
|
||||
WARN_FLAGS = -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function
|
||||
MK_CFLAGS += $(WARN_FLAGS) -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int \
|
||||
-Werror=implicit-function-declaration
|
||||
MK_CXXFLAGS += $(WARN_FLAGS) -Wmissing-declarations -Wmissing-noreturn
|
||||
|
||||
# TODO(cebtenzzre): remove this once PR #2632 gets merged
|
||||
TTFS_CXXFLAGS = $(CXXFLAGS) -Wno-missing-declarations
|
||||
ifeq ($(CC_IS_CLANG), 1)
|
||||
# clang options
|
||||
MK_CFLAGS += -Wunreachable-code-break -Wunreachable-code-return
|
||||
MK_HOST_CXXFLAGS += -Wunreachable-code-break -Wunreachable-code-return -Wmissing-prototypes -Wextra-semi
|
||||
|
||||
ifneq '' '$(findstring clang,$(shell $(CXX) --version))'
|
||||
# clang++ only
|
||||
MK_CXXFLAGS += -Wmissing-prototypes
|
||||
TTFS_CXXFLAGS += -Wno-missing-prototypes
|
||||
ifneq '' '$(and $(CC_IS_LLVM_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 030800)))'
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
ifneq '' '$(and $(CC_IS_APPLE_CLANG),$(filter 1,$(shell expr $(CC_VER) \>= 070300)))'
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
endif
|
||||
else
|
||||
# g++ only
|
||||
MK_CXXFLAGS += -Wno-format-truncation -Wno-array-bounds
|
||||
# gcc options
|
||||
MK_CFLAGS += -Wdouble-promotion
|
||||
MK_HOST_CXXFLAGS += -Wno-array-bounds
|
||||
|
||||
ifeq ($(shell expr $(CC_VER) \>= 070100), 1)
|
||||
MK_HOST_CXXFLAGS += -Wno-format-truncation
|
||||
endif
|
||||
ifeq ($(shell expr $(CC_VER) \>= 080100), 1)
|
||||
MK_HOST_CXXFLAGS += -Wextra-semi
|
||||
endif
|
||||
endif
|
||||
|
||||
# OS specific
|
||||
|
@ -382,7 +406,7 @@ ifdef LLAMA_CUDA_CCBIN
|
|||
NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
|
||||
endif
|
||||
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(NVCC) $(NVCCFLAGS) -Wno-pedantic -c $< -o $@
|
||||
$(NVCC) $(NVCCFLAGS) -c $< -o $@
|
||||
endif # LLAMA_CUBLAS
|
||||
|
||||
ifdef LLAMA_CLBLAST
|
||||
|
@ -472,8 +496,8 @@ $(info I CFLAGS: $(CFLAGS))
|
|||
$(info I CXXFLAGS: $(CXXFLAGS))
|
||||
$(info I NVCCFLAGS: $(NVCCFLAGS))
|
||||
$(info I LDFLAGS: $(LDFLAGS))
|
||||
$(info I CC: $(CCV))
|
||||
$(info I CXX: $(CXXV))
|
||||
$(info I CC: $(shell $(CC) --version | head -n 1))
|
||||
$(info I CXX: $(shell $(CXX) --version | head -n 1))
|
||||
$(info )
|
||||
|
||||
#
|
||||
|
@ -500,6 +524,9 @@ console.o: common/console.cpp common/console.h
|
|||
grammar-parser.o: common/grammar-parser.cpp common/grammar-parser.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
train.o: common/train.cpp common/train.h
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
libllama.so: llama.o ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS)
|
||||
|
||||
|
@ -550,8 +577,8 @@ embd-input-test: $(LIB_PRE)embdinput$(DSO_EXT) examples/embd-input/embd-input-te
|
|||
gguf: examples/gguf/gguf.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(TTFS_CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
train-text-from-scratch: examples/train-text-from-scratch/train-text-from-scratch.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggml.cpp ggml.o llama.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
@ -559,12 +586,18 @@ convert-llama2c-to-ggml: examples/convert-llama2c-to-ggml/convert-llama2c-to-ggm
|
|||
llama-bench: examples/llama-bench/llama-bench.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o $(OBJS)
|
||||
baby-llama: examples/baby-llama/baby-llama.cpp ggml.o llama.o common.o train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
beam-search: examples/beam-search/beam-search.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
finetune: examples/finetune/finetune.cpp build-info.h ggml.o llama.o common.o train.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
export-lora: examples/export-lora/export-lora.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
speculative: examples/speculative/speculative.cpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
|
@ -592,11 +625,18 @@ tests: $(TEST_TARGETS)
|
|||
|
||||
benchmark-matmult: examples/benchmark/benchmark-matmult.cpp build-info.h ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
run-benchmark-matmult: benchmark-matmult
|
||||
./$@
|
||||
|
||||
.PHONY: run-benchmark-matmult
|
||||
|
||||
vdot: pocs/vdot/vdot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
q8dot: pocs/vdot/q8dot.cpp ggml.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $^ -o $@ $(LDFLAGS)
|
||||
|
||||
tests/test-llama-grammar: tests/test-llama-grammar.cpp build-info.h ggml.o common.o grammar-parser.o $(OBJS)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||
|
||||
|
|
|
@ -9,6 +9,8 @@ add_library(${TARGET} OBJECT
|
|||
console.cpp
|
||||
grammar-parser.h
|
||||
grammar-parser.cpp
|
||||
train.h
|
||||
train.cpp
|
||||
)
|
||||
|
||||
if (BUILD_SHARED_LIBS)
|
||||
|
|
|
@ -78,7 +78,7 @@ int32_t get_num_physical_cores() {
|
|||
return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
|
||||
}
|
||||
|
||||
static void process_escapes(std::string& input) {
|
||||
void process_escapes(std::string& input) {
|
||||
std::size_t input_len = input.length();
|
||||
std::size_t output_idx = 0;
|
||||
|
||||
|
@ -129,6 +129,15 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
if (params.n_threads <= 0) {
|
||||
params.n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
} else if (arg == "-tb" || arg == "--threads-batch") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_threads_batch = std::stoi(argv[i]);
|
||||
if (params.n_threads_batch <= 0) {
|
||||
params.n_threads_batch = std::thread::hardware_concurrency();
|
||||
}
|
||||
} else if (arg == "-p" || arg == "--prompt") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -352,7 +361,19 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter = argv[i];
|
||||
params.lora_adapter.push_back({argv[i], 1.0f});
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--lora-scaled") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
const char * lora_adapter = argv[i];
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])});
|
||||
params.use_mmap = false;
|
||||
} else if (arg == "--lora-base") {
|
||||
if (++i >= argc) {
|
||||
|
@ -439,12 +460,6 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
params.mul_mat_q = false;
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--low-vram" || arg == "-lv") {
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
params.low_vram = true;
|
||||
#else
|
||||
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
|
||||
#endif // GGML_USE_CUBLAS
|
||||
} else if (arg == "--no-mmap") {
|
||||
params.use_mmap = false;
|
||||
|
@ -618,7 +633,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
printf(" (can be specified more than once for multiple prompts).\n");
|
||||
printf(" --color colorise output to distinguish prompt and user input from generations\n");
|
||||
printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
|
||||
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
|
||||
printf(" -t N, --threads N number of threads to use during generation (default: %d)\n", params.n_threads);
|
||||
printf(" -tb N, --threads-batch N\n");
|
||||
printf(" number of threads to use during batch and prompt processing (default: same as --threads)\n");
|
||||
printf(" -p PROMPT, --prompt PROMPT\n");
|
||||
printf(" prompt to start generation with (default: empty)\n");
|
||||
printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
|
||||
|
@ -633,7 +650,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
printf(" -f FNAME, --file FNAME\n");
|
||||
printf(" prompt file to start generation.\n");
|
||||
printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx);
|
||||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
||||
printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
||||
|
@ -693,7 +710,6 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
||||
printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n");
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
printf(" -nommq, --no-mul-mat-q\n");
|
||||
printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
|
||||
|
@ -703,6 +719,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
printf(" --verbose-prompt print prompt before generation\n");
|
||||
fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
|
||||
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
|
@ -713,6 +730,18 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
printf("\n");
|
||||
}
|
||||
|
||||
std::string get_system_info(const gpt_params & params) {
|
||||
std::ostringstream os;
|
||||
|
||||
os << "system_info: n_threads = " << params.n_threads;
|
||||
if (params.n_threads_batch != -1) {
|
||||
os << " (n_threads_batch = " << params.n_threads_batch << ")";
|
||||
}
|
||||
os << " / " << std::thread::hardware_concurrency() << " | " << llama_print_system_info();
|
||||
|
||||
return os.str();
|
||||
}
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng) {
|
||||
const int r = rng() % 10;
|
||||
switch (r) {
|
||||
|
@ -726,60 +755,74 @@ std::string gpt_random_prompt(std::mt19937 & rng) {
|
|||
case 7: return "He";
|
||||
case 8: return "She";
|
||||
case 9: return "They";
|
||||
default: return "To";
|
||||
}
|
||||
|
||||
return "The";
|
||||
GGML_UNREACHABLE();
|
||||
}
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
auto lparams = llama_context_default_params();
|
||||
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params) {
|
||||
auto mparams = llama_model_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_batch = params.n_batch;
|
||||
if (params.n_gpu_layers != -1) {
|
||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||
mparams.n_gpu_layers = params.n_gpu_layers;
|
||||
}
|
||||
lparams.main_gpu = params.main_gpu;
|
||||
lparams.tensor_split = params.tensor_split;
|
||||
lparams.low_vram = params.low_vram;
|
||||
lparams.mul_mat_q = params.mul_mat_q;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
lparams.logits_all = params.logits_all;
|
||||
lparams.embedding = params.embedding;
|
||||
lparams.rope_freq_base = params.rope_freq_base;
|
||||
lparams.rope_freq_scale = params.rope_freq_scale;
|
||||
mparams.main_gpu = params.main_gpu;
|
||||
mparams.tensor_split = params.tensor_split;
|
||||
mparams.use_mmap = params.use_mmap;
|
||||
mparams.use_mlock = params.use_mlock;
|
||||
|
||||
return lparams;
|
||||
return mparams;
|
||||
}
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
cparams.n_ctx = params.n_ctx;
|
||||
cparams.n_batch = params.n_batch;
|
||||
cparams.n_threads = params.n_threads;
|
||||
cparams.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
cparams.mul_mat_q = params.mul_mat_q;
|
||||
cparams.seed = params.seed;
|
||||
cparams.f16_kv = params.memory_f16;
|
||||
cparams.logits_all = params.logits_all;
|
||||
cparams.embedding = params.embedding;
|
||||
cparams.rope_freq_base = params.rope_freq_base;
|
||||
cparams.rope_freq_scale = params.rope_freq_scale;
|
||||
|
||||
return cparams;
|
||||
}
|
||||
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
|
||||
auto lparams = llama_context_params_from_gpt_params(params);
|
||||
auto mparams = llama_model_params_from_gpt_params(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams);
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
return std::make_tuple(nullptr, nullptr);
|
||||
}
|
||||
|
||||
llama_context * lctx = llama_new_context_with_model(model, lparams);
|
||||
auto cparams = llama_context_params_from_gpt_params(params);
|
||||
|
||||
llama_context * lctx = llama_new_context_with_model(model, cparams);
|
||||
if (lctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
llama_free_model(model);
|
||||
return std::make_tuple(nullptr, nullptr);
|
||||
}
|
||||
|
||||
if (!params.lora_adapter.empty()) {
|
||||
for (unsigned int i = 0; i < params.lora_adapter.size(); ++i) {
|
||||
const std::string& lora_adapter = std::get<0>(params.lora_adapter[i]);
|
||||
float lora_scale = std::get<1>(params.lora_adapter[i]);
|
||||
int err = llama_model_apply_lora_from_file(model,
|
||||
params.lora_adapter.c_str(),
|
||||
params.lora_base.empty() ? NULL : params.lora_base.c_str(),
|
||||
lora_adapter.c_str(),
|
||||
lora_scale,
|
||||
((i > 0) || params.lora_base.empty())
|
||||
? NULL
|
||||
: params.lora_base.c_str(),
|
||||
params.n_threads);
|
||||
if (err != 0) {
|
||||
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
|
||||
|
@ -797,7 +840,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
|||
LOG("warming up the model with an empty run\n");
|
||||
|
||||
std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0), params.n_threads);
|
||||
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, 0));
|
||||
llama_kv_cache_tokens_rm(lctx, -1, -1);
|
||||
llama_reset_timings(lctx);
|
||||
}
|
||||
|
@ -810,16 +853,23 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
|
|||
//
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos) {
|
||||
return llama_tokenize(llama_get_model(ctx), text, add_bos);
|
||||
}
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_bos) {
|
||||
// upper limit for the number of tokens
|
||||
int n_tokens = text.length() + add_bos;
|
||||
std::vector<llama_token> result(n_tokens);
|
||||
n_tokens = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos);
|
||||
n_tokens = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_tokenize(ctx, text.data(), text.length(), result.data(), result.size(), add_bos);
|
||||
int check = llama_tokenize(model, text.data(), text.length(), result.data(), result.size(), add_bos);
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
|
@ -829,10 +879,10 @@ std::vector<llama_token> llama_tokenize(
|
|||
|
||||
std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
|
||||
std::vector<char> result(8, 0);
|
||||
const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
|
||||
const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
if (n_tokens < 0) {
|
||||
result.resize(-n_tokens);
|
||||
int check = llama_token_to_piece(ctx, token, result.data(), result.size());
|
||||
int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
|
||||
GGML_ASSERT(check == -n_tokens);
|
||||
} else {
|
||||
result.resize(n_tokens);
|
||||
|
@ -887,7 +937,7 @@ llama_token llama_sample_token(
|
|||
std::vector<llama_token_data> & candidates,
|
||||
int idx) {
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
|
@ -1173,7 +1223,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||
#endif // NDEBUG
|
||||
|
||||
fprintf(stream, "model_desc: %s\n", model_desc);
|
||||
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(lctx));
|
||||
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
|
||||
|
||||
#ifdef __OPTIMIZE__
|
||||
fprintf(stream, "optimize: true\n");
|
||||
|
@ -1225,9 +1275,21 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||
fprintf(stream, " %d: %f", lb.first, lb.second);
|
||||
}
|
||||
|
||||
fprintf(stream, "lora: %s\n", params.lora_adapter.c_str());
|
||||
fprintf(stream, "lora:\n");
|
||||
for (std::tuple<std::string, float> la : params.lora_adapter) {
|
||||
if (std::get<1>(la) != 1.0f) {
|
||||
continue;
|
||||
}
|
||||
fprintf(stream, " - %s\n", std::get<0>(la).c_str());
|
||||
}
|
||||
fprintf(stream, "lora_scaled:\n");
|
||||
for (std::tuple<std::string, float> la : params.lora_adapter) {
|
||||
if (std::get<1>(la) == 1.0f) {
|
||||
continue;
|
||||
}
|
||||
fprintf(stream, " - %s: %f\n", std::get<0>(la).c_str(), std::get<1>(la));
|
||||
}
|
||||
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
||||
fprintf(stream, "low_vram: %s # default: false\n", params.low_vram ? "true" : "false");
|
||||
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||
fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
|
||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat);
|
||||
|
|
|
@ -36,6 +36,7 @@ int32_t get_num_physical_cores();
|
|||
struct gpt_params {
|
||||
uint32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
|
@ -85,8 +86,8 @@ struct gpt_params {
|
|||
std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
|
||||
std::string logdir = ""; // directory in which to save YAML log files
|
||||
|
||||
std::string lora_adapter = ""; // lora adapter path
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
|
||||
std::string lora_base = ""; // base model path for the lora adapter
|
||||
|
||||
int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
|
||||
int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
|
||||
|
@ -95,7 +96,6 @@ struct gpt_params {
|
|||
bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
|
||||
size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
|
||||
|
||||
bool low_vram = false; // if true, reduce VRAM usage at the cost of performance
|
||||
bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
|
||||
bool memory_f16 = true; // use f16 instead of f32 for memory kv
|
||||
bool random_prompt = false; // do not randomize prompt if none provided
|
||||
|
@ -126,13 +126,18 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
|||
|
||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||
|
||||
std::string get_system_info(const gpt_params & params);
|
||||
|
||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
||||
|
||||
void process_escapes(std::string& input);
|
||||
|
||||
//
|
||||
// Model utils
|
||||
//
|
||||
|
||||
std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
|
||||
struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
|
||||
|
||||
//
|
||||
|
@ -142,7 +147,12 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
|||
// tokenizes a string into a vector of tokens
|
||||
// should work similar to Python's `tokenizer.encode`
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const struct llama_context * ctx,
|
||||
const std::string & text,
|
||||
bool add_bos);
|
||||
|
||||
std::vector<llama_token> llama_tokenize(
|
||||
const struct llama_model * model,
|
||||
const std::string & text,
|
||||
bool add_bos);
|
||||
|
||||
|
|
74
common/log.h
74
common/log.h
|
@ -225,31 +225,31 @@ enum LogTriState
|
|||
// USE LOG() INSTEAD
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_IMPL(str, ...) \
|
||||
{ \
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
}
|
||||
} while (0)
|
||||
#else
|
||||
#define LOG_IMPL(str, ...) \
|
||||
{ \
|
||||
#define LOG_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TARGET); \
|
||||
} \
|
||||
}
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
// INTERNAL, DO NOT USE
|
||||
// USE LOG_TEE() INSTEAD
|
||||
//
|
||||
#ifndef _MSC_VER
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
{ \
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL, __VA_ARGS__); \
|
||||
|
@ -260,10 +260,10 @@ enum LogTriState
|
|||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL, __VA_ARGS__); \
|
||||
fflush(LOG_TEE_TARGET); \
|
||||
} \
|
||||
}
|
||||
} while (0)
|
||||
#else
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
{ \
|
||||
#define LOG_TEE_IMPL(str, ...) \
|
||||
do { \
|
||||
if (LOG_TARGET != nullptr) \
|
||||
{ \
|
||||
fprintf(LOG_TARGET, LOG_TIMESTAMP_FMT LOG_FLF_FMT str "%s" LOG_TIMESTAMP_VAL LOG_FLF_VAL "", ##__VA_ARGS__); \
|
||||
|
@ -274,7 +274,7 @@ enum LogTriState
|
|||
fprintf(LOG_TEE_TARGET, LOG_TEE_TIMESTAMP_FMT LOG_TEE_FLF_FMT str "%s" LOG_TEE_TIMESTAMP_VAL LOG_TEE_FLF_VAL "", ##__VA_ARGS__); \
|
||||
fflush(LOG_TEE_TARGET); \
|
||||
} \
|
||||
}
|
||||
} while (0)
|
||||
#endif
|
||||
|
||||
// The '\0' as a last argument, is a trick to bypass the silly
|
||||
|
@ -435,41 +435,41 @@ inline FILE *log_handler() { return log_handler1_impl(); }
|
|||
inline void log_test()
|
||||
{
|
||||
log_disable();
|
||||
LOG("01 Hello World to nobody, because logs are disabled!\n")
|
||||
LOG("01 Hello World to nobody, because logs are disabled!\n");
|
||||
log_enable();
|
||||
LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET))
|
||||
LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n")
|
||||
LOG("02 Hello World to default output, which is \"%s\" ( Yaaay, arguments! )!\n", LOG_STRINGIZE(LOG_TARGET));
|
||||
LOG_TEE("03 Hello World to **both** default output and " LOG_TEE_TARGET_STRING "!\n");
|
||||
log_set_target(stderr);
|
||||
LOG("04 Hello World to stderr!\n")
|
||||
LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n")
|
||||
LOG("04 Hello World to stderr!\n");
|
||||
LOG_TEE("05 Hello World TEE with double printing to stderr prevented!\n");
|
||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||
LOG("06 Hello World to default log file!\n")
|
||||
LOG("06 Hello World to default log file!\n");
|
||||
log_set_target(stdout);
|
||||
LOG("07 Hello World to stdout!\n")
|
||||
LOG("07 Hello World to stdout!\n");
|
||||
log_set_target(LOG_DEFAULT_FILE_NAME);
|
||||
LOG("08 Hello World to default log file again!\n")
|
||||
LOG("08 Hello World to default log file again!\n");
|
||||
log_disable();
|
||||
LOG("09 Hello World _1_ into the void!\n")
|
||||
LOG("09 Hello World _1_ into the void!\n");
|
||||
log_enable();
|
||||
LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n")
|
||||
LOG("10 Hello World back from the void ( you should not see _1_ in the log or the output )!\n");
|
||||
log_disable();
|
||||
log_set_target("llama.anotherlog.log");
|
||||
LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n")
|
||||
LOG("11 Hello World _2_ to nobody, new target was selected but logs are still disabled!\n");
|
||||
log_enable();
|
||||
LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n")
|
||||
LOG("12 Hello World this time in a new file ( you should not see _2_ in the log or the output )?\n");
|
||||
log_set_target("llama.yetanotherlog.log");
|
||||
LOG("13 Hello World this time in yet new file?\n")
|
||||
LOG("13 Hello World this time in yet new file?\n");
|
||||
log_set_target(log_filename_generator("llama_autonamed", "log"));
|
||||
LOG("14 Hello World in log with generated filename!\n")
|
||||
LOG("14 Hello World in log with generated filename!\n");
|
||||
#ifdef _MSC_VER
|
||||
LOG_TEE("15 Hello msvc TEE without arguments\n")
|
||||
LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test")
|
||||
LOG_TEELN("17 Hello msvc TEELN without arguments\n")
|
||||
LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test")
|
||||
LOG("19 Hello msvc LOG without arguments\n")
|
||||
LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test")
|
||||
LOGLN("21 Hello msvc LOGLN without arguments\n")
|
||||
LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test")
|
||||
LOG_TEE("15 Hello msvc TEE without arguments\n");
|
||||
LOG_TEE("16 Hello msvc TEE with (%d)(%s) arguments\n", 1, "test");
|
||||
LOG_TEELN("17 Hello msvc TEELN without arguments\n");
|
||||
LOG_TEELN("18 Hello msvc TEELN with (%d)(%s) arguments\n", 1, "test");
|
||||
LOG("19 Hello msvc LOG without arguments\n");
|
||||
LOG("20 Hello msvc LOG with (%d)(%s) arguments\n", 1, "test");
|
||||
LOGLN("21 Hello msvc LOGLN without arguments\n");
|
||||
LOGLN("22 Hello msvc LOGLN with (%d)(%s) arguments\n", 1, "test");
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -542,7 +542,7 @@ inline void log_dump_cmdline_impl(int argc, char **argv)
|
|||
buf << " " << argv[i];
|
||||
}
|
||||
}
|
||||
LOGLN("Cmd:%s", buf.str().c_str())
|
||||
LOGLN("Cmd:%s", buf.str().c_str());
|
||||
}
|
||||
|
||||
#define log_tostr(var) log_var_to_string_impl(var).c_str()
|
||||
|
@ -620,10 +620,10 @@ inline std::string log_var_to_string_impl(const std::vector<int> & var)
|
|||
#define LOGLN(...) // dummy stub
|
||||
|
||||
#undef LOG_TEE
|
||||
#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf
|
||||
#define LOG_TEE(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||
|
||||
#undef LOG_TEELN
|
||||
#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__); // convert to normal fprintf
|
||||
#define LOG_TEELN(...) fprintf(stderr, __VA_ARGS__) // convert to normal fprintf
|
||||
|
||||
#undef LOG_DISABLE
|
||||
#define LOG_DISABLE() // dummy stub
|
||||
|
|
1496
common/train.cpp
Normal file
1496
common/train.cpp
Normal file
File diff suppressed because it is too large
Load diff
230
common/train.h
Normal file
230
common/train.h
Normal file
|
@ -0,0 +1,230 @@
|
|||
// Various helper functions and utilities for training
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
typedef std::string mt19937_state;
|
||||
|
||||
struct train_state {
|
||||
struct ggml_opt_context * opt;
|
||||
|
||||
uint64_t train_its;
|
||||
uint64_t train_samples;
|
||||
uint64_t train_tokens;
|
||||
uint64_t train_epochs;
|
||||
|
||||
size_t shuffle_samples_hash; // fn, sample_count, *zip(sample_begins, sample_sizes)
|
||||
mt19937_state shuffle_rng_state_current;
|
||||
mt19937_state shuffle_rng_state_next;
|
||||
size_t shuffle_sample_count;
|
||||
size_t shuffle_next_sample;
|
||||
};
|
||||
|
||||
struct train_params_common {
|
||||
const char * fn_train_data;
|
||||
const char * fn_checkpoint_in;
|
||||
const char * fn_checkpoint_out;
|
||||
const char * pattern_fn_it;
|
||||
const char * fn_latest;
|
||||
|
||||
bool print_usage;
|
||||
|
||||
int save_every;
|
||||
|
||||
uint32_t seed;
|
||||
|
||||
int n_ctx;
|
||||
int n_threads;
|
||||
int n_batch;
|
||||
int n_gradient_accumulation;
|
||||
int n_epochs;
|
||||
|
||||
bool custom_n_ctx;
|
||||
|
||||
bool use_flash;
|
||||
bool use_checkpointing;
|
||||
|
||||
std::string sample_start;
|
||||
bool include_sample_start;
|
||||
bool escape;
|
||||
bool overlapping_samples;
|
||||
bool fill_with_next_samples;
|
||||
bool separate_with_eos;
|
||||
bool separate_with_bos;
|
||||
bool sample_random_offsets;
|
||||
|
||||
bool force_reshuffle;
|
||||
|
||||
int warmup;
|
||||
int cos_decay_steps;
|
||||
float cos_decay_restart;
|
||||
float cos_decay_min;
|
||||
bool enable_restart;
|
||||
|
||||
int opt_past;
|
||||
float opt_delta;
|
||||
int opt_max_no_improvement;
|
||||
|
||||
int adam_n_iter;
|
||||
float adam_alpha;
|
||||
float adam_min_alpha;
|
||||
float adam_decay;
|
||||
int adam_decay_min_ndim;
|
||||
float adam_beta1;
|
||||
float adam_beta2;
|
||||
float adam_gclip;
|
||||
float adam_eps_f;
|
||||
};
|
||||
|
||||
typedef void (*save_train_files_callback)(void * data, struct train_state * train);
|
||||
|
||||
struct train_opt_callback_data {
|
||||
struct train_params_common * params;
|
||||
struct train_state * train;
|
||||
save_train_files_callback save_cb;
|
||||
void * save_data;
|
||||
struct llama_context * lctx;
|
||||
int last_save_iter;
|
||||
llama_token * tokens_data;
|
||||
size_t tokens_size;
|
||||
size_t * samples_begin;
|
||||
size_t * samples_size;
|
||||
size_t * shuffled_samples_offs;
|
||||
size_t * shuffled_samples_begin;
|
||||
size_t * shuffled_samples_size;
|
||||
size_t samples_count;
|
||||
struct ggml_tensor * tokens_input;
|
||||
struct ggml_tensor * target_probs;
|
||||
int first_iter;
|
||||
int first_epoch;
|
||||
int iter_at_last_epoch;
|
||||
int64_t last_time;
|
||||
double millis_per_iter;
|
||||
};
|
||||
|
||||
struct train_state * init_train_state();
|
||||
void free_train_state(struct train_state * state);
|
||||
|
||||
struct train_params_common get_default_train_params_common();
|
||||
void print_common_train_usage(int /*argc*/, char ** argv, const struct train_params_common * params);
|
||||
|
||||
bool consume_common_train_arg(int argc, char ** argv, int * idx, struct train_params_common * params, bool * invalid_param);
|
||||
void finish_processing_train_args(struct train_params_common * params);
|
||||
|
||||
struct random_normal_distribution;
|
||||
struct random_uniform_distribution;
|
||||
|
||||
struct random_normal_distribution * init_random_normal_distribution (int seed, float mean, float std, float min, float max);
|
||||
struct random_uniform_distribution * init_random_uniform_distribution(int seed, float min, float max);
|
||||
|
||||
void free_random_normal_distribution (struct random_normal_distribution * rnd);
|
||||
void free_random_uniform_distribution(struct random_uniform_distribution * rnd);
|
||||
|
||||
struct ggml_tensor * randomize_tensor_normal (struct ggml_tensor * tensor, struct random_normal_distribution * rnd);
|
||||
struct ggml_tensor * randomize_tensor_uniform(struct ggml_tensor * tensor, struct random_uniform_distribution * rnd);
|
||||
|
||||
// generate random float in interval [0,1)
|
||||
float frand();
|
||||
float frand_normal (struct random_normal_distribution * rnd);
|
||||
float frand_uniform(struct random_uniform_distribution * rnd);
|
||||
|
||||
int clamp (const int v, const int min, const int max);
|
||||
float fclamp(const float v, const float min, const float max);
|
||||
|
||||
void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0);
|
||||
void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1);
|
||||
void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2);
|
||||
void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3);
|
||||
|
||||
size_t tokenize_file(
|
||||
struct llama_context * lctx,
|
||||
const char * filename,
|
||||
const std::string & sample_start,
|
||||
bool include_sample_start,
|
||||
bool overlapping_samples,
|
||||
unsigned context_length,
|
||||
std::vector<llama_token> & out_tokens,
|
||||
std::vector<size_t> & out_samples_begin,
|
||||
std::vector<size_t> & out_samples_size);
|
||||
|
||||
int64_t get_example_targets_batch(
|
||||
struct llama_context * lctx,
|
||||
struct ggml_tensor * tokens_input,
|
||||
struct ggml_tensor * target_probs,
|
||||
int64_t example_id,
|
||||
const size_t * samples_offs,
|
||||
const size_t * samples_begin,
|
||||
const size_t * samples_size,
|
||||
size_t samples_count,
|
||||
const llama_token * train_data,
|
||||
size_t n_train_data,
|
||||
bool separate_with_eos,
|
||||
bool separate_with_bos,
|
||||
bool fill_with_next_samples,
|
||||
bool sample_random_offsets);
|
||||
|
||||
|
||||
void mt19937_set_state(std::mt19937& rng, const mt19937_state& rng_state);
|
||||
mt19937_state mt19937_get_state(const std::mt19937& rng);
|
||||
mt19937_state mt19937_seed_to_state(unsigned seed);
|
||||
|
||||
mt19937_state shuffle_samples(
|
||||
const mt19937_state & rng_state,
|
||||
size_t * shuffled_offs,
|
||||
size_t * shuffled_begins,
|
||||
size_t * shuffled_sizes,
|
||||
const size_t * begins,
|
||||
const size_t * sizes,
|
||||
size_t count);
|
||||
|
||||
size_t hash_combine(size_t h1, size_t h2);
|
||||
|
||||
size_t compute_samples_hash(
|
||||
const char* fn,
|
||||
const size_t* samples_begin,
|
||||
const size_t* samples_size,
|
||||
size_t sample_count);
|
||||
|
||||
|
||||
std::string replace_str(const char * s, const char * needle, const char * replacement);
|
||||
|
||||
void print_duration(double milliseconds);
|
||||
|
||||
float cosine_decay(
|
||||
int64_t step,
|
||||
int64_t decay_steps,
|
||||
float minimum);
|
||||
|
||||
float cosine_decay_restart(
|
||||
int64_t step,
|
||||
int64_t decay_steps,
|
||||
float minimum,
|
||||
float restart_step_mult);
|
||||
|
||||
float learning_schedule(
|
||||
int64_t step,
|
||||
int64_t warmup_steps,
|
||||
int64_t decay_steps,
|
||||
float learning_rate,
|
||||
float overall_minimum,
|
||||
float cos_decay_minimum,
|
||||
float cos_decay_restart_step_mult,
|
||||
bool enable_restart);
|
||||
|
||||
void copy_tensor_by_name(struct ggml_tensor * dst, struct ggml_context * ctx, const char * name);
|
||||
|
||||
void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct ggml_opt_context * opt);
|
||||
void save_opt_context_gguf(struct gguf_context * fctx, struct ggml_opt_context * opt);
|
||||
|
||||
bool load_train_state_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct train_state * train);
|
||||
void save_train_state_gguf(struct gguf_context * fctx, struct train_state * train);
|
||||
|
||||
std::string get_train_filename(const char * filename, const char * pattern_it, const char * latest, int64_t iteration);
|
||||
|
||||
void train_opt_callback(void * vdata, int accum_step, float * sched, bool * cancel);
|
|
@ -133,8 +133,6 @@ gguf_writer.add_file_type(ftype)
|
|||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
tokenizer_json_file = dir_model / 'tokenizer.json'
|
||||
if not tokenizer_json_file.is_file():
|
||||
|
@ -177,12 +175,8 @@ for i in range(vocab_size):
|
|||
text = bytearray(pad_token)
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(0.0) # dymmy
|
||||
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
|
|
@ -117,8 +117,6 @@ gguf_writer.add_file_type(ftype)
|
|||
print("gguf: get tokenizer metadata")
|
||||
|
||||
tokens: list[bytearray] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
tokenizer_json_file = dir_model / 'tokenizer.json'
|
||||
if not tokenizer_json_file.is_file():
|
||||
|
@ -161,12 +159,8 @@ for i in range(vocab_size):
|
|||
text = bytearray(pad_token)
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(0.0) # dymmy
|
||||
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
||||
|
||||
gguf_writer.add_token_list(tokens)
|
||||
gguf_writer.add_token_scores(scores)
|
||||
gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||
special_vocab.add_to_gguf(gguf_writer)
|
||||
|
|
|
@ -21,6 +21,7 @@ else()
|
|||
add_subdirectory(benchmark)
|
||||
add_subdirectory(baby-llama)
|
||||
add_subdirectory(train-text-from-scratch)
|
||||
add_subdirectory(finetune)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(simple)
|
||||
add_subdirectory(batched)
|
||||
|
@ -35,4 +36,5 @@ else()
|
|||
if (LLAMA_BUILD_SERVER)
|
||||
add_subdirectory(server)
|
||||
endif()
|
||||
add_subdirectory(export-lora)
|
||||
endif()
|
||||
|
|
|
@ -1,8 +1,12 @@
|
|||
#include "ggml.h"
|
||||
#include "train.h"
|
||||
|
||||
#include <vector>
|
||||
#include <cassert>
|
||||
#include <random>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
|
@ -14,31 +18,6 @@ constexpr float rms_norm_eps = LLAMA_DEFAULT_RMS_EPS;
|
|||
constexpr float rms_norm_eps = 5e-6f;
|
||||
#endif
|
||||
|
||||
static float frand() {
|
||||
return (float)rand()/(float)RAND_MAX;
|
||||
}
|
||||
|
||||
struct random_normal_distribution {
|
||||
std::mt19937 gen;
|
||||
std::normal_distribution<float> nd;
|
||||
float min;
|
||||
float max;
|
||||
};
|
||||
|
||||
static void init_random_normal_distribution(
|
||||
struct random_normal_distribution * rnd, int seed, float mean, float std, float min, float max
|
||||
) {
|
||||
rnd->gen = std::mt19937(seed);
|
||||
rnd->nd = std::normal_distribution<float>{mean, std};
|
||||
rnd->min = min;
|
||||
rnd->max = max;
|
||||
}
|
||||
|
||||
static float frand_normal(struct random_normal_distribution * rnd) {
|
||||
const float r = rnd->nd(rnd->gen);
|
||||
return ((r < rnd->min) ? (rnd->min) : (r > rnd->max) ? (rnd->max) : r);
|
||||
}
|
||||
|
||||
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
|
||||
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
|
||||
|
||||
|
@ -88,55 +67,7 @@ static struct ggml_tensor * randomize_tensor(
|
|||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
|
||||
return tensor;
|
||||
}
|
||||
|
||||
static struct ggml_tensor * randomize_tensor_normal(
|
||||
struct ggml_tensor * tensor, int ndims, const int64_t ne[], struct random_normal_distribution * rnd
|
||||
) {
|
||||
float scale = 1.0; // xavier
|
||||
switch (ndims) {
|
||||
case 1:
|
||||
scale /= sqrtf(ne[0]);
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)tensor->data)[i0] = scale * frand_normal(rnd);
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
scale /= sqrtf(ne[0]+ne[1]);
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)tensor->data)[i1*ne[0] + i0] = scale * frand_normal(rnd);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 3:
|
||||
scale /= sqrtf(ne[0]+ne[1]);
|
||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)tensor->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd);
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 4:
|
||||
scale /= sqrtf(ne[0]+ne[1]);
|
||||
for (int i3 = 0; i3 < ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < ne[2]; i2++) {
|
||||
for (int i1 = 0; i1 < ne[1]; i1++) {
|
||||
for (int i0 = 0; i0 < ne[0]; i0++) {
|
||||
((float *)tensor->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = scale * frand_normal(rnd);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
}
|
||||
|
||||
return tensor;
|
||||
}
|
||||
|
@ -398,27 +329,29 @@ static void randomize_model(struct llama_model * model, int seed, float mean, fl
|
|||
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
struct random_normal_distribution rnd;
|
||||
init_random_normal_distribution(&rnd, seed, mean, std, min, max);
|
||||
randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd);
|
||||
randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd);
|
||||
randomize_tensor_normal(model->output, model->output->n_dims, model->output->ne, &rnd);
|
||||
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
|
||||
|
||||
randomize_tensor_normal(model->tok_embeddings , rnd);
|
||||
randomize_tensor_normal(model->norm , rnd);
|
||||
randomize_tensor_normal(model->output , rnd);
|
||||
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd);
|
||||
randomize_tensor_normal(layer.attention_norm, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.wq, layer.wq->n_dims, layer.wq->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wk, layer.wk->n_dims, layer.wk->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wv, layer.wv->n_dims, layer.wv->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wo, layer.wo->n_dims, layer.wo->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wq, rnd);
|
||||
randomize_tensor_normal(layer.wk, rnd);
|
||||
randomize_tensor_normal(layer.wv, rnd);
|
||||
randomize_tensor_normal(layer.wo, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd);
|
||||
randomize_tensor_normal(layer.ffn_norm, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w1, rnd);
|
||||
randomize_tensor_normal(layer.w2, rnd);
|
||||
randomize_tensor_normal(layer.w3, rnd);
|
||||
}
|
||||
|
||||
free_random_normal_distribution(rnd);
|
||||
}
|
||||
|
||||
|
||||
|
@ -429,35 +362,37 @@ static void randomize_model_lora(
|
|||
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
struct random_normal_distribution rnd;
|
||||
init_random_normal_distribution(&rnd, seed, mean, std, min, max);
|
||||
randomize_tensor_normal(model->tok_embeddings, model->tok_embeddings->n_dims, model->tok_embeddings->ne, &rnd);
|
||||
randomize_tensor_normal(model->norm, model->norm->n_dims, model->norm->ne, &rnd);
|
||||
randomize_tensor_normal(model->outputa, model->outputa->n_dims, model->outputa->ne, &rnd);
|
||||
randomize_tensor_normal(model->outputb, model->outputb->n_dims, model->outputb->ne, &rnd);
|
||||
struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
|
||||
|
||||
randomize_tensor_normal(model->tok_embeddings, rnd);
|
||||
randomize_tensor_normal(model->norm , rnd);
|
||||
randomize_tensor_normal(model->outputa , rnd);
|
||||
randomize_tensor_normal(model->outputb , rnd);
|
||||
|
||||
for (uint32_t i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model->layers[i];
|
||||
randomize_tensor_normal(layer.attention_norm, layer.attention_norm->n_dims, layer.attention_norm->ne, &rnd);
|
||||
randomize_tensor_normal(layer.attention_norm, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.wqa, layer.wqa->n_dims, layer.wqa->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wqb, layer.wqb->n_dims, layer.wqb->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wka, layer.wka->n_dims, layer.wka->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wkb, layer.wkb->n_dims, layer.wkb->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wva, layer.wva->n_dims, layer.wva->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wvb, layer.wvb->n_dims, layer.wvb->ne, &rnd);
|
||||
randomize_tensor_normal(layer.woa, layer.woa->n_dims, layer.woa->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wob, layer.wob->n_dims, layer.wob->ne, &rnd);
|
||||
randomize_tensor_normal(layer.wqa, rnd);
|
||||
randomize_tensor_normal(layer.wqb, rnd);
|
||||
randomize_tensor_normal(layer.wka, rnd);
|
||||
randomize_tensor_normal(layer.wkb, rnd);
|
||||
randomize_tensor_normal(layer.wva, rnd);
|
||||
randomize_tensor_normal(layer.wvb, rnd);
|
||||
randomize_tensor_normal(layer.woa, rnd);
|
||||
randomize_tensor_normal(layer.wob, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.ffn_norm, layer.ffn_norm->n_dims, layer.ffn_norm->ne, &rnd);
|
||||
randomize_tensor_normal(layer.ffn_norm, rnd);
|
||||
|
||||
randomize_tensor_normal(layer.w1, layer.w1->n_dims, layer.w1->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w2, layer.w2->n_dims, layer.w2->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w3, layer.w3->n_dims, layer.w3->ne, &rnd);
|
||||
randomize_tensor_normal(layer.w1, rnd);
|
||||
randomize_tensor_normal(layer.w2, rnd);
|
||||
randomize_tensor_normal(layer.w3, rnd);
|
||||
}
|
||||
|
||||
free_random_normal_distribution(rnd);
|
||||
}
|
||||
|
||||
static bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) {
|
||||
static void init_kv_cache(struct llama_kv_cache* cache, struct llama_model * model, int n_batch) {
|
||||
const auto & hparams = model->hparams;
|
||||
|
||||
const uint32_t n_ctx = hparams.n_ctx;
|
||||
|
@ -483,14 +418,12 @@ static bool init_kv_cache(struct llama_kv_cache* cache, struct llama_model * mod
|
|||
|
||||
if (!cache->ctx) {
|
||||
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
|
||||
return false;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
cache->k = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
||||
cache->v = ggml_new_tensor_1d(cache->ctx, GGML_TYPE_F32, n_elements);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static bool init_kv_cache_lora(struct llama_kv_cache* cache, struct llama_model_lora * model, int n_batch) {
|
||||
|
@ -762,32 +695,6 @@ static struct ggml_tensor * forward(
|
|||
return inpL;
|
||||
}
|
||||
|
||||
static void assert_shape_1d(struct ggml_tensor * tensor, int64_t ne0) {
|
||||
GGML_ASSERT(tensor->n_dims == 1);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
}
|
||||
|
||||
static void assert_shape_2d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1) {
|
||||
GGML_ASSERT(tensor->n_dims == 2);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
||||
}
|
||||
|
||||
static void assert_shape_3d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2) {
|
||||
GGML_ASSERT(tensor->n_dims == 3);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
||||
GGML_ASSERT(tensor->ne[2] == ne2);
|
||||
}
|
||||
|
||||
static void assert_shape_4d(struct ggml_tensor * tensor, int64_t ne0, int64_t ne1, int64_t ne2, int64_t ne3) {
|
||||
GGML_ASSERT(tensor->n_dims == 4);
|
||||
GGML_ASSERT(tensor->ne[0] == ne0);
|
||||
GGML_ASSERT(tensor->ne[1] == ne1);
|
||||
GGML_ASSERT(tensor->ne[2] == ne2);
|
||||
GGML_ASSERT(tensor->ne[3] == ne3);
|
||||
}
|
||||
|
||||
static struct ggml_tensor * forward_batch(
|
||||
struct llama_model * model,
|
||||
struct llama_kv_cache * cache,
|
||||
|
|
|
@ -40,20 +40,35 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
// initialize the model
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_len*n_parallel; // FIXME: use n_kv_req instead (tokenize with model after #3301)
|
||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||
// ctx_params.n_gpu_layers = 99; // offload all layers to the GPU
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
||||
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx == NULL) {
|
||||
|
@ -61,13 +76,7 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(ctx, params.prompt, true);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_kv_req = tokens_list.size() + (n_len - tokens_list.size())*n_parallel;
|
||||
|
||||
LOG_TEE("\n%s: n_len = %d, n_ctx = %d, n_batch = %d, n_parallel = %d, n_kv_req = %d\n", __func__, n_len, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
|
||||
|
@ -106,7 +115,7 @@ int main(int argc, char ** argv) {
|
|||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
if (llama_decode(ctx, batch, params.n_threads) != 0) {
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
@ -146,7 +155,7 @@ int main(int argc, char ** argv) {
|
|||
continue;
|
||||
}
|
||||
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
|
@ -210,7 +219,7 @@ int main(int argc, char ** argv) {
|
|||
n_cur += 1;
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if (llama_decode(ctx, batch, params.n_threads)) {
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -160,7 +160,7 @@ int main(int argc, char ** argv)
|
|||
|
||||
int n_past = 0;
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0), params.n_threads))
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens_list.data(), tokens_list.size(), n_past, 0)))
|
||||
{
|
||||
fprintf(stderr, "%s : failed to eval prompt.\n" , __func__ );
|
||||
return 1;
|
||||
|
@ -170,7 +170,7 @@ int main(int argc, char ** argv)
|
|||
beam_search_callback_data callback_data{ctx, {}};
|
||||
size_t const beam_width = static_cast<size_t>(params.n_beams);
|
||||
int const n_predict = 256;
|
||||
llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict, params.n_threads);
|
||||
llama_beam_search(ctx, beam_search_callback, &callback_data, beam_width, n_past, n_predict);
|
||||
|
||||
std::cout << "\n\n";
|
||||
for (llama_token const token_id : callback_data.response) {
|
||||
|
|
|
@ -48,8 +48,7 @@ struct MyModel* create_mymodel(int argc, char ** argv) {
|
|||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
struct MyModel * ret = new MyModel();
|
||||
ret->ctx = ctx;
|
||||
|
@ -71,7 +70,7 @@ bool eval_float(void * model, float * input, int N){
|
|||
MyModel * mymodel = (MyModel*)model;
|
||||
llama_context * ctx = mymodel->ctx;
|
||||
gpt_params params = mymodel->params;
|
||||
int n_emb = llama_n_embd(ctx);
|
||||
int n_emb = llama_n_embd(llama_get_model(ctx));
|
||||
int n_past = mymodel->n_past;
|
||||
int n_batch = N; // params.n_batch;
|
||||
|
||||
|
@ -81,7 +80,7 @@ bool eval_float(void * model, float * input, int N){
|
|||
n_eval = n_batch;
|
||||
}
|
||||
llama_batch batch = { int32_t(n_eval), nullptr, (input+i*n_emb), nullptr, nullptr, nullptr, n_past, 1, 0, };
|
||||
if (llama_decode(ctx, batch, params.n_threads)) {
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
@ -102,7 +101,7 @@ bool eval_tokens(void * model, std::vector<llama_token> tokens) {
|
|||
if (n_eval > params.n_batch) {
|
||||
n_eval = params.n_batch;
|
||||
}
|
||||
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0), params.n_threads)) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(&tokens[i], n_eval, n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return false;
|
||||
}
|
||||
|
@ -133,7 +132,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
|
|||
|
||||
// out of user input, sample next token
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(llama_get_model(ctx)) : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
|
@ -149,7 +148,7 @@ llama_token sampling_id(struct MyModel* mymodel) {
|
|||
llama_token id = 0;
|
||||
{
|
||||
auto logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
|
||||
|
|
|
@ -8,7 +8,7 @@ int main(int argc, char** argv) {
|
|||
auto mymodel = create_mymodel(argc, argv);
|
||||
int N = 10;
|
||||
int max_tgt_len = 500;
|
||||
int n_embd = llama_n_embd(mymodel->ctx);
|
||||
int n_embd = llama_n_embd(llama_get_model(mymodel->ctx));
|
||||
|
||||
// add random float embd to test evaluation
|
||||
float * data = new float[N*n_embd];
|
||||
|
|
|
@ -42,17 +42,18 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(ctx);
|
||||
if (params.n_ctx > n_ctx_train) {
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, params.n_ctx);
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
int n_past = 0;
|
||||
|
@ -70,15 +71,15 @@ int main(int argc, char ** argv) {
|
|||
fprintf(stderr, "\n");
|
||||
}
|
||||
|
||||
if (embd_inp.size() > (size_t)params.n_ctx) {
|
||||
if (embd_inp.size() > (size_t)n_ctx) {
|
||||
fprintf(stderr, "%s: error: prompt is longer than the context window (%zu tokens, n_ctx = %d)\n",
|
||||
__func__, embd_inp.size(), params.n_ctx);
|
||||
__func__, embd_inp.size(), n_ctx);
|
||||
return 1;
|
||||
}
|
||||
|
||||
while (!embd_inp.empty()) {
|
||||
int n_tokens = std::min(params.n_batch, (int) embd_inp.size());
|
||||
if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0), params.n_threads)) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(embd_inp.data(), n_tokens, n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
@ -86,8 +87,8 @@ int main(int argc, char ** argv) {
|
|||
embd_inp.erase(embd_inp.begin(), embd_inp.begin() + n_tokens);
|
||||
}
|
||||
|
||||
const int n_embd = llama_n_embd(ctx);
|
||||
const auto embeddings = llama_get_embeddings(ctx);
|
||||
const int n_embd = llama_n_embd(model);
|
||||
const auto * embeddings = llama_get_embeddings(ctx);
|
||||
|
||||
for (int i = 0; i < n_embd; i++) {
|
||||
printf("%f ", embeddings[i]);
|
||||
|
|
5
examples/export-lora/CMakeLists.txt
Normal file
5
examples/export-lora/CMakeLists.txt
Normal file
|
@ -0,0 +1,5 @@
|
|||
set(TARGET export-lora)
|
||||
add_executable(${TARGET} export-lora.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
26
examples/export-lora/README.md
Normal file
26
examples/export-lora/README.md
Normal file
|
@ -0,0 +1,26 @@
|
|||
# export-lora
|
||||
|
||||
Apply LORA adapters to base model and export the resulting model.
|
||||
|
||||
```
|
||||
usage: export-lora [options]
|
||||
|
||||
options:
|
||||
-h, --help show this help message and exit
|
||||
-m FNAME, --model-base FNAME model path from which to load base model (default '')
|
||||
-o FNAME, --model-out FNAME path to save exported model (default '')
|
||||
-l FNAME, --lora FNAME apply LoRA adapter
|
||||
-s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S
|
||||
-t N, --threads N number of threads to use during computation (default: 4)
|
||||
```
|
||||
|
||||
For example:
|
||||
|
||||
```bash
|
||||
./bin/export-lora \
|
||||
-m open-llama-3b-v2-q8_0.gguf \
|
||||
-o open-llama-3b-v2-q8_0-english2tokipona-chat.gguf \
|
||||
-l lora-open-llama-3b-v2-q8_0-english2tokipona-chat-LATEST.bin
|
||||
```
|
||||
|
||||
Multiple LORA adapters can be applied by passing multiple `-l FN` or `-s FN S` command line parameters.
|
474
examples/export-lora/export-lora.cpp
Normal file
474
examples/export-lora/export-lora.cpp
Normal file
|
@ -0,0 +1,474 @@
|
|||
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
|
||||
static const size_t tensor_alignment = 32;
|
||||
|
||||
struct lora_info {
|
||||
std::string filename;
|
||||
float scale;
|
||||
};
|
||||
|
||||
struct export_lora_params {
|
||||
std::string fn_model_base;
|
||||
std::string fn_model_out;
|
||||
std::vector<struct lora_info> lora;
|
||||
int n_threads;
|
||||
};
|
||||
|
||||
struct lora_data {
|
||||
struct lora_info info;
|
||||
std::vector<uint8_t> data;
|
||||
struct ggml_context * ctx;
|
||||
|
||||
uint32_t lora_r;
|
||||
uint32_t lora_alpha;
|
||||
};
|
||||
|
||||
struct llama_file {
|
||||
// use FILE * so we don't have to re-open the file to mmap
|
||||
FILE * fp;
|
||||
size_t size;
|
||||
|
||||
llama_file(const char * fname, const char * mode) {
|
||||
fp = std::fopen(fname, mode);
|
||||
if (fp == NULL) {
|
||||
size = 0;
|
||||
} else {
|
||||
seek(0, SEEK_END);
|
||||
size = tell();
|
||||
seek(0, SEEK_SET);
|
||||
}
|
||||
}
|
||||
|
||||
size_t tell() const {
|
||||
#ifdef _WIN32
|
||||
__int64 ret = _ftelli64(fp);
|
||||
#else
|
||||
long ret = std::ftell(fp);
|
||||
#endif
|
||||
GGML_ASSERT(ret != -1); // this really shouldn't fail
|
||||
return (size_t) ret;
|
||||
}
|
||||
|
||||
void seek(size_t offset, int whence) {
|
||||
#ifdef _WIN32
|
||||
int ret = _fseeki64(fp, (__int64) offset, whence);
|
||||
#else
|
||||
int ret = std::fseek(fp, (long) offset, whence);
|
||||
#endif
|
||||
GGML_ASSERT(ret == 0); // same
|
||||
}
|
||||
|
||||
void read_raw(void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
std::size_t ret = std::fread(ptr, size, 1, fp);
|
||||
if (ferror(fp)) {
|
||||
die_fmt("read error: %s", strerror(errno));
|
||||
}
|
||||
if (ret != 1) {
|
||||
die("unexpectedly reached end of file");
|
||||
}
|
||||
}
|
||||
|
||||
std::uint32_t read_u32() {
|
||||
std::uint32_t ret;
|
||||
read_raw(&ret, sizeof(ret));
|
||||
return ret;
|
||||
}
|
||||
|
||||
std::string read_string(std::uint32_t len) {
|
||||
std::vector<char> chars(len);
|
||||
read_raw(chars.data(), len);
|
||||
return std::string(chars.data(), len);
|
||||
}
|
||||
|
||||
void write_raw(const void * ptr, size_t size) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
errno = 0;
|
||||
size_t ret = std::fwrite(ptr, size, 1, fp);
|
||||
if (ret != 1) {
|
||||
die_fmt("write error: %s", strerror(errno));
|
||||
}
|
||||
}
|
||||
|
||||
void write_u32(std::uint32_t val) {
|
||||
write_raw(&val, sizeof(val));
|
||||
}
|
||||
|
||||
bool eof() {
|
||||
return tell() >= size;
|
||||
}
|
||||
|
||||
~llama_file() {
|
||||
if (fp) {
|
||||
std::fclose(fp);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
static struct export_lora_params get_default_export_lora_params() {
|
||||
struct export_lora_params result;
|
||||
result.fn_model_base = "";
|
||||
result.fn_model_out = "";
|
||||
result.n_threads = GGML_DEFAULT_N_THREADS;
|
||||
return result;
|
||||
}
|
||||
|
||||
static void export_lora_print_usage(int /*argc*/, char ** argv, const struct export_lora_params * params) {
|
||||
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "options:\n");
|
||||
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||
fprintf(stderr, " -m FNAME, --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base.c_str());
|
||||
fprintf(stderr, " -o FNAME, --model-out FNAME path to save exported model (default '%s')\n", params->fn_model_out.c_str());
|
||||
fprintf(stderr, " -l FNAME, --lora FNAME apply LoRA adapter\n");
|
||||
fprintf(stderr, " -s FNAME S, --lora-scaled FNAME S apply LoRA adapter with user defined scaling S\n");
|
||||
fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params->n_threads);
|
||||
}
|
||||
|
||||
static bool export_lora_params_parse(int argc, char ** argv, struct export_lora_params * params) {
|
||||
bool invalid_param = false;
|
||||
std::string arg;
|
||||
struct export_lora_params default_params = get_default_export_lora_params();
|
||||
const std::string arg_prefix = "--";
|
||||
|
||||
for (int i = 1; i < argc; i++) {
|
||||
arg = argv[i];
|
||||
if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
|
||||
std::replace(arg.begin(), arg.end(), '_', '-');
|
||||
}
|
||||
|
||||
if (arg == "-m" || arg == "--model-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_model_base = argv[i];
|
||||
} else if (arg == "-o" || arg == "--model-out") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->fn_model_out = argv[i];
|
||||
} else if (arg == "-l" || arg == "--lora") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
struct lora_info lora;
|
||||
lora.filename = argv[i];
|
||||
lora.scale = 1.0f;
|
||||
params->lora.push_back(lora);
|
||||
} else if (arg == "-s" || arg == "--lora-scaled") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
struct lora_info lora;
|
||||
lora.filename = argv[i];
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
lora.scale = std::stof(argv[i]);
|
||||
params->lora.push_back(lora);
|
||||
} else if (arg == "-t" || arg == "--threads") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params->n_threads = std::stoi(argv[i]);
|
||||
if (params->n_threads <= 0) {
|
||||
params->n_threads = std::thread::hardware_concurrency();
|
||||
}
|
||||
} else {
|
||||
fprintf(stderr, "error: unknown argument: '%s'\n", arg.c_str());
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
if (params->fn_model_base == default_params.fn_model_base) {
|
||||
fprintf(stderr, "error: please specify a filename for model-base.\n");
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (params->fn_model_out == default_params.fn_model_out) {
|
||||
fprintf(stderr, "error: please specify a filename for model-out.\n");
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
if (invalid_param) {
|
||||
fprintf(stderr, "error: invalid parameter for argument: '%s'\n", arg.c_str());
|
||||
export_lora_print_usage(argc, argv, &default_params);
|
||||
exit(1);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
static void free_lora(struct lora_data * lora) {
|
||||
if (lora->ctx != NULL) {
|
||||
ggml_free(lora->ctx);
|
||||
}
|
||||
delete lora;
|
||||
}
|
||||
|
||||
static struct lora_data * load_lora(struct lora_info * info) {
|
||||
struct lora_data * result = new struct lora_data;
|
||||
result->info = *info;
|
||||
result->ctx = NULL;
|
||||
result->lora_r = 1;
|
||||
result->lora_alpha = 1;
|
||||
|
||||
struct llama_file file(info->filename.c_str(), "rb");
|
||||
if (file.fp == NULL) {
|
||||
fprintf(stderr, "warning: Could not open lora adapter '%s'. Ignoring this adapter.\n",
|
||||
info->filename.c_str());
|
||||
free_lora(result);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct ggml_init_params params_ggml;
|
||||
params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES;
|
||||
params_ggml.mem_buffer = NULL;
|
||||
params_ggml.no_alloc = true;
|
||||
result->ctx = ggml_init(params_ggml);
|
||||
|
||||
uint32_t LLAMA_FILE_MAGIC_LORA = 0x67676C61; // 'ggla'
|
||||
uint32_t magic = file.read_u32();
|
||||
if (magic != LLAMA_FILE_MAGIC_LORA) {
|
||||
die_fmt("unexpected lora header file magic in '%s'", info->filename.c_str());
|
||||
}
|
||||
uint32_t version = file.read_u32();
|
||||
if (version != 1) {
|
||||
die_fmt("unexpected lora file version '%u' in '%s'", (unsigned) version, info->filename.c_str());
|
||||
}
|
||||
result->lora_r = file.read_u32();
|
||||
result->lora_alpha = file.read_u32();
|
||||
// read tensor infos from file
|
||||
std::vector<char> name_buf;
|
||||
std::vector<struct ggml_tensor *> tensors;
|
||||
std::vector<size_t> tensors_offset;
|
||||
size_t total_nbytes_pad = 0;
|
||||
while(!file.eof()) {
|
||||
int64_t ne[4] = {1,1,1,1};
|
||||
uint32_t n_dims = file.read_u32();
|
||||
uint32_t namelen = file.read_u32();
|
||||
uint32_t type = file.read_u32();
|
||||
for (uint32_t k = 0; k < n_dims; ++k) {
|
||||
ne[k] = (int64_t)file.read_u32();
|
||||
}
|
||||
name_buf.clear();
|
||||
name_buf.resize(namelen + 1, '\0');
|
||||
file.read_raw(name_buf.data(), namelen);
|
||||
file.seek((0-file.tell()) & 31, SEEK_CUR);
|
||||
size_t offset = file.tell();
|
||||
struct ggml_tensor * tensor = ggml_new_tensor(result->ctx, (enum ggml_type) type, n_dims, ne);
|
||||
ggml_set_name(tensor, name_buf.data());
|
||||
size_t nbytes = ggml_nbytes(tensor);
|
||||
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||||
total_nbytes_pad += nbytes_pad;
|
||||
tensors.push_back(tensor);
|
||||
tensors_offset.push_back(offset);
|
||||
file.seek(nbytes, SEEK_CUR);
|
||||
}
|
||||
// read tensor data
|
||||
result->data.resize(total_nbytes_pad);
|
||||
size_t data_offset = 0;
|
||||
for (size_t i = 0; i < tensors.size(); ++i) {
|
||||
struct ggml_tensor * tensor = tensors[i];
|
||||
size_t offset = tensors_offset[i];
|
||||
size_t nbytes = ggml_nbytes(tensor);
|
||||
size_t nbytes_pad = ggml_nbytes_pad(tensor);
|
||||
file.seek(offset, SEEK_SET);
|
||||
tensor->data = result->data.data() + data_offset;
|
||||
file.read_raw(tensor->data, nbytes);
|
||||
data_offset += nbytes_pad;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
static struct ggml_cgraph * build_graph_lora(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * tensor,
|
||||
struct ggml_tensor * lora_a,
|
||||
struct ggml_tensor * lora_b,
|
||||
float scaling
|
||||
) {
|
||||
struct ggml_tensor * ab = ggml_mul_mat(ctx, lora_a, lora_b);
|
||||
if (scaling != 1.0f) {
|
||||
ab = ggml_scale(ctx, ab, ggml_new_f32(ctx, scaling));
|
||||
}
|
||||
struct ggml_tensor * res = ggml_add_inplace(ctx, tensor, ab);
|
||||
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand (gf, res);
|
||||
return gf;
|
||||
}
|
||||
|
||||
static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int n_threads) {
|
||||
if (lora->ctx == NULL) {
|
||||
return false;
|
||||
}
|
||||
std::string name = ggml_get_name(tensor);
|
||||
std::string name_a = name + std::string(".loraA");
|
||||
std::string name_b = name + std::string(".loraB");
|
||||
struct ggml_tensor * lora_a = ggml_get_tensor(lora->ctx, name_a.c_str());
|
||||
struct ggml_tensor * lora_b = ggml_get_tensor(lora->ctx, name_b.c_str());
|
||||
if (lora_a == NULL || lora_b == NULL) {
|
||||
return false;
|
||||
}
|
||||
|
||||
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = true;
|
||||
struct ggml_context * ctx = NULL;
|
||||
struct ggml_allocr * alloc = NULL;
|
||||
struct ggml_cgraph * gf = NULL;
|
||||
|
||||
ctx = ggml_init(params);
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||
size_t alloc_size = ggml_allocr_alloc_graph(alloc, gf);
|
||||
ggml_allocr_free(alloc);
|
||||
ggml_free(ctx);
|
||||
|
||||
static std::vector<uint8_t> data_compute;
|
||||
data_compute.resize(alloc_size + tensor_alignment);
|
||||
|
||||
ctx = ggml_init(params);
|
||||
alloc = ggml_allocr_new(data_compute.data(), data_compute.size(), tensor_alignment);
|
||||
gf = build_graph_lora(ctx, tensor, lora_a, lora_b, scaling);
|
||||
ggml_allocr_alloc_graph(alloc, gf);
|
||||
ggml_allocr_free(alloc);
|
||||
|
||||
struct ggml_cplan cplan = ggml_graph_plan(gf, n_threads);
|
||||
static std::vector<uint8_t> data_work;
|
||||
data_work.resize(cplan.work_size);
|
||||
cplan.work_data = data_work.data();
|
||||
|
||||
ggml_graph_compute(gf, &cplan);
|
||||
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
static void export_lora(struct export_lora_params * params) {
|
||||
// load all loras
|
||||
std::vector<struct lora_data *> loras;
|
||||
for (size_t i = 0; i < params->lora.size(); ++i) {
|
||||
struct lora_data * lora = load_lora(¶ms->lora[i]);
|
||||
if (lora != NULL) {
|
||||
loras.push_back(lora);
|
||||
}
|
||||
}
|
||||
if (loras.size() == 0) {
|
||||
fprintf(stderr, "warning: no lora adapters will be applied.\n");
|
||||
}
|
||||
|
||||
// open input file
|
||||
struct llama_file fin(params->fn_model_base.c_str(), "rb");
|
||||
if (!fin.fp) {
|
||||
die_fmt("Could not open file '%s'\n", params->fn_model_base.c_str());
|
||||
}
|
||||
|
||||
// open base model gguf, read tensors without their data
|
||||
struct ggml_context * ctx_in;
|
||||
struct gguf_init_params params_gguf;
|
||||
params_gguf.no_alloc = true;
|
||||
params_gguf.ctx = &ctx_in;
|
||||
struct gguf_context * gguf_in = gguf_init_from_file(params->fn_model_base.c_str(), params_gguf);
|
||||
|
||||
// create new gguf
|
||||
struct gguf_context * gguf_out = gguf_init_empty();
|
||||
|
||||
// copy meta data from base model: kv and tensors
|
||||
gguf_set_kv(gguf_out, gguf_in);
|
||||
int n_tensors = gguf_get_n_tensors(gguf_in);
|
||||
for (int i=0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||||
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||||
gguf_add_tensor(gguf_out, tensor);
|
||||
}
|
||||
|
||||
// create output file
|
||||
struct llama_file fout(params->fn_model_out.c_str(), "wb");
|
||||
if (!fout.fp) {
|
||||
die_fmt("Could not create file '%s'\n", params->fn_model_out.c_str());
|
||||
}
|
||||
|
||||
// write gguf meta data
|
||||
std::vector<uint8_t> meta;
|
||||
meta.resize(gguf_get_meta_size(gguf_out));
|
||||
gguf_get_meta_data(gguf_out, meta.data());
|
||||
fout.write_raw(meta.data(), meta.size());
|
||||
|
||||
std::vector<uint8_t> data;
|
||||
std::vector<uint8_t> padding;
|
||||
for (int i=0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name(gguf_in, i);
|
||||
struct ggml_tensor * tensor = ggml_get_tensor(ctx_in, name);
|
||||
|
||||
// read tensor data
|
||||
data.resize(ggml_nbytes(tensor));
|
||||
tensor->data = data.data();
|
||||
size_t offset = gguf_get_tensor_offset(gguf_in, i);
|
||||
fin.seek(offset + meta.size(), SEEK_SET);
|
||||
fin.read_raw(data.data(), data.size());
|
||||
|
||||
// apply all loras
|
||||
for (size_t k = 0; k < loras.size(); ++k) {
|
||||
apply_lora(tensor, loras[k], params->n_threads);
|
||||
}
|
||||
|
||||
// write tensor data + padding
|
||||
padding.clear();
|
||||
padding.resize(GGML_PAD(data.size(), gguf_get_alignment(gguf_out)) - data.size(), 0);
|
||||
|
||||
GGML_ASSERT(fout.tell() == offset + meta.size());
|
||||
// fout.seek(offset + meta.size(), SEEK_SET);
|
||||
fout.write_raw(data.data(), data.size());
|
||||
fout.write_raw(padding.data(), padding.size());
|
||||
|
||||
if (i % 2 == 0) {
|
||||
printf(".");
|
||||
}
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
// close gguf
|
||||
gguf_free(gguf_out);
|
||||
gguf_free(gguf_in);
|
||||
|
||||
// free loras
|
||||
for (size_t i = 0; i < loras.size(); ++i) {
|
||||
free_lora(loras[i]);
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
struct export_lora_params params = get_default_export_lora_params();
|
||||
|
||||
if (!export_lora_params_parse(argc, argv, ¶ms)) {
|
||||
return 1;
|
||||
}
|
||||
|
||||
export_lora(¶ms);
|
||||
|
||||
return 0;
|
||||
}
|
5
examples/finetune/CMakeLists.txt
Normal file
5
examples/finetune/CMakeLists.txt
Normal file
|
@ -0,0 +1,5 @@
|
|||
set(TARGET finetune)
|
||||
add_executable(${TARGET} finetune.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
90
examples/finetune/README.md
Normal file
90
examples/finetune/README.md
Normal file
|
@ -0,0 +1,90 @@
|
|||
# finetune
|
||||
|
||||
Basic usage instructions:
|
||||
|
||||
```bash
|
||||
# get training data
|
||||
wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/shakespeare.txt
|
||||
|
||||
# finetune LORA adapter
|
||||
./bin/finetune \
|
||||
--model-base open-llama-3b-v2-q8_0.gguf \
|
||||
--checkpoint-in chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf \
|
||||
--checkpoint-out chk-lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.gguf \
|
||||
--lora-out lora-open-llama-3b-v2-q8_0-shakespeare-ITERATION.bin \
|
||||
--train-data "shakespeare.txt" \
|
||||
--save-every 10 \
|
||||
--threads 6 --adam-iter 30 --batch 4 --ctx 64 \
|
||||
--use-checkpointing
|
||||
|
||||
# predict
|
||||
./bin/main -m open-llama-3b-v2-q8_0.gguf --lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
```
|
||||
|
||||
Finetune output files will be saved every N iterations (config with `--save-every N`).
|
||||
The pattern 'ITERATION' in the output filenames will be replaced with the iteration number and with 'LATEST' for the latest output.
|
||||
So in above example after 10 iterations these files will be written:
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-10.gguf
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-10.bin
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
|
||||
After 10 more iterations:
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-20.gguf
|
||||
- chk-lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.gguf
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-20.bin
|
||||
- lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin
|
||||
|
||||
Checkpoint files (`--checkpoint-in FN`, `--checkpoint-out FN`) store the training process. When the input checkpoint file does not exist, it will begin finetuning a new randomly initialized adapter.
|
||||
|
||||
llama.cpp compatible LORA adapters will be saved with filename specified by `--lora-out FN`.
|
||||
These LORA adapters can then be used by `main` together with the base model, like in the 'predict' example command above.
|
||||
|
||||
In `main` you can also load multiple LORA adapters, which will then be mixed together.
|
||||
|
||||
For example if you have two LORA adapters `lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin` and `lora-open-llama-3b-v2-q8_0-bible-LATEST.bin`, you can mix them together like this:
|
||||
|
||||
```bash
|
||||
./bin/main -m open-llama-3b-v2-q8_0.gguf \
|
||||
--lora lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin \
|
||||
--lora lora-open-llama-3b-v2-q8_0-bible-LATEST.bin
|
||||
```
|
||||
|
||||
You can change how strong each LORA adapter is applied to the base model by using `--lora-scaled FN SCALE` instead of `--lora FN`.
|
||||
|
||||
For example to apply 40% of the 'shakespeare' LORA adapter, 80% of the 'bible' LORA adapter and 100% of yet another one:
|
||||
|
||||
```bash
|
||||
./bin/main -m open-llama-3b-v2-q8_0.gguf \
|
||||
--lora-scaled lora-open-llama-3b-v2-q8_0-shakespeare-LATEST.bin 0.4 \
|
||||
--lora-scaled lora-open-llama-3b-v2-q8_0-bible-LATEST.bin 0.8 \
|
||||
--lora lora-open-llama-3b-v2-q8_0-yet-another-one-LATEST.bin
|
||||
```
|
||||
|
||||
The scale numbers don't need to add up to one, and you can also use numbers creater than 1 to further increase the influence of an adapter. But making the values to big will sometimes result in worse output. Play around to find good values.
|
||||
|
||||
Gradient checkpointing reduces the memory requirements by ~50% but increases the runtime.
|
||||
If you have enough RAM, you can make finetuning a bit faster by disabling checkpointing with `--no-checkpointing`.
|
||||
|
||||
The default LORA rank can be specified with `--lora-r N`.
|
||||
The LORA rank can be configured for each model tensor type separately with these command line options:
|
||||
|
||||
```bash
|
||||
--lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default 4)
|
||||
--rank-att-norm N LORA rank for attention norm tensor (default 1)
|
||||
--rank-ffn-norm N LORA rank for feed-forward norm tensor (default 1)
|
||||
--rank-out-norm N LORA rank for output norm tensor (default 1)
|
||||
--rank-tok-embd N LORA rank for token embeddings tensor (default 4)
|
||||
--rank-out N LORA rank for output tensor (default 4)
|
||||
--rank-wq N LORA rank for wq tensor (default 4)
|
||||
--rank-wk N LORA rank for wk tensor (default 4)
|
||||
--rank-wv N LORA rank for wv tensor (default 4)
|
||||
--rank-wo N LORA rank for wo tensor (default 4)
|
||||
--rank-w1 N LORA rank for w1 tensor (default 4)
|
||||
--rank-w2 N LORA rank for w2 tensor (default 4)
|
||||
--rank-w3 N LORA rank for w3 tensor (default 4)
|
||||
```
|
||||
|
||||
The LORA rank of 'norm' tensors should always be 1.
|
||||
|
||||
To see all available options use `finetune --help`.
|
489
examples/finetune/convert-finetune-checkpoint-to-gguf.py
Normal file
489
examples/finetune/convert-finetune-checkpoint-to-gguf.py
Normal file
|
@ -0,0 +1,489 @@
|
|||
#!/usr/bin/env python3
|
||||
# finetune checkpoint --> gguf conversion
|
||||
|
||||
import argparse
|
||||
import gguf
|
||||
import os
|
||||
import struct
|
||||
import sys
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
|
||||
# gguf constants
|
||||
LLM_KV_OPTIMIZER_TYPE = "optimizer.type"
|
||||
LLM_KV_OPTIMIZER_TYPE_ADAM = "adam"
|
||||
LLM_KV_OPTIMIZER_TYPE_LBFGS = "lbfgs"
|
||||
LLM_KV_OPTIMIZER_FILE_VERSION = "optimizer.file_version"
|
||||
LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT = "optimizer.convergence_past_count"
|
||||
LLM_KV_OPTIMIZER_PARAMETER_COUNT = "optimizer.parameter_count"
|
||||
LLM_KV_OPTIMIZER_ITERATION_COUNT = "optimizer.iteration_count"
|
||||
LLM_KV_OPTIMIZER_JUST_INITIALIZED = "optimizer.just_initialized"
|
||||
LLM_KV_OPTIMIZER_ADAM_BEST_LOSS = "optimizer.adam.best_loss"
|
||||
LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS = "optimizer.adam.previous_loss"
|
||||
LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT = "optimizer.adam.no_improvement_count"
|
||||
LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT = "optimizer.lbfgs.approx_hessian_count"
|
||||
LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS = "optimizer.lbfgs.best_loss"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP = "optimizer.lbfgs.line_search_step"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J = "optimizer.lbfgs.line_search_j"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K = "optimizer.lbfgs.line_search_k"
|
||||
LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END = "optimizer.lbfgs.line_search_end"
|
||||
LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT = "optimizer.lbfgs.no_improvement_count"
|
||||
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS = "optimizer.adam.first_moments"
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS = "optimizer.adam.second_moments"
|
||||
LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES = "optimizer.adam.past_loss_values"
|
||||
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS = "optimizer.lbfgs.current_parameters"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS = "optimizer.lbfgs.previous_parameters"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS = "optimizer.lbfgs.current_gradients"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS = "optimizer.lbfgs.previous_gradients"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION = "optimizer.lbfgs.search_direction"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES = "optimizer.lbfgs.past_loss_values"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA = "optimizer.lbfgs.memory_alpha"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
||||
|
||||
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
|
||||
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
|
||||
LLM_KV_TRAINING_TYPE = "training.type"
|
||||
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
||||
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
||||
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
||||
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
||||
|
||||
LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd"
|
||||
LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm"
|
||||
LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v"
|
||||
LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down"
|
||||
LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up"
|
||||
|
||||
class Tensor:
|
||||
def __init__(self, dtype='f', ne=None):
|
||||
if ne is None:
|
||||
ne = []
|
||||
self.dtype = dtype
|
||||
self.ne = ne
|
||||
self.nbytes = 0
|
||||
if self.dtype == 'f':
|
||||
if len(self.ne) == 0:
|
||||
self.nbytes = 0
|
||||
else:
|
||||
self.nbytes = int(np.product(self.ne)) * 4
|
||||
else:
|
||||
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||
|
||||
def load(self, data, offset):
|
||||
nd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
namelen = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
dtype = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
assert(nd == len(self.ne))
|
||||
ne = []
|
||||
for d in range(nd):
|
||||
n = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
ne.append(n)
|
||||
|
||||
if tuple(ne) != tuple(self.ne):
|
||||
raise ValueError(f"Tensor.load: Expected number of elements {str(self.ne)} does not match what is read from file {str(ne)}")
|
||||
|
||||
if self.dtype == 'f':
|
||||
assert(dtype == 0)
|
||||
else:
|
||||
raise ValueError(f"Unhandled data type '{self.dtype}'")
|
||||
|
||||
self.name = bytes(data[offset:offset+namelen]); offset += namelen
|
||||
# 32-byte alignment
|
||||
offset += (0 - offset) & 31
|
||||
self.data = data[offset:offset+self.nbytes]
|
||||
offset += self.nbytes
|
||||
return offset
|
||||
|
||||
def max_storage_size(self):
|
||||
result = 0
|
||||
result += 4 # nd
|
||||
result += 4 # namelen
|
||||
result += 4 # dtype
|
||||
result += len(self.ne)*8 # ne
|
||||
result += 48 # name (maximum as of commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9)
|
||||
result += 31 # 32-byte alignment
|
||||
result += self.nbytes
|
||||
return result
|
||||
|
||||
def save_gguf(self, gguf_writer, name):
|
||||
gguf_writer.add_tensor(
|
||||
name=name,
|
||||
tensor=self.data,
|
||||
raw_shape=np.array(list(reversed(self.ne))),
|
||||
raw_dtype=gguf.GGMLQuantizationType.F32)
|
||||
|
||||
class OptimizationContext:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def load(self, data, offset):
|
||||
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]
|
||||
offset += 4
|
||||
|
||||
if self.version != 1:
|
||||
raise ValueError('Invalid version of optimization context in checkpoint file')
|
||||
|
||||
self.past = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_m = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.nx = struct.unpack('N', bytes(data[offset:offset + 8]))[0]; offset += 8
|
||||
self.iter = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.just_initialized = bool(struct.unpack('<i', bytes(data[offset:offset + 4]))[0]); offset += 4
|
||||
|
||||
self.adam_m = Tensor('f', [self.nx])
|
||||
self.adam_v = Tensor('f', [self.nx])
|
||||
self.adam_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
|
||||
self.lbfgs_x = Tensor('f', [self.nx])
|
||||
self.lbfgs_xp = Tensor('f', [self.nx])
|
||||
self.lbfgs_g = Tensor('f', [self.nx])
|
||||
self.lbfgs_gp = Tensor('f', [self.nx])
|
||||
self.lbfgs_d = Tensor('f', [self.nx])
|
||||
self.lbfgs_pf = Tensor('f', [self.past] if self.past > 0 else [])
|
||||
self.lbfgs_lmal = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lmys = Tensor('f', [self.lbfgs_m])
|
||||
self.lbfgs_lms = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
self.lbfgs_lmy = Tensor('f', [self.nx, self.lbfgs_m])
|
||||
|
||||
# forgot to save type in version 1:
|
||||
# guess self.type from number of remaining bytes
|
||||
size_type_0 = 12 + sum([t.max_storage_size() for t in
|
||||
[self.adam_m, self.adam_v]
|
||||
+([self.adam_pf] if (self.past > 0) else [])])
|
||||
size_type_1 = 24 + sum([t.max_storage_size() for t in
|
||||
[self.lbfgs_x, self.lbfgs_xp, self.lbfgs_g,
|
||||
self.lbfgs_gp, self.lbfgs_d, self.lbfgs_pf,
|
||||
self.lbfgs_lmal, self.lbfgs_lmys,
|
||||
self.lbfgs_lms, self.lbfgs_lmy]
|
||||
+([self.lbfgs_pf] if (self.past > 0) else [])])
|
||||
# due to alignment padding the size might not by exact
|
||||
# but the difference in size for both types is significant,
|
||||
# so we can just use whichever is closest
|
||||
remaining = len(data) - offset
|
||||
if abs(remaining - size_type_0) < abs(remaining - size_type_1):
|
||||
self.type = 0
|
||||
else:
|
||||
self.type = 1
|
||||
|
||||
if self.type == 0:
|
||||
offset = self.adam_m.load(data, offset)
|
||||
offset = self.adam_v.load(data, offset)
|
||||
offset = self.adam_pf.load(data,offset)
|
||||
|
||||
self.adam_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_fx_prev = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.adam_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
elif self.type == 1:
|
||||
offset = self.lbfgs_x.load(data, offset)
|
||||
offset = self.lbfgs_xp.load(data, offset)
|
||||
offset = self.lbfgs_g.load(data, offset)
|
||||
offset = self.lbfgs_gp.load(data, offset)
|
||||
offset = self.lbfgs_d.load(data, offset)
|
||||
offset = self.lbfgs_pf.load(data, offset)
|
||||
offset = self.lbfgs_lmal.load(data, offset)
|
||||
offset = self.lbfgs_lmys.load(data, offset)
|
||||
offset = self.lbfgs_lms.load(data, offset)
|
||||
offset = self.lbfgs_lmy.load(data, offset)
|
||||
|
||||
self.lbfgs_fx_best = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_step = struct.unpack('<f', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_j = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_k = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_end = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.lbfgs_n_no_improvement = struct.unpack('<i', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
else:
|
||||
raise ValueError(f"Invalid optimizer type '{self.type}'")
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_FILE_VERSION, 0)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_CONVERGENCE_PAST_COUNT, self.past)
|
||||
gguf_writer.add_uint64(LLM_KV_OPTIMIZER_PARAMETER_COUNT, self.nx)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ITERATION_COUNT, self.iter)
|
||||
gguf_writer.add_bool(LLM_KV_OPTIMIZER_JUST_INITIALIZED, self.just_initialized)
|
||||
|
||||
if self.type == 0:
|
||||
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_ADAM)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_BEST_LOSS, self.adam_fx_best)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_ADAM_PREVIOUS_LOSS, self.adam_fx_prev)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_ADAM_NO_IMPROVEMENT_COUNT, self.adam_n_no_improvement)
|
||||
|
||||
self.adam_m.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_FIRST_MOMENTS)
|
||||
self.adam_v.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_SECOND_MOMENTS)
|
||||
if self.past > 0:
|
||||
self.adam_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_ADAM_PAST_LOSS_VALUES)
|
||||
|
||||
elif self.type == 1:
|
||||
gguf_writer.add_string(LLM_KV_OPTIMIZER_TYPE, LLM_KV_OPTIMIZER_TYPE_LBFGS)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_APPROX_HESSIAN_COUNT, self.lbfgs_m)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_BEST_LOSS, self.lbfgs_fx_best)
|
||||
gguf_writer.add_float32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_STEP, self.lbfgs_step)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_J, self.lbfgs_j)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_K, self.lbfgs_k)
|
||||
gguf_writer.add_int32(LLM_KV_OPTIMIZER_LBFGS_LINE_SEARCH_END, self.lbfgs_end)
|
||||
gguf_writer.add_uint32(LLM_KV_OPTIMIZER_LBFGS_NO_IMPROVEMENT_COUNT, self.lbfgs_n_no_improvement)
|
||||
|
||||
self.lbfgs_x.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_PARAMETERS)
|
||||
self.lbfgs_xp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_PARAMETERS)
|
||||
self.lbfgs_g.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_CURRENT_GRADIENTS)
|
||||
self.lbfgs_gp.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PREVIOUS_GRADIENTS)
|
||||
self.lbfgs_d.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_SEARCH_DIRECTION)
|
||||
if self.past > 0:
|
||||
self.lbfgs_pf.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_PAST_LOSS_VALUES)
|
||||
self.lbfgs_lmal.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_ALPHA)
|
||||
self.lbfgs_lmys.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS)
|
||||
self.lbfgs_lms.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S)
|
||||
self.lbfgs_lmy.save_gguf(gguf_writer, name=LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y)
|
||||
else:
|
||||
raise ValueError('Unknown optimizer type')
|
||||
|
||||
class LoraParams:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def load(self, data, offset):
|
||||
self.n_rank_attention_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wq = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wk = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wv = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_wo = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_ffn_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_w1 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_w2 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_w3 = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_tok_embeddings = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_norm = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rank_output = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, self.n_rank_tok_embeddings)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, self.n_rank_norm)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_OUTPUT, self.n_rank_output)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, self.n_rank_attention_norm)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_Q, self.n_rank_wq)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_K, self.n_rank_wk)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_V, self.n_rank_wv)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, self.n_rank_wo)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_NORM, self.n_rank_ffn_norm)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_GATE, self.n_rank_w1)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, self.n_rank_w2)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_LORA_RANK_FFN_UP, self.n_rank_w3)
|
||||
|
||||
class ModelParams:
|
||||
def __init__(self, n_ff = None):
|
||||
self.n_ff = n_ff
|
||||
|
||||
def load(self, data, offset):
|
||||
self.n_vocab = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_embd = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_mult = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_head = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_layer = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.n_rot = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
return offset
|
||||
|
||||
def get_n_ff(self):
|
||||
if self.n_ff is None:
|
||||
# struct my_llama_model::get_n_ff in train-text-from-scratch.cpp commit 3b5515bbe0e2224425986ba24f1f5d84aa38dce9
|
||||
return ((2*(4*self.n_embd)//3 + self.n_mult - 1)//self.n_mult)*self.n_mult
|
||||
else:
|
||||
return self.n_ff
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
# self.n_vocab not saved
|
||||
gguf_writer.add_embedding_length(self.n_embd)
|
||||
gguf_writer.add_head_count(self.n_head)
|
||||
gguf_writer.add_block_count(self.n_layer)
|
||||
gguf_writer.add_rope_dimension_count(self.n_rot)
|
||||
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
||||
|
||||
def tensor_name(key, bid=None, suffix=".weight"):
|
||||
return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + suffix
|
||||
|
||||
class Layer:
|
||||
def __init__(self, params, lora_params, bid):
|
||||
self.bid = bid
|
||||
self.att_norm_a = Tensor('f', [lora_params.n_rank_attention_norm, params.n_embd])
|
||||
self.att_norm_b = Tensor('f', [lora_params.n_rank_attention_norm, 1])
|
||||
self.wq_a = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
||||
self.wq_b = Tensor('f', [lora_params.n_rank_wq, params.n_embd])
|
||||
self.wk_a = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
||||
self.wk_b = Tensor('f', [lora_params.n_rank_wk, params.n_embd])
|
||||
self.wv_a = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
||||
self.wv_b = Tensor('f', [lora_params.n_rank_wv, params.n_embd])
|
||||
self.wo_a = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
||||
self.wo_b = Tensor('f', [lora_params.n_rank_wo, params.n_embd])
|
||||
self.ffn_norm_a = Tensor('f', [lora_params.n_rank_ffn_norm, params.n_embd])
|
||||
self.ffn_norm_b = Tensor('f', [lora_params.n_rank_ffn_norm, 1])
|
||||
self.w1_a = Tensor('f', [lora_params.n_rank_w1, params.n_embd])
|
||||
self.w1_b = Tensor('f', [lora_params.n_rank_w1, params.get_n_ff()])
|
||||
self.w2_a = Tensor('f', [lora_params.n_rank_w2, params.get_n_ff()])
|
||||
self.w2_b = Tensor('f', [lora_params.n_rank_w2, params.n_embd])
|
||||
self.w3_a = Tensor('f', [lora_params.n_rank_w3, params.n_embd])
|
||||
self.w3_b = Tensor('f', [lora_params.n_rank_w3, params.get_n_ff()])
|
||||
|
||||
def load(self, data, offset):
|
||||
offset = self.att_norm_a.load(data, offset)
|
||||
offset = self.att_norm_b.load(data, offset)
|
||||
offset = self.wq_a.load(data, offset)
|
||||
offset = self.wq_b.load(data, offset)
|
||||
offset = self.wk_a.load(data, offset)
|
||||
offset = self.wk_b.load(data, offset)
|
||||
offset = self.wv_a.load(data, offset)
|
||||
offset = self.wv_b.load(data, offset)
|
||||
offset = self.wo_a.load(data, offset)
|
||||
offset = self.wo_b.load(data, offset)
|
||||
offset = self.ffn_norm_a.load(data, offset)
|
||||
offset = self.ffn_norm_b.load(data, offset)
|
||||
offset = self.w1_a.load(data, offset)
|
||||
offset = self.w1_b.load(data, offset)
|
||||
offset = self.w2_a.load(data, offset)
|
||||
offset = self.w2_b.load(data, offset)
|
||||
offset = self.w3_a.load(data, offset)
|
||||
offset = self.w3_b.load(data, offset)
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
self.att_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_a"))
|
||||
self.att_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_NORM, self.bid, ".weight.lora_b"))
|
||||
self.wq_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_a"))
|
||||
self.wq_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_Q, self.bid, ".weight.lora_b"))
|
||||
self.wk_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_a"))
|
||||
self.wk_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_K, self.bid, ".weight.lora_b"))
|
||||
self.wv_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_a"))
|
||||
self.wv_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_V, self.bid, ".weight.lora_b"))
|
||||
self.wo_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_a"))
|
||||
self.wo_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, self.bid, ".weight.lora_b"))
|
||||
self.ffn_norm_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_a"))
|
||||
self.ffn_norm_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_NORM, self.bid, ".weight.lora_b"))
|
||||
self.w1_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_a"))
|
||||
self.w1_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_GATE, self.bid, ".weight.lora_b"))
|
||||
self.w2_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_a"))
|
||||
self.w2_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, self.bid, ".weight.lora_b"))
|
||||
self.w3_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_a"))
|
||||
self.w3_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.FFN_UP, self.bid, ".weight.lora_b"))
|
||||
|
||||
class LoraModel:
|
||||
def __init__(self, n_ff = None):
|
||||
self.params = ModelParams(n_ff = n_ff)
|
||||
self.lora_params = LoraParams()
|
||||
self.layers = []
|
||||
|
||||
def load(self, data, offset):
|
||||
offset = self.params.load(data, offset)
|
||||
offset = self.lora_params.load(data, offset)
|
||||
|
||||
self.tok_embd_a = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_embd])
|
||||
self.tok_embd_b = Tensor('f', [self.lora_params.n_rank_tok_embeddings, self.params.n_vocab])
|
||||
self.norm_a = Tensor('f', [self.lora_params.n_rank_norm, self.params.n_embd])
|
||||
self.norm_b = Tensor('f', [self.lora_params.n_rank_norm, 1])
|
||||
self.output_a = Tensor('f', [self.lora_params.n_rank_output, self.params.n_embd])
|
||||
self.output_b = Tensor('f', [self.lora_params.n_rank_output, self.params.n_vocab])
|
||||
|
||||
offset = self.tok_embd_a.load(data, offset)
|
||||
offset = self.tok_embd_b.load(data, offset)
|
||||
offset = self.norm_a.load(data, offset)
|
||||
offset = self.norm_b.load(data, offset)
|
||||
offset = self.output_a.load(data, offset)
|
||||
offset = self.output_b.load(data, offset)
|
||||
|
||||
self.layers.clear()
|
||||
for bid in range(self.params.n_layer):
|
||||
layer = Layer(self.params, self.lora_params, bid)
|
||||
offset = layer.load(data, offset)
|
||||
self.layers.append(layer)
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
self.params.save_gguf(gguf_writer)
|
||||
self.lora_params.save_gguf(gguf_writer)
|
||||
|
||||
self.tok_embd_a.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_a"))
|
||||
self.tok_embd_b.save_gguf(gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD, suffix=".weight.lora_b"))
|
||||
self.norm_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_a"))
|
||||
self.norm_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT_NORM, suffix=".weight.lora_b"))
|
||||
self.output_a.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_a"))
|
||||
self.output_b.save_gguf (gguf_writer, name=tensor_name(gguf.MODEL_TENSOR.OUTPUT, suffix=".weight.lora_b"))
|
||||
|
||||
for layer in self.layers:
|
||||
layer.save_gguf(gguf_writer)
|
||||
|
||||
class LoraCheckpoint:
|
||||
def __init__(self, n_ff = None):
|
||||
self.model = LoraModel(n_ff = n_ff)
|
||||
self.opt_ctx = OptimizationContext()
|
||||
|
||||
def load(self, data, offset):
|
||||
magic = bytes(reversed(data[offset:offset + 4])); offset += 4
|
||||
if magic != b'ggcl':
|
||||
raise ValueError(f"File header magic indicates, that this is no finetune-lora checkpoint file. Expected 'ggcl', Got '{str(magic)}'")
|
||||
|
||||
self.version = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
if self.version != 0:
|
||||
raise ValueError('Invalid version of checkpoint file')
|
||||
|
||||
self.train_its = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.train_samples = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
self.train_tokens = struct.unpack('<I', bytes(data[offset:offset + 4]))[0]; offset += 4
|
||||
|
||||
offset = self.model.load(data, offset)
|
||||
offset = self.opt_ctx.load(data, offset)
|
||||
|
||||
return offset
|
||||
|
||||
def save_gguf(self, gguf_writer):
|
||||
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
||||
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
||||
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
||||
self.model.save_gguf(gguf_writer)
|
||||
self.opt_ctx.save_gguf(gguf_writer)
|
||||
|
||||
def handle_args():
|
||||
parser = argparse.ArgumentParser(description = 'Convert finetune checkpoints to GGUF')
|
||||
parser.add_argument('--input', '-i', type = Path, help = 'Input finetune checkpoint filename', required=True)
|
||||
parser.add_argument('--output', '-o', type = Path, help = 'Output GGUF filename', required=True)
|
||||
parser.add_argument('--ff', type = int, help = "Feedforward size, if not provided compute from n_mult. Provide this if you get 'ValueError: Tensor.load: Expected number of elements does not match what is read from file'", required=False)
|
||||
return parser.parse_args()
|
||||
|
||||
def main():
|
||||
cfg = handle_args()
|
||||
print(cfg)
|
||||
data = np.memmap(cfg.input, mode = 'r')
|
||||
chk = LoraCheckpoint(n_ff = cfg.ff)
|
||||
offset = 0
|
||||
offset = chk.load(data, offset)
|
||||
# we should have read all available data
|
||||
assert(offset == len(data))
|
||||
|
||||
gguf_writer = gguf.GGUFWriter(cfg.output, gguf.MODEL_ARCH_NAMES[gguf.MODEL_ARCH.LLAMA], use_temp_file = False)
|
||||
chk.save_gguf(gguf_writer)
|
||||
print(" gguf: write header")
|
||||
gguf_writer.write_header_to_file()
|
||||
print(" gguf: write metadata")
|
||||
gguf_writer.write_kv_data_to_file()
|
||||
print(" gguf: write tensors")
|
||||
gguf_writer.write_tensors_to_file()
|
||||
gguf_writer.close()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
1937
examples/finetune/finetune.cpp
Normal file
1937
examples/finetune/finetune.cpp
Normal file
File diff suppressed because it is too large
Load diff
|
@ -132,7 +132,6 @@ struct cmd_params {
|
|||
std::vector<int> n_gpu_layers;
|
||||
std::vector<int> main_gpu;
|
||||
std::vector<bool> mul_mat_q;
|
||||
std::vector<bool> low_vram;
|
||||
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
|
||||
int reps;
|
||||
bool verbose;
|
||||
|
@ -149,7 +148,6 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* n_gpu_layers */ {99},
|
||||
/* main_gpu */ {0},
|
||||
/* mul_mat_q */ {true},
|
||||
/* low_vram */ {false},
|
||||
/* tensor_split */ {{}},
|
||||
/* reps */ 5,
|
||||
/* verbose */ false,
|
||||
|
@ -167,9 +165,8 @@ static void print_usage(int /* argc */, char ** argv) {
|
|||
printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
|
||||
printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
|
||||
printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
|
||||
printf(" -ngl N, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -mg i, --main-gpu <n> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
|
||||
printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
|
||||
printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
|
||||
printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
|
||||
printf(" -ts, --tensor_split <ts0/ts1/..> \n");
|
||||
printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
|
||||
|
@ -255,13 +252,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
break;
|
||||
}
|
||||
params.main_gpu = split<int>(argv[i], split_delim);
|
||||
} else if (arg == "-lv" || arg == "--low-vram") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
auto p = split<bool>(argv[i], split_delim);
|
||||
params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
|
||||
} else if (arg == "-mmq" || arg == "--mul-mat-q") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -336,7 +326,6 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
|
||||
if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
|
||||
if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
|
||||
if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; }
|
||||
if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
|
||||
if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
|
||||
|
||||
|
@ -353,21 +342,34 @@ struct cmd_params_instance {
|
|||
int n_gpu_layers;
|
||||
int main_gpu;
|
||||
bool mul_mat_q;
|
||||
bool low_vram;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
|
||||
llama_context_params to_llama_params() const {
|
||||
llama_context_params lparams = llama_context_default_params();
|
||||
lparams.n_ctx = n_prompt + n_gen;
|
||||
lparams.n_batch = n_batch;
|
||||
lparams.f16_kv = !f32_kv;
|
||||
lparams.n_gpu_layers = n_gpu_layers;
|
||||
lparams.main_gpu = main_gpu;
|
||||
lparams.mul_mat_q = mul_mat_q;
|
||||
lparams.low_vram = low_vram;
|
||||
lparams.tensor_split = tensor_split.data();
|
||||
llama_model_params to_llama_mparams() const {
|
||||
llama_model_params mparams = llama_model_default_params();
|
||||
|
||||
return lparams;
|
||||
mparams.n_gpu_layers = n_gpu_layers;
|
||||
mparams.main_gpu = main_gpu;
|
||||
mparams.tensor_split = tensor_split.data();
|
||||
|
||||
return mparams;
|
||||
}
|
||||
|
||||
bool equal_mparams(const cmd_params_instance & other) const {
|
||||
return model == other.model &&
|
||||
n_gpu_layers == other.n_gpu_layers &&
|
||||
main_gpu == other.main_gpu &&
|
||||
tensor_split == other.tensor_split;
|
||||
}
|
||||
|
||||
llama_context_params to_llama_cparams() const {
|
||||
llama_context_params cparams = llama_context_default_params();
|
||||
|
||||
cparams.n_ctx = n_prompt + n_gen;
|
||||
cparams.n_batch = n_batch;
|
||||
cparams.f16_kv = !f32_kv;
|
||||
cparams.mul_mat_q = mul_mat_q;
|
||||
|
||||
return cparams;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -375,13 +377,12 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
|||
std::vector<cmd_params_instance> instances;
|
||||
|
||||
for (const auto & m : params.model)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & fk : params.f32_kv)
|
||||
for (const auto & nl : params.n_gpu_layers)
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & lv : params.low_vram)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & fk : params.f32_kv)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
cmd_params_instance instance = {
|
||||
/* .model = */ m,
|
||||
|
@ -393,7 +394,6 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
|||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .low_vram = */ lv,
|
||||
/* .tensor_split = */ ts,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
|
@ -404,6 +404,56 @@ static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_p
|
|||
static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
|
||||
std::vector<cmd_params_instance> instances;
|
||||
|
||||
#if 1
|
||||
// this ordering minimizes the number of times that each model needs to be reloaded
|
||||
for (const auto & m : params.model)
|
||||
for (const auto & nl : params.n_gpu_layers)
|
||||
for (const auto & mg : params.main_gpu)
|
||||
for (const auto & ts : params.tensor_split)
|
||||
for (const auto & nb : params.n_batch)
|
||||
for (const auto & fk : params.f32_kv)
|
||||
for (const auto & mmq : params.mul_mat_q)
|
||||
for (const auto & nt : params.n_threads) {
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
if (n_prompt == 0) {
|
||||
continue;
|
||||
}
|
||||
cmd_params_instance instance = {
|
||||
/* .model = */ m,
|
||||
/* .n_prompt = */ n_prompt,
|
||||
/* .n_gen = */ 0,
|
||||
/* .n_batch = */ nb,
|
||||
/* .f32_kv = */ fk,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
|
||||
for (const auto & n_gen : params.n_gen) {
|
||||
if (n_gen == 0) {
|
||||
continue;
|
||||
}
|
||||
cmd_params_instance instance = {
|
||||
/* .model = */ m,
|
||||
/* .n_prompt = */ 0,
|
||||
/* .n_gen = */ n_gen,
|
||||
/* .n_batch = */ nb,
|
||||
/* .f32_kv = */ fk,
|
||||
/* .n_threads = */ nt,
|
||||
/* .n_gpu_layers = */ nl,
|
||||
/* .main_gpu = */ mg,
|
||||
/* .mul_mat_q = */ mmq,
|
||||
/* .tensor_split = */ ts,
|
||||
};
|
||||
instances.push_back(instance);
|
||||
}
|
||||
}
|
||||
#else
|
||||
// this ordering separates the prompt and generation tests
|
||||
for (const auto & n_prompt : params.n_prompt) {
|
||||
if (n_prompt == 0) {
|
||||
continue;
|
||||
|
@ -419,6 +469,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
|
|||
auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
|
||||
instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
|
||||
}
|
||||
#endif
|
||||
|
||||
return instances;
|
||||
}
|
||||
|
@ -443,7 +494,6 @@ struct test {
|
|||
int n_gpu_layers;
|
||||
int main_gpu;
|
||||
bool mul_mat_q;
|
||||
bool low_vram;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
|
@ -463,7 +513,6 @@ struct test {
|
|||
n_gpu_layers = inst.n_gpu_layers;
|
||||
main_gpu = inst.main_gpu;
|
||||
mul_mat_q = inst.mul_mat_q;
|
||||
low_vram = inst.low_vram;
|
||||
tensor_split = inst.tensor_split;
|
||||
n_prompt = inst.n_prompt;
|
||||
n_gen = inst.n_gen;
|
||||
|
@ -524,7 +573,7 @@ struct test {
|
|||
"cpu_info", "gpu_info",
|
||||
"model_filename", "model_type", "model_size", "model_n_params",
|
||||
"n_batch", "n_threads", "f16_kv",
|
||||
"n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
|
||||
"n_gpu_layers", "main_gpu", "mul_mat_q", "tensor_split",
|
||||
"n_prompt", "n_gen", "test_time",
|
||||
"avg_ns", "stddev_ns",
|
||||
"avg_ts", "stddev_ts"
|
||||
|
@ -543,7 +592,7 @@ struct test {
|
|||
return INT;
|
||||
}
|
||||
if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
|
||||
field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
|
||||
field == "f16_kv" || field == "mul_mat_q") {
|
||||
return BOOL;
|
||||
}
|
||||
if (field == "avg_ts" || field == "stddev_ts") {
|
||||
|
@ -574,7 +623,7 @@ struct test {
|
|||
cpu_info, gpu_info,
|
||||
model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
|
||||
std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
|
||||
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
|
||||
std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), tensor_split_str,
|
||||
std::to_string(n_prompt), std::to_string(n_gen), test_time,
|
||||
std::to_string(avg_ns()), std::to_string(stdev_ns()),
|
||||
std::to_string(avg_ts()), std::to_string(stdev_ts())
|
||||
|
@ -606,9 +655,9 @@ struct printer {
|
|||
virtual ~printer() {}
|
||||
|
||||
FILE * fout;
|
||||
virtual void print_header(const cmd_params & params) { (void) params; };
|
||||
virtual void print_header(const cmd_params & params) { (void) params; }
|
||||
virtual void print_test(const test & t) = 0;
|
||||
virtual void print_footer() { };
|
||||
virtual void print_footer() { }
|
||||
};
|
||||
|
||||
struct csv_printer : public printer {
|
||||
|
@ -766,9 +815,6 @@ struct markdown_printer : public printer {
|
|||
if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
|
||||
fields.push_back("mul_mat_q");
|
||||
}
|
||||
if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
|
||||
fields.push_back("low_vram");
|
||||
}
|
||||
if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
|
||||
fields.push_back("tensor_split");
|
||||
}
|
||||
|
@ -889,17 +935,23 @@ struct sql_printer : public printer {
|
|||
static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
|
||||
std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
|
||||
int n_processed = 0;
|
||||
|
||||
llama_set_n_threads(ctx, n_threads, n_threads);
|
||||
|
||||
while (n_processed < n_prompt) {
|
||||
int n_tokens = std::min(n_prompt - n_processed, n_batch);
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0), n_threads);
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
|
||||
n_processed += n_tokens;
|
||||
}
|
||||
}
|
||||
|
||||
static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
|
||||
llama_token token = llama_token_bos(ctx);
|
||||
|
||||
llama_set_n_threads(ctx, n_threads, n_threads);
|
||||
|
||||
for (int i = 0; i < n_gen; i++) {
|
||||
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0), n_threads);
|
||||
llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -958,17 +1010,25 @@ int main(int argc, char ** argv) {
|
|||
|
||||
std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
|
||||
|
||||
for (const auto & inst : params_instances) {
|
||||
// TODO: keep the model between tests when possible
|
||||
llama_context_params lparams = inst.to_llama_params();
|
||||
llama_model * lmodel = nullptr;
|
||||
const cmd_params_instance * prev_inst = nullptr;
|
||||
|
||||
llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams);
|
||||
if (lmodel == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
|
||||
return 1;
|
||||
for (const auto & inst : params_instances) {
|
||||
// keep the same model between tests when possible
|
||||
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
|
||||
if (lmodel) {
|
||||
llama_free_model(lmodel);
|
||||
}
|
||||
|
||||
lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
|
||||
if (lmodel == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
|
||||
return 1;
|
||||
}
|
||||
prev_inst = &inst;
|
||||
}
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
|
||||
llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
|
||||
llama_free_model(lmodel);
|
||||
|
@ -1006,9 +1066,10 @@ int main(int argc, char ** argv) {
|
|||
llama_print_timings(ctx);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(lmodel);
|
||||
}
|
||||
|
||||
llama_free_model(lmodel);
|
||||
|
||||
p->print_footer();
|
||||
|
||||
llama_backend_free();
|
||||
|
|
|
@ -262,7 +262,8 @@ These options help improve the performance and memory usage of the LLaMA models.
|
|||
|
||||
### Number of Threads
|
||||
|
||||
- `-t N, --threads N`: Set the number of threads to use during computation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Using the correct number of threads can greatly improve performance.
|
||||
- `-t N, --threads N`: Set the number of threads to use during generation. For optimal performance, it is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Using the correct number of threads can greatly improve performance.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. In some systems, it is beneficial to use a higher number of threads during batch processing than during generation. If not specified, the number of threads used for batch processing will be the same as the number of threads used for generation.
|
||||
|
||||
### Mlock
|
||||
|
||||
|
@ -305,6 +306,5 @@ These options provide extra functionality and customization when running the LLa
|
|||
- `-ngl N, --n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
|
|
|
@ -140,12 +140,17 @@ int main(int argc, char ** argv) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
if (params.rope_freq_base != 10000.0) {
|
||||
LOG_TEE("%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
|
||||
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 1.0) {
|
||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
|
||||
if (params.rope_freq_base != 0.0) {
|
||||
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||
}
|
||||
|
||||
if (params.rope_freq_scale != 0.0) {
|
||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||
}
|
||||
|
||||
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||
|
@ -184,20 +189,19 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(ctx);
|
||||
if (params.n_ctx > n_ctx_train) {
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG("n_ctx: %d\n", n_ctx);
|
||||
|
||||
if (n_ctx > n_ctx_train) {
|
||||
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, params.n_ctx);
|
||||
} else if (params.n_ctx < 8) {
|
||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||
params.n_ctx = 8;
|
||||
__func__, n_ctx_train, n_ctx);
|
||||
}
|
||||
|
||||
// print system information
|
||||
{
|
||||
LOG_TEE("\n");
|
||||
LOG_TEE("system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
LOG_TEE("%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
std::string path_session = params.path_prompt_cache;
|
||||
|
@ -211,7 +215,7 @@ int main(int argc, char ** argv) {
|
|||
if (fp != NULL) {
|
||||
std::fclose(fp);
|
||||
|
||||
session_tokens.resize(params.n_ctx);
|
||||
session_tokens.resize(n_ctx);
|
||||
size_t n_token_count_out = 0;
|
||||
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
||||
LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
|
||||
|
@ -226,7 +230,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
const bool add_bos = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
|
||||
LOG("add_bos: %d\n", add_bos);
|
||||
|
||||
std::vector<llama_token> embd_inp;
|
||||
|
@ -267,9 +271,6 @@ int main(int argc, char ** argv) {
|
|||
LOG("guidance_offset: %s", log_tostr(guidance_offset));
|
||||
}
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
LOG("n_ctx: %d\n", n_ctx);
|
||||
|
||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||
return 1;
|
||||
|
@ -466,7 +467,7 @@ int main(int argc, char ** argv) {
|
|||
std::vector<llama_token> embd;
|
||||
std::vector<llama_token> embd_guidance;
|
||||
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
@ -576,7 +577,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
for (int i = 0; i < input_size; i += params.n_batch) {
|
||||
int n_eval = std::min(input_size - i, params.n_batch);
|
||||
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0), params.n_threads)) {
|
||||
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
@ -593,7 +594,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0), params.n_threads)) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
@ -851,7 +852,7 @@ int main(int argc, char ** argv) {
|
|||
llama_backend_free();
|
||||
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
LOG_TEE("Log end\n")
|
||||
LOG_TEE("Log end\n");
|
||||
#endif // LOG_DISABLE_LOGS
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -108,7 +108,7 @@ int main(int argc, char ** argv) {
|
|||
fflush(stderr);
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
std::vector<client> clients(n_clients);
|
||||
for (size_t i = 0; i < clients.size(); ++i) {
|
||||
|
@ -153,7 +153,7 @@ int main(int argc, char ** argv) {
|
|||
batch.logits[i] = false;
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, batch, params.n_threads) != 0) {
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
@ -272,7 +272,7 @@ int main(int argc, char ** argv) {
|
|||
0, 0, 0, // unused
|
||||
};
|
||||
|
||||
const int ret = llama_decode(ctx, batch_view, params.n_threads);
|
||||
const int ret = llama_decode(ctx, batch_view);
|
||||
if (ret != 0) {
|
||||
if (n_batch == 1 || ret < 0) {
|
||||
// if you get here, it means the KV cache is full - try increasing it via the context size
|
||||
|
|
|
@ -150,16 +150,18 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
|||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
||||
std::vector<llama_token> tokens = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||
|
||||
if (int(tokens.size()) < 2*params.n_ctx) {
|
||||
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx,
|
||||
params.n_ctx);
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
if (int(tokens.size()) < 2*n_ctx) {
|
||||
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
||||
n_ctx);
|
||||
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||
return {std::move(tokens), 0., {}, {}};
|
||||
}
|
||||
|
@ -175,20 +177,20 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
|||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
|
||||
const int calc_chunk = params.n_ctx;
|
||||
const int calc_chunk = n_ctx;
|
||||
|
||||
fprintf(stderr, "%s: have %zu tokens. Calculation chunk = %d\n", __func__, tokens.size(), calc_chunk);
|
||||
|
||||
if (int(tokens.size()) <= calc_chunk) {
|
||||
fprintf(stderr, "%s: there are only %zu tokens, this is not enough for a context size of %d and stride %d\n",__func__,
|
||||
tokens.size(), params.n_ctx, params.ppl_stride);
|
||||
tokens.size(), n_ctx, params.ppl_stride);
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
|
||||
const int n_chunk_max = (tokens.size() - calc_chunk + params.ppl_stride - 1) / params.ppl_stride;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
int count = 0;
|
||||
|
@ -215,7 +217,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
|||
const int batch_size = std::min(end - batch_start, n_batch);
|
||||
|
||||
//fprintf(stderr, " Batch %d: starts at %d, size is %d, n_past is %d\n",j,batch_start,batch_size,j * n_batch);
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0), params.n_threads)) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
//fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
|
@ -250,7 +252,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params &
|
|||
}
|
||||
|
||||
//fprintf(stderr, "%s: using tokens %d...%d\n",__func__,params.n_ctx - params.ppl_stride + start, params.n_ctx + start);
|
||||
for (int j = params.n_ctx - params.ppl_stride - 1; j < params.n_ctx - 1; ++j) {
|
||||
for (int j = n_ctx - params.ppl_stride - 1; j < n_ctx - 1; ++j) {
|
||||
|
||||
// Calculate probability of next token, given the previous ones.
|
||||
const std::vector<float> tok_logits(
|
||||
|
@ -287,8 +289,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
// Output: `perplexity: 13.5106 [114/114]`
|
||||
// BOS tokens will be added for each chunk before eval
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool add_bos = is_spm;
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
auto tim1 = std::chrono::high_resolution_clock::now();
|
||||
fprintf(stderr, "%s: tokenizing the input ..\n", __func__);
|
||||
|
@ -298,9 +301,9 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
auto tim2 = std::chrono::high_resolution_clock::now();
|
||||
fprintf(stderr, "%s: tokenization took %g ms\n",__func__,1e-3*std::chrono::duration_cast<std::chrono::microseconds>(tim2-tim1).count());
|
||||
|
||||
if (int(tokens.size()) < 2*params.n_ctx) {
|
||||
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*params.n_ctx,
|
||||
params.n_ctx);
|
||||
if (int(tokens.size()) < 2*n_ctx) {
|
||||
fprintf(stderr, "%s: you need at least %d tokens to evaluate perplexity with a context of %d\n",__func__,2*n_ctx,
|
||||
n_ctx);
|
||||
fprintf(stderr, "%s: the data file you provided tokenizes to only %zu tokens\n",__func__,tokens.size());
|
||||
return {std::move(tokens), 0., {}, {}};
|
||||
}
|
||||
|
@ -311,10 +314,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
std::vector<float> prob_history;
|
||||
prob_history.resize(tokens.size());
|
||||
|
||||
const int n_chunk_max = tokens.size() / params.n_ctx;
|
||||
const int n_chunk_max = tokens.size() / n_ctx;
|
||||
|
||||
const int n_chunk = params.n_chunks < 0 ? n_chunk_max : std::min(params.n_chunks, n_chunk_max);
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_batch = params.n_batch;
|
||||
|
||||
int count = 0;
|
||||
|
@ -326,10 +329,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
std::vector<std::thread> workers(std::thread::hardware_concurrency() - 1);
|
||||
|
||||
for (int i = 0; i < n_chunk; ++i) {
|
||||
const int start = i * params.n_ctx;
|
||||
const int end = start + params.n_ctx;
|
||||
const int start = i * n_ctx;
|
||||
const int end = start + n_ctx;
|
||||
|
||||
const int num_batches = (params.n_ctx + n_batch - 1) / n_batch;
|
||||
const int num_batches = (n_ctx + n_batch - 1) / n_batch;
|
||||
|
||||
std::vector<float> logits;
|
||||
|
||||
|
@ -350,7 +353,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
tokens[batch_start] = llama_token_bos(ctx);
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0), params.n_threads)) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return {tokens, -1, logit_history, prob_history};
|
||||
}
|
||||
|
@ -358,7 +361,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
// restore the original token in case it was set to BOS
|
||||
tokens[batch_start] = token_org;
|
||||
|
||||
const auto batch_logits = llama_get_logits(ctx);
|
||||
const auto * batch_logits = llama_get_logits(ctx);
|
||||
logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab);
|
||||
}
|
||||
|
||||
|
@ -387,10 +390,10 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
// Example, we have a context window of 512, we will compute perplexity for each of the
|
||||
// last 256 tokens. Then, we split the input up into context window size chunks to
|
||||
// process the entire prompt.
|
||||
const int first = params.n_ctx/2;
|
||||
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, params.n_ctx - 1 - first,
|
||||
const int first = n_ctx/2;
|
||||
process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first,
|
||||
workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first);
|
||||
count += params.n_ctx - first - 1;
|
||||
count += n_ctx - first - 1;
|
||||
|
||||
// perplexity is e^(average negative log-likelihood)
|
||||
if (params.ppl_output_type == 0) {
|
||||
|
@ -399,7 +402,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
double av = nll/count;
|
||||
double av2 = nll2/count - av*av;
|
||||
if (av2 > 0) av2 = sqrt(av2/(count-1));
|
||||
printf("%8d %.4lf %4lf %4lf\n", i*params.n_ctx, std::exp(nll / count), av, av2);
|
||||
printf("%8d %.4lf %4lf %4lf\n", i*n_ctx, std::exp(nll / count), av, av2);
|
||||
}
|
||||
fflush(stdout);
|
||||
}
|
||||
|
@ -420,7 +423,7 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par
|
|||
}
|
||||
|
||||
static std::vector<float> hellaswag_evaluate_tokens(
|
||||
llama_context * ctx, std::vector<int> & tokens, int n_past, int n_batch, int n_vocab, int n_thread
|
||||
llama_context * ctx, std::vector<int> & tokens, int n_past, int n_batch, int n_vocab
|
||||
) {
|
||||
std::vector<float> result;
|
||||
result.reserve(tokens.size() * n_vocab);
|
||||
|
@ -428,7 +431,7 @@ static std::vector<float> hellaswag_evaluate_tokens(
|
|||
for (size_t i_chunk = 0; i_chunk < n_chunk; ++i_chunk) {
|
||||
size_t n_tokens = tokens.size() - i_chunk * n_batch;
|
||||
n_tokens = std::min(n_tokens, size_t(n_batch));
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0), n_thread)) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(tokens.data() + i_chunk * n_batch, n_tokens, n_past, 0))) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return {};
|
||||
}
|
||||
|
@ -475,7 +478,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||
size_t hs_task_count = prompt_lines.size()/6;
|
||||
fprintf(stderr, "%s : loaded %zu tasks from prompt.\n", __func__, hs_task_count);
|
||||
|
||||
const bool is_spm = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
|
||||
const bool is_spm = llama_vocab_type(llama_get_model(ctx)) == LLAMA_VOCAB_TYPE_SPM;
|
||||
fprintf(stderr, "================================= is_spm = %d\n", is_spm);
|
||||
|
||||
// This is needed as usual for LLaMA models
|
||||
|
@ -530,7 +533,8 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||
printf("\ntask\tacc_norm\n");
|
||||
|
||||
double acc = 0.0f;
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
std::vector<std::vector<int>> ending_tokens(4);
|
||||
|
||||
|
@ -558,7 +562,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||
auto query_size = query_embd.size();
|
||||
|
||||
// Stop if query wont fit the ctx window
|
||||
if (query_size > (size_t)params.n_ctx) {
|
||||
if (query_size > (size_t)n_ctx) {
|
||||
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
||||
return;
|
||||
}
|
||||
|
@ -571,7 +575,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||
// clear the KV cache
|
||||
llama_kv_cache_tokens_rm(ctx, -1, -1);
|
||||
|
||||
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab, params.n_threads);
|
||||
auto logits = hellaswag_evaluate_tokens(ctx, query_embd, 0, params.n_batch, n_vocab);
|
||||
if (logits.empty()) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
|
@ -608,7 +612,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||
query_size = query_embd.size();
|
||||
|
||||
// Stop if query wont fit the ctx window
|
||||
if (context_size + query_size > (size_t)params.n_ctx) {
|
||||
if (context_size + query_size > (size_t)n_ctx) {
|
||||
fprintf(stderr, "%s : number of tokens in query %zu > n_ctxl\n", __func__, query_size);
|
||||
return;
|
||||
}
|
||||
|
@ -620,7 +624,7 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) {
|
|||
//}
|
||||
|
||||
// Evaluate the query
|
||||
logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab, params.n_threads);
|
||||
logits = hellaswag_evaluate_tokens(ctx, query_embd, context_size, params.n_batch, n_vocab);
|
||||
if (logits.empty()) {
|
||||
fprintf(stderr, "%s : failed to eval\n", __func__);
|
||||
return;
|
||||
|
@ -716,7 +720,7 @@ int main(int argc, char ** argv) {
|
|||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx_train = llama_n_ctx_train(ctx);
|
||||
const int n_ctx_train = llama_n_ctx_train(model);
|
||||
if (params.n_ctx > n_ctx_train) {
|
||||
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||
__func__, n_ctx_train, params.n_ctx);
|
||||
|
@ -725,8 +729,7 @@ int main(int argc, char ** argv) {
|
|||
// print system information
|
||||
{
|
||||
fprintf(stderr, "\n");
|
||||
fprintf(stderr, "system_info: n_threads = %d / %d | %s\n",
|
||||
params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
|
||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
||||
}
|
||||
|
||||
struct results_perplexity results;
|
||||
|
|
|
@ -309,21 +309,22 @@ int main(int argc, char ** argv) {
|
|||
llama_context * ctx;
|
||||
|
||||
{
|
||||
auto lparams = llama_context_default_params();
|
||||
auto mparams = llama_model_default_params();
|
||||
mparams.use_mlock = false;
|
||||
|
||||
lparams.n_ctx = 256;
|
||||
lparams.seed = 1;
|
||||
lparams.f16_kv = false;
|
||||
lparams.use_mlock = false;
|
||||
|
||||
model = llama_load_model_from_file(params.model.c_str(), lparams);
|
||||
model = llama_load_model_from_file(params.model.c_str(), mparams);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
ctx = llama_new_context_with_model(model, lparams);
|
||||
auto cparams = llama_context_default_params();
|
||||
cparams.n_ctx = 256;
|
||||
cparams.seed = 1;
|
||||
cparams.f16_kv = false;
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
|
||||
|
|
|
@ -72,6 +72,7 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
|||
// usage:
|
||||
// ./quantize [--allow-requantize] [--leave-output-tensor] models/llama/ggml-model.gguf [models/llama/ggml-model-quant.gguf] type [nthreads]
|
||||
//
|
||||
[[noreturn]]
|
||||
static void usage(const char * executable) {
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
|
|
|
@ -23,23 +23,17 @@ int main(int argc, char ** argv) {
|
|||
params.n_predict = 16;
|
||||
}
|
||||
|
||||
auto lparams = llama_context_default_params();
|
||||
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.seed = params.seed;
|
||||
lparams.f16_kv = params.memory_f16;
|
||||
lparams.use_mmap = params.use_mmap;
|
||||
lparams.use_mlock = params.use_mlock;
|
||||
|
||||
auto n_past = 0;
|
||||
auto last_n_tokens_data = std::vector<llama_token>(params.repeat_last_n, 0);
|
||||
|
||||
// init
|
||||
auto * model = llama_load_model_from_file(params.model.c_str(), lparams);
|
||||
llama_model * model;
|
||||
llama_context * ctx;
|
||||
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params( params );
|
||||
if (model == nullptr) {
|
||||
return 1;
|
||||
}
|
||||
auto * ctx = llama_new_context_with_model(model, lparams);
|
||||
if (ctx == nullptr) {
|
||||
llama_free_model(model);
|
||||
return 1;
|
||||
|
@ -54,7 +48,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
// evaluate prompt
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0), params.n_threads);
|
||||
llama_decode(ctx, llama_batch_get_one(tokens.data(), n_prompt_tokens, n_past, 0));
|
||||
|
||||
last_n_tokens_data.insert(last_n_tokens_data.end(), tokens.data(), tokens.data() + n_prompt_tokens);
|
||||
n_past += n_prompt_tokens;
|
||||
|
@ -79,7 +73,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto * logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
|
@ -91,7 +85,7 @@ int main(int argc, char ** argv) {
|
|||
last_n_tokens_data.push_back(next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
@ -106,7 +100,7 @@ int main(int argc, char ** argv) {
|
|||
llama_free(ctx);
|
||||
|
||||
// make new context
|
||||
auto * ctx2 = llama_new_context_with_model(model, lparams);
|
||||
auto * ctx2 = llama_new_context_with_model(model, llama_context_params_from_gpt_params(params));
|
||||
|
||||
// Load state (rng, logits, embedding and kv_cache) from file
|
||||
{
|
||||
|
@ -139,7 +133,7 @@ int main(int argc, char ** argv) {
|
|||
// second run
|
||||
for (auto i = 0; i < params.n_predict; i++) {
|
||||
auto * logits = llama_get_logits(ctx2);
|
||||
auto n_vocab = llama_n_vocab(ctx2);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
|
@ -151,7 +145,7 @@ int main(int argc, char ** argv) {
|
|||
last_n_tokens_data.push_back(next_token);
|
||||
|
||||
printf("%s", next_token_str.c_str());
|
||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0), params.n_threads)) {
|
||||
if (llama_decode(ctx, llama_batch_get_one(&next_token, 1, n_past, 0))) {
|
||||
fprintf(stderr, "\n%s : failed to evaluate\n", __func__);
|
||||
llama_free(ctx2);
|
||||
llama_free_model(model);
|
||||
|
|
|
@ -4,14 +4,14 @@ This example demonstrates a simple HTTP API server and a simple web front end to
|
|||
|
||||
Command line options:
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during computation.
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-m ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
- `-lv, --low-vram`: Do not allocate a VRAM scratch buffer for holding temporary results. Reduces VRAM usage at the cost of performance, particularly prompt processing speed. Requires cuBLAS.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`.
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
|
|
|
@ -200,6 +200,7 @@ struct llama_server_context
|
|||
llama_model *model = nullptr;
|
||||
llama_context *ctx = nullptr;
|
||||
gpt_params params;
|
||||
int n_ctx;
|
||||
|
||||
grammar_parser::parse_state parsed_grammar;
|
||||
llama_grammar *grammar = nullptr;
|
||||
|
@ -239,7 +240,7 @@ struct llama_server_context
|
|||
num_prompt_tokens = 0;
|
||||
num_tokens_predicted = 0;
|
||||
generated_text = "";
|
||||
generated_text.reserve(params.n_ctx);
|
||||
generated_text.reserve(n_ctx);
|
||||
generated_token_probs.clear();
|
||||
truncated = false;
|
||||
stopped_eos = false;
|
||||
|
@ -265,8 +266,8 @@ struct llama_server_context
|
|||
LOG_ERROR("unable to load model", {{"model", params_.model}});
|
||||
return false;
|
||||
}
|
||||
|
||||
last_n_tokens.resize(params.n_ctx);
|
||||
n_ctx = llama_n_ctx(ctx);
|
||||
last_n_tokens.resize(n_ctx);
|
||||
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
|
||||
return true;
|
||||
}
|
||||
|
@ -351,19 +352,19 @@ struct llama_server_context
|
|||
{
|
||||
params.n_keep = (int)num_prompt_tokens;
|
||||
}
|
||||
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
||||
params.n_keep = std::min(n_ctx - 4, params.n_keep);
|
||||
|
||||
// if input prompt is too big, truncate like normal
|
||||
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
||||
if (num_prompt_tokens >= (size_t)n_ctx)
|
||||
{
|
||||
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
||||
const int n_left = (n_ctx - params.n_keep) / 2;
|
||||
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", params.n_ctx},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_keep", params.n_keep},
|
||||
{"n_left", n_left},
|
||||
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||
|
@ -413,7 +414,7 @@ struct llama_server_context
|
|||
completion_token_output result;
|
||||
result.tok = -1;
|
||||
|
||||
if (embd.size() >= (size_t)params.n_ctx)
|
||||
if (embd.size() >= (size_t)n_ctx)
|
||||
{
|
||||
// Shift context
|
||||
|
||||
|
@ -433,7 +434,7 @@ struct llama_server_context
|
|||
|
||||
truncated = true;
|
||||
LOG_VERBOSE("input truncated", {
|
||||
{"n_ctx", params.n_ctx},
|
||||
{"n_ctx", n_ctx},
|
||||
{"n_keep", params.n_keep},
|
||||
{"n_left", n_left},
|
||||
});
|
||||
|
@ -447,12 +448,11 @@ struct llama_server_context
|
|||
n_eval = params.n_batch;
|
||||
}
|
||||
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0), params.n_threads))
|
||||
if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0)))
|
||||
{
|
||||
LOG_ERROR("failed to eval", {
|
||||
{"n_eval", n_eval},
|
||||
{"n_past", n_past},
|
||||
{"n_threads", params.n_threads},
|
||||
{"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||
});
|
||||
has_next_token = false;
|
||||
|
@ -470,11 +470,11 @@ struct llama_server_context
|
|||
|
||||
// out of user input, sample next token
|
||||
const float temp = params.temp;
|
||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
|
||||
const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(model) : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float tfs_z = params.tfs_z;
|
||||
const float typical_p = params.typical_p;
|
||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
|
||||
const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
|
||||
const float repeat_penalty = params.repeat_penalty;
|
||||
const float alpha_presence = params.presence_penalty;
|
||||
const float alpha_frequency = params.frequency_penalty;
|
||||
|
@ -486,7 +486,7 @@ struct llama_server_context
|
|||
|
||||
{
|
||||
auto *logits = llama_get_logits(ctx);
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
|
||||
// Apply params.logit_bias map
|
||||
for (const auto &it : params.logit_bias)
|
||||
|
@ -505,7 +505,7 @@ struct llama_server_context
|
|||
|
||||
// Apply penalties
|
||||
float nl_logit = logits[llama_token_nl(ctx)];
|
||||
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
|
||||
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
|
||||
llama_sample_repetition_penalty(ctx, &candidates_p,
|
||||
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
|
||||
last_n_repeat, repeat_penalty);
|
||||
|
@ -690,7 +690,7 @@ struct llama_server_context
|
|||
|
||||
std::vector<float> getEmbedding()
|
||||
{
|
||||
static const int n_embd = llama_n_embd(ctx);
|
||||
static const int n_embd = llama_n_embd(model);
|
||||
if (!params.embedding)
|
||||
{
|
||||
LOG_WARNING("embedding disabled", {
|
||||
|
@ -734,7 +734,6 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
||||
printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n");
|
||||
printf(" -nommq, --no-mul-mat-q\n");
|
||||
printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
|
||||
printf(" Not recommended since this is both slower and uses more VRAM.\n");
|
||||
|
@ -918,14 +917,6 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
}
|
||||
#else
|
||||
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
|
||||
#endif // GGML_USE_CUBLAS
|
||||
}
|
||||
else if (arg == "--low-vram" || arg == "-lv")
|
||||
{
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
params.low_vram = true;
|
||||
#else
|
||||
LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n", {});
|
||||
#endif // GGML_USE_CUBLAS
|
||||
}
|
||||
else if (arg == "--no-mul-mat-q" || arg == "-nommq")
|
||||
|
@ -956,7 +947,23 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter = argv[i];
|
||||
params.lora_adapter.push_back({argv[i], 1.0f});
|
||||
params.use_mmap = false;
|
||||
}
|
||||
else if (arg == "--lora-scaled")
|
||||
{
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
const char * lora_adapter = argv[i];
|
||||
if (++i >= argc)
|
||||
{
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])});
|
||||
params.use_mmap = false;
|
||||
}
|
||||
else if (arg == "--lora-base")
|
||||
|
@ -1015,7 +1022,7 @@ static json format_generation_settings(llama_server_context &llama)
|
|||
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
|
||||
|
||||
return json{
|
||||
{"n_ctx", llama.params.n_ctx},
|
||||
{"n_ctx", llama.n_ctx},
|
||||
{"model", llama.params.model_alias},
|
||||
{"seed", llama.params.seed},
|
||||
{"temp", llama.params.temp},
|
||||
|
@ -1175,7 +1182,7 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
|||
const auto &logit_bias = body.find("logit_bias");
|
||||
if (logit_bias != body.end() && logit_bias->is_array())
|
||||
{
|
||||
const int n_vocab = llama_n_vocab(llama.ctx);
|
||||
const int n_vocab = llama_n_vocab(llama.model);
|
||||
for (const auto &el : *logit_bias)
|
||||
{
|
||||
if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
|
||||
|
@ -1308,6 +1315,7 @@ int main(int argc, char **argv)
|
|||
{"commit", BUILD_COMMIT}});
|
||||
LOG_INFO("system info", {
|
||||
{"n_threads", params.n_threads},
|
||||
{"n_threads_batch", params.n_threads_batch},
|
||||
{"total_threads", std::thread::hardware_concurrency()},
|
||||
{"system_info", llama_print_system_info()},
|
||||
});
|
||||
|
@ -1371,7 +1379,7 @@ int main(int argc, char **argv)
|
|||
if (llama.params.n_beams) {
|
||||
// Fill llama.generated_token_probs vector with final beam.
|
||||
llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams,
|
||||
llama.n_past, llama.n_remain, llama.params.n_threads);
|
||||
llama.n_past, llama.n_remain);
|
||||
// Translate llama.generated_token_probs to llama.generated_text.
|
||||
append_to_generated_text_from_generated_token_probs(llama);
|
||||
} else {
|
||||
|
|
|
@ -33,18 +33,28 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_backend_init(params.numa);
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
// initialize the model
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = 2048;
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), ctx_params);
|
||||
// model_params.n_gpu_layers = 99; // offload all layers to the GPU
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_default_params();
|
||||
|
||||
ctx_params.seed = 1234;
|
||||
ctx_params.n_ctx = 2048;
|
||||
ctx_params.n_threads = params.n_threads;
|
||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx == NULL) {
|
||||
|
@ -97,7 +107,7 @@ int main(int argc, char ** argv) {
|
|||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
if (llama_decode(ctx, batch, params.n_threads) != 0) {
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
@ -112,7 +122,7 @@ int main(int argc, char ** argv) {
|
|||
while (n_cur <= n_len) {
|
||||
// sample the next token
|
||||
{
|
||||
auto n_vocab = llama_n_vocab(ctx);
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
auto * logits = llama_get_logits_ith(ctx, batch.n_tokens - 1);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
|
@ -154,7 +164,7 @@ int main(int argc, char ** argv) {
|
|||
n_cur += 1;
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if (llama_decode(ctx, batch, params.n_threads)) {
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
|
|
|
@ -70,16 +70,16 @@ int main(int argc, char ** argv) {
|
|||
const auto t_enc_start = ggml_time_us();
|
||||
|
||||
// eval the prompt with both models
|
||||
llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0), params.n_threads);
|
||||
llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0), params.n_threads);
|
||||
llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0), params.n_threads);
|
||||
llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
|
||||
llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
|
||||
llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
|
||||
|
||||
const auto t_enc_end = ggml_time_us();
|
||||
|
||||
// the 2 models should have the same vocab
|
||||
const int n_ctx = llama_n_ctx(ctx_tgt);
|
||||
const int n_vocab = llama_n_vocab(ctx_tgt);
|
||||
//GGML_ASSERT(n_vocab == llama_n_vocab(ctx_dft));
|
||||
const int n_vocab = llama_n_vocab(model_tgt);
|
||||
//GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
|
||||
|
||||
// how many tokens to draft each time
|
||||
int n_draft = params.n_draft;
|
||||
|
@ -173,7 +173,7 @@ int main(int argc, char ** argv) {
|
|||
}
|
||||
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, n_ctx);
|
||||
llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0), params.n_threads);
|
||||
llama_decode(ctx_dft, llama_batch_get_one(&id, 1, n_past_dft, 0));
|
||||
++n_past_dft;
|
||||
|
||||
// heuristic for n_draft
|
||||
|
@ -258,7 +258,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// evaluate the drafted token on the draft model
|
||||
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_cur, n_ctx);
|
||||
llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0), params.n_threads);
|
||||
llama_decode(ctx_dft, llama_batch_get_one(&drafted.back(), 1, n_past_cur, 0));
|
||||
++n_past_cur;
|
||||
|
||||
if (grammar_dft != NULL) {
|
||||
|
@ -268,7 +268,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// evaluate the target model on the drafted tokens
|
||||
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past_tgt, n_ctx);
|
||||
llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0), params.n_threads);
|
||||
llama_decode(ctx_tgt, llama_batch_get_one(drafted.data(), drafted.size(), n_past_tgt, 0));
|
||||
++n_past_tgt;
|
||||
|
||||
// the first token is always proposed by the traget model before the speculation loop
|
||||
|
|
|
@ -10,9 +10,9 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
|
|||
./bin/train-text-from-scratch \
|
||||
--vocab-model ../models/ggml-vocab-llama.gguf \
|
||||
--ctx 64 --embd 256 --head 8 --layer 16 \
|
||||
--checkpoint-in chk-shakespeare-256x16.gguf \
|
||||
--checkpoint-out chk-shakespeare-256x16.gguf \
|
||||
--model-out ggml-shakespeare-256x16-f32.gguf \
|
||||
--checkpoint-in chk-shakespeare-256x16-LATEST.gguf \
|
||||
--checkpoint-out chk-shakespeare-256x16-ITERATION.gguf \
|
||||
--model-out ggml-shakespeare-256x16-f32-ITERATION.gguf \
|
||||
--train-data "shakespeare.txt" \
|
||||
-t 6 -b 16 --seed 1 --adam-iter 256 \
|
||||
--no-checkpointing
|
||||
|
@ -20,3 +20,8 @@ wget https://raw.githubusercontent.com/brunoklein99/deep-learning-notes/master/s
|
|||
# predict
|
||||
./bin/main -m ggml-shakespeare-256x16-f32.gguf
|
||||
```
|
||||
|
||||
Output files will be saved every N iterations (config with `--save-every N`).
|
||||
The pattern "ITERATION" in the output filenames will be replaced with the iteration number and "LATEST" for the latest output.
|
||||
|
||||
To train GGUF models just pass them to `--checkpoint-in FN`.
|
||||
|
|
|
@ -47,10 +47,13 @@ LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_YS = "optimizer.lbfgs.memory_ys"
|
|||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S = "optimizer.lbfgs.memory_s"
|
||||
LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y = "optimizer.lbfgs.memory_y"
|
||||
|
||||
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
||||
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
||||
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
||||
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
||||
LLM_KV_TRAINING_TYPE_TRAIN_MODEL = "train_model"
|
||||
LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora"
|
||||
LLM_KV_TRAINING_TYPE = "training.type"
|
||||
LLM_KV_TRAINING_FILE_VERSION = "training.file_version"
|
||||
LLM_KV_TRAINING_ITERATION_COUNT = "training.iteration_count"
|
||||
LLM_KV_TRAINING_SAMPLE_COUNT = "training.sample_count"
|
||||
LLM_KV_TRAINING_TOKEN_COUNT = "training.token_count"
|
||||
|
||||
class Tensor:
|
||||
def __init__(self, dtype='f', ne=None):
|
||||
|
@ -460,6 +463,7 @@ class Checkpoint:
|
|||
gguf_writer.add_file_type(gguf.GGMLQuantizationType.F32)
|
||||
gguf_writer.add_layer_norm_rms_eps(1e-5)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_FILE_VERSION, 0)
|
||||
gguf_writer.add_string(LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_TRAIN_MODEL)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_ITERATION_COUNT, self.train_its)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_SAMPLE_COUNT, self.train_samples)
|
||||
gguf_writer.add_uint32(LLM_KV_TRAINING_TOKEN_COUNT, self.train_tokens)
|
||||
|
|
File diff suppressed because it is too large
Load diff
10
ggml-alloc.c
10
ggml-alloc.c
|
@ -77,7 +77,7 @@ struct free_block {
|
|||
size_t size;
|
||||
};
|
||||
|
||||
#define MAX_FREE_BLOCKS 128
|
||||
#define MAX_FREE_BLOCKS 256
|
||||
|
||||
struct ggml_allocr {
|
||||
void * data;
|
||||
|
@ -187,6 +187,7 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
|||
}
|
||||
|
||||
tensor->data = addr;
|
||||
AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data);
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
add_allocated_tensor(alloc, tensor);
|
||||
|
@ -218,7 +219,8 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
|
|||
|
||||
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
AT_PRINTF("%s: freeing %s (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, size, alloc->n_free_blocks);
|
||||
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
|
||||
AT_PRINTF("%s: alloc->data = %p alloc->data+alloc->size = %p alloc->data+alloc->max_size = %p\n", __func__, alloc->data, (char*)alloc->data + alloc->size, (char*)alloc->data + alloc->max_size);
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
remove_allocated_tensor(alloc, tensor);
|
||||
|
@ -631,3 +633,7 @@ static size_t ggml_allocr_alloc_graph_tensors_n(
|
|||
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
||||
return ggml_allocr_alloc_graph_tensors_n(alloc, &graph, 1, NULL, NULL);
|
||||
}
|
||||
|
||||
size_t ggml_allocr_max_size(struct ggml_allocr * alloc) {
|
||||
return alloc->max_size;
|
||||
}
|
||||
|
|
|
@ -19,6 +19,7 @@ GGML_API bool ggml_allocr_is_measure(struct ggml_allocr * alloc);
|
|||
GGML_API void ggml_allocr_reset(struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
|
||||
GGML_API size_t ggml_allocr_max_size(struct ggml_allocr * alloc);
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
|
24
ggml-cuda.cu
24
ggml-cuda.cu
|
@ -1,3 +1,4 @@
|
|||
#include <algorithm>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
#include <limits>
|
||||
|
@ -467,7 +468,7 @@ static float g_tensor_split[GGML_CUDA_MAX_DEVICES] = {0};
|
|||
static bool g_mul_mat_q = true;
|
||||
|
||||
static void * g_scratch_buffer = nullptr;
|
||||
static size_t g_scratch_size = 1024*1024*1024; // 1 GB by default
|
||||
static size_t g_scratch_size = 0; // disabled by default
|
||||
static size_t g_scratch_offset = 0;
|
||||
|
||||
static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
|
||||
|
@ -6738,14 +6739,10 @@ bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_te
|
|||
const int64_t ne1 = dst->ne[1];
|
||||
|
||||
// TODO: find the optimal values for these
|
||||
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
dst->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
||||
src1->type == GGML_TYPE_F32 &&
|
||||
dst->type == GGML_TYPE_F32 &&
|
||||
(ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
|
||||
}
|
||||
|
||||
static void ggml_cuda_mul_mat_vec_p021(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
|
||||
|
@ -6901,6 +6898,8 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
|||
ggml_cpy_f32_f16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02,
|
||||
ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
|
@ -7198,7 +7197,12 @@ void ggml_cuda_set_mul_mat_q(const bool mul_mat_q) {
|
|||
}
|
||||
|
||||
void ggml_cuda_set_scratch_size(const size_t scratch_size) {
|
||||
g_scratch_size = scratch_size;
|
||||
// this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously
|
||||
// it still won't always work as expected, but it's better than nothing
|
||||
if (scratch_size > g_scratch_size) {
|
||||
ggml_cuda_free_scratch();
|
||||
}
|
||||
g_scratch_size = std::max(g_scratch_size, scratch_size);
|
||||
}
|
||||
|
||||
void ggml_cuda_free_scratch() {
|
||||
|
|
95
ggml.h
95
ggml.h
|
@ -214,8 +214,8 @@
|
|||
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_NODES 4096
|
||||
#define GGML_MAX_PARAMS 256
|
||||
#define GGML_MAX_NODES 16384
|
||||
#define GGML_MAX_PARAMS 1024
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_SRC 6
|
||||
#define GGML_MAX_NAME 64
|
||||
|
@ -248,6 +248,14 @@
|
|||
} \
|
||||
} while (0)
|
||||
|
||||
#ifndef NDEBUG
|
||||
#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
|
||||
#elif defined(__GNUC__)
|
||||
#define GGML_UNREACHABLE() __builtin_unreachable()
|
||||
#else
|
||||
#define GGML_UNREACHABLE() ((void) 0)
|
||||
#endif
|
||||
|
||||
// used to copy the number of elements and stride in bytes of tensors into local variables.
|
||||
// main purpose is to reduce code duplication and improve readability.
|
||||
//
|
||||
|
@ -473,8 +481,8 @@ extern "C" {
|
|||
int n_dims;
|
||||
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
||||
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
|
||||
// nb[0] = sizeof(type)
|
||||
// nb[1] = nb[0] * ne[0] + padding
|
||||
// nb[0] = ggml_type_size(type)
|
||||
// nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
|
||||
// nb[i] = nb[i-1] * ne[i-1]
|
||||
|
||||
// compute data
|
||||
|
@ -526,7 +534,15 @@ extern "C" {
|
|||
// next prime after GGML_MAX_NODES
|
||||
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
|
||||
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
|
||||
#define GGML_GRAPH_HASHTABLE_SIZE 8273
|
||||
// #define GGML_GRAPH_HASHTABLE_SIZE 8273
|
||||
// #define GGML_GRAPH_HASHTABLE_SIZE 16411
|
||||
#define GGML_GRAPH_HASHTABLE_SIZE 32771
|
||||
|
||||
enum ggml_cgraph_eval_order {
|
||||
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
||||
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
||||
GGML_CGRAPH_EVAL_ORDER_COUNT
|
||||
};
|
||||
|
||||
// computation graph
|
||||
struct ggml_cgraph {
|
||||
|
@ -539,6 +555,8 @@ extern "C" {
|
|||
|
||||
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||
|
||||
enum ggml_cgraph_eval_order order;
|
||||
|
||||
// performance
|
||||
int perf_runs;
|
||||
int64_t perf_cycles;
|
||||
|
@ -686,12 +704,21 @@ extern "C" {
|
|||
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||||
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
|
||||
|
||||
// Converts a flat index into coordinates
|
||||
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
|
||||
|
||||
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
|
||||
|
||||
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
|
||||
|
||||
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
|
||||
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
|
||||
|
||||
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
|
||||
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
|
||||
|
||||
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
|
||||
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
|
||||
|
||||
|
@ -725,6 +752,12 @@ extern "C" {
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_add_cast(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
enum ggml_type type);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_add1(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
@ -834,6 +867,7 @@ extern "C" {
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// sums repetitions in a into shape of b
|
||||
GGML_API struct ggml_tensor * ggml_repeat_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
@ -1689,6 +1723,16 @@ extern "C" {
|
|||
// dump the graph into a file using the dot format
|
||||
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
|
||||
|
||||
// build gradient checkpointing backward graph gb for gf using provided checkpoints
|
||||
// gb_tmp will contain original backward graph with rewritten backward process nodes,
|
||||
// but without the second forward pass nodes.
|
||||
GGML_API void ggml_build_backward_gradient_checkpointing(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_cgraph * gf,
|
||||
struct ggml_cgraph * gb,
|
||||
struct ggml_cgraph * gb_tmp,
|
||||
struct ggml_tensor * * checkpoints,
|
||||
int n_checkpoints);
|
||||
//
|
||||
// optimization
|
||||
//
|
||||
|
@ -1723,7 +1767,7 @@ extern "C" {
|
|||
GGML_LINESEARCH_INVALID_PARAMETERS,
|
||||
};
|
||||
|
||||
typedef void (*ggml_opt_callback)(void * data, float * sched);
|
||||
typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
|
||||
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
|
||||
|
||||
// optimization parameters
|
||||
|
@ -1755,6 +1799,8 @@ extern "C" {
|
|||
bool print_forward_graph;
|
||||
bool print_backward_graph;
|
||||
|
||||
int n_gradient_accumulation;
|
||||
|
||||
// ADAM parameters
|
||||
struct {
|
||||
int n_iter;
|
||||
|
@ -1800,6 +1846,7 @@ extern "C" {
|
|||
float loss_after;
|
||||
|
||||
struct {
|
||||
struct ggml_tensor * g; // current gradient
|
||||
struct ggml_tensor * m; // first moment
|
||||
struct ggml_tensor * v; // second moment
|
||||
struct ggml_tensor * pf; // past function values
|
||||
|
@ -1916,26 +1963,26 @@ extern "C" {
|
|||
|
||||
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
|
||||
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
|
||||
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int i);
|
||||
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
|
||||
|
||||
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int i);
|
||||
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int i);
|
||||
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
|
||||
|
||||
// results are undefined if the wrong type is used for the key
|
||||
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int i);
|
||||
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int i);
|
||||
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int i);
|
||||
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int i);
|
||||
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int i);
|
||||
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int i);
|
||||
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int i);
|
||||
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int i);
|
||||
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int i);
|
||||
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int i);
|
||||
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int i);
|
||||
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int i);
|
||||
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int i);
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int i);
|
||||
// will abort if the wrong type is used for the key
|
||||
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
||||
|
||||
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
|
||||
|
|
95
llama.h
95
llama.h
|
@ -149,32 +149,37 @@ extern "C" {
|
|||
llama_seq_id all_seq_id; // used if seq_id == NULL
|
||||
} llama_batch;
|
||||
|
||||
struct llama_context_params {
|
||||
uint32_t seed; // RNG seed, -1 for random
|
||||
int32_t n_ctx; // text context
|
||||
int32_t n_batch; // prompt processing batch size
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
|
||||
struct llama_model_params {
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
const float * tensor_split; // how to split layers across multiple GPUs (size: LLAMA_MAX_DEVICES)
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency
|
||||
float rope_freq_scale; // RoPE frequency scaling factor
|
||||
|
||||
// called with a progress value between 0 and 1, pass NULL to disable
|
||||
llama_progress_callback progress_callback;
|
||||
// context pointer passed to the progress callback
|
||||
void * progress_callback_user_data;
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool low_vram; // if true, reduce VRAM usage at the cost of performance
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
|
||||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool vocab_only; // only load the vocabulary, no weights
|
||||
bool use_mmap; // use mmap if possible
|
||||
bool use_mlock; // force system to keep model in RAM
|
||||
};
|
||||
|
||||
struct llama_context_params {
|
||||
uint32_t seed; // RNG seed, -1 for random
|
||||
uint32_t n_ctx; // text context
|
||||
uint32_t n_batch; // prompt processing batch size
|
||||
uint32_t n_threads; // number of threads to use for generation
|
||||
uint32_t n_threads_batch; // number of threads to use for batch processing
|
||||
|
||||
// ref: https://github.com/ggerganov/llama.cpp/pull/2054
|
||||
float rope_freq_base; // RoPE base frequency
|
||||
float rope_freq_scale; // RoPE frequency scaling factor
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels
|
||||
bool f16_kv; // use fp16 for KV cache
|
||||
bool logits_all; // the llama_eval() call computes all logits, not just the last one
|
||||
bool embedding; // embedding mode only
|
||||
};
|
||||
|
||||
|
@ -236,6 +241,7 @@ extern "C" {
|
|||
};
|
||||
|
||||
// Helpers for getting default parameters
|
||||
LLAMA_API struct llama_model_params llama_model_default_params(void);
|
||||
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
||||
|
||||
|
@ -249,7 +255,7 @@ extern "C" {
|
|||
|
||||
LLAMA_API struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
struct llama_context_params params);
|
||||
struct llama_model_params params);
|
||||
|
||||
LLAMA_API void llama_free_model(struct llama_model * model);
|
||||
|
||||
|
@ -266,17 +272,15 @@ extern "C" {
|
|||
LLAMA_API bool llama_mmap_supported (void);
|
||||
LLAMA_API bool llama_mlock_supported(void);
|
||||
|
||||
LLAMA_API int llama_n_vocab (const struct llama_context * ctx);
|
||||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_ctx_train(const struct llama_context * ctx);
|
||||
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
|
||||
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
|
||||
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
|
||||
|
||||
LLAMA_API int llama_model_n_vocab (const struct llama_model * model);
|
||||
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
|
||||
LLAMA_API int llama_model_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
|
||||
LLAMA_API int llama_n_vocab (const struct llama_model * model);
|
||||
LLAMA_API int llama_n_ctx_train(const struct llama_model * model);
|
||||
LLAMA_API int llama_n_embd (const struct llama_model * model);
|
||||
|
||||
// Get a string describing the model type
|
||||
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
||||
|
@ -287,6 +291,9 @@ extern "C" {
|
|||
// Returns the total number of parameters in the model
|
||||
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||||
|
||||
// Get a llama model tensor
|
||||
LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
|
||||
|
||||
// Returns 0 on success
|
||||
LLAMA_API int llama_model_quantize(
|
||||
const char * fname_inp,
|
||||
|
@ -302,15 +309,17 @@ extern "C" {
|
|||
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_lora,
|
||||
float scale,
|
||||
const char * path_base_model,
|
||||
int n_threads),
|
||||
"use llama_model_apply_lora_from_file instead");
|
||||
|
||||
LLAMA_API int llama_model_apply_lora_from_file(
|
||||
const struct llama_model * model,
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
const char * path_lora,
|
||||
float scale,
|
||||
const char * path_base_model,
|
||||
int n_threads);
|
||||
|
||||
//
|
||||
// KV cache
|
||||
|
@ -404,8 +413,7 @@ extern "C" {
|
|||
struct llama_context * ctx,
|
||||
llama_token * tokens,
|
||||
int32_t n_tokens,
|
||||
int n_past,
|
||||
int n_threads),
|
||||
int n_past),
|
||||
"use llama_decode() instead");
|
||||
|
||||
// Same as llama_eval, but use float matrix input directly.
|
||||
|
@ -414,8 +422,7 @@ extern "C" {
|
|||
struct llama_context * ctx,
|
||||
float * embd,
|
||||
int32_t n_tokens,
|
||||
int n_past,
|
||||
int n_threads),
|
||||
int n_past),
|
||||
"use llama_decode() instead");
|
||||
|
||||
// Return batch for single sequence of tokens starting at pos_0
|
||||
|
@ -447,8 +454,12 @@ extern "C" {
|
|||
// < 0 - error
|
||||
LLAMA_API int llama_decode(
|
||||
struct llama_context * ctx,
|
||||
struct llama_batch batch,
|
||||
int n_threads);
|
||||
struct llama_batch batch);
|
||||
|
||||
// Set the number of threads used for decoding
|
||||
// n_threads is the number of threads used for generation (single token)
|
||||
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
|
||||
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
|
@ -489,14 +500,6 @@ extern "C" {
|
|||
// Returns the number of tokens on success, no more than n_max_tokens
|
||||
// Returns a negative number on failure - the number of tokens that would have been returned
|
||||
LLAMA_API int llama_tokenize(
|
||||
struct llama_context * ctx,
|
||||
const char * text,
|
||||
int text_len,
|
||||
llama_token * tokens,
|
||||
int n_max_tokens,
|
||||
bool add_bos);
|
||||
|
||||
LLAMA_API int llama_tokenize_with_model(
|
||||
const struct llama_model * model,
|
||||
const char * text,
|
||||
int text_len,
|
||||
|
@ -509,12 +512,6 @@ extern "C" {
|
|||
// Does not write null terminator to the buffer.
|
||||
// User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
|
||||
LLAMA_API int llama_token_to_piece(
|
||||
const struct llama_context * ctx,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
int length);
|
||||
|
||||
LLAMA_API int llama_token_to_piece_with_model(
|
||||
const struct llama_model * model,
|
||||
llama_token token,
|
||||
char * buf,
|
||||
|
@ -695,15 +692,13 @@ extern "C" {
|
|||
/// @param n_beams Number of beams to use.
|
||||
/// @param n_past Number of tokens already evaluated.
|
||||
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
|
||||
/// @param n_threads Number of threads as passed to llama_eval().
|
||||
LLAMA_API void llama_beam_search(
|
||||
struct llama_context * ctx,
|
||||
llama_beam_search_callback_fn_t callback,
|
||||
void * callback_data,
|
||||
size_t n_beams,
|
||||
int n_past,
|
||||
int n_predict,
|
||||
int n_threads);
|
||||
int n_predict);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||
|
|
|
@ -43,7 +43,7 @@ static_assert(QK4_1 == QK8_0, "QK4_1 and QK8_0 must be the same");
|
|||
static_assert(QK4_0 == QK8_0, "QK4_0 and QK8_0 must be the same");
|
||||
|
||||
template <typename T>
|
||||
void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
|
||||
static void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
|
||||
for (auto& b : blocks) {
|
||||
b.d = 1;
|
||||
for (int i=0; i<QK4_1/2; ++i) {
|
||||
|
@ -54,7 +54,7 @@ void fillQ4blocks(std::vector<T>& blocks, std::mt19937& rndm) {
|
|||
}
|
||||
}
|
||||
|
||||
void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
|
||||
static void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
|
||||
for (auto& b : blocks) {
|
||||
b.d = 1;
|
||||
int sum = 0;
|
||||
|
@ -66,7 +66,7 @@ void fillQ80blocks(std::vector<block_q8_0>& blocks, std::mt19937& rndm) {
|
|||
}
|
||||
}
|
||||
|
||||
float simpleDot(const block_q4_0& x, const block_q8_0& y) {
|
||||
static float simpleDot(const block_q4_0& x, const block_q8_0& y) {
|
||||
int s1 = 0; //, s2 = 0;
|
||||
for (int i=0; i<QK4_1/2; i+=2) {
|
||||
int v1 = x.qs[i+0] & 0xf;
|
||||
|
@ -81,7 +81,7 @@ float simpleDot(const block_q4_0& x, const block_q8_0& y) {
|
|||
//return y.d * x.d * (s1 - 8 * s2);
|
||||
}
|
||||
|
||||
float simpleDot(const block_q4_1& x, const block_q8_0& y) {
|
||||
static float simpleDot(const block_q4_1& x, const block_q8_0& y) {
|
||||
int s1 = 0; //, s2 = 0;
|
||||
for (int i=0; i<QK4_1/2; i+=2) {
|
||||
int v1 = x.qs[i+0] & 0xf;
|
||||
|
|
|
@ -107,7 +107,7 @@ static struct ggml_tensor * get_random_tensor_f32(
|
|||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -155,7 +155,7 @@ static struct ggml_tensor * get_random_tensor_f16(
|
|||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -203,7 +203,7 @@ static struct ggml_tensor * get_random_tensor_i32(
|
|||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -251,18 +251,20 @@ static bool check_gradient(
|
|||
printf("GGML_N_THREADS = %d\n", n_threads);
|
||||
}
|
||||
|
||||
struct ggml_cgraph gf = ggml_build_forward (f);
|
||||
struct ggml_cgraph gb = ggml_build_backward(ctx0, &gf, false);
|
||||
struct ggml_cgraph * gf = ggml_build_forward_ctx(ctx0, f);
|
||||
struct ggml_cgraph * gb = ggml_new_graph(ctx0);
|
||||
*gb = *gf;
|
||||
ggml_build_backward_expand(ctx0, gf, gb, false);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||
|
||||
ggml_graph_reset (&gf);
|
||||
ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
|
||||
ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
|
||||
|
||||
// ggml_graph_dump_dot(&gf, NULL, "test-grad0-forward.dot");
|
||||
// ggml_graph_dump_dot(&gb, &gf, "test-grad0-backward.dot");
|
||||
// ggml_graph_dump_dot(gf, NULL, "test-grad0-forward.dot");
|
||||
// ggml_graph_dump_dot(gb, gf, "test-grad0-backward.dot");
|
||||
|
||||
for (int i = 0; i < nargs; ++i) {
|
||||
const int nelements = ggml_nelements(x[i]);
|
||||
|
@ -273,13 +275,13 @@ static bool check_gradient(
|
|||
const float xp = x0 + eps;
|
||||
ggml_set_f32_1d(x[i], k, xp);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||
|
||||
const double f0 = ggml_get_f32_1d(f, 0);
|
||||
|
||||
ggml_set_f32_1d(x[i], k, xm);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
|
||||
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||
|
||||
const double f1 = ggml_get_f32_1d(f, 0);
|
||||
const double g0 = (f0 - f1)/(2.0*(double) eps);
|
||||
|
@ -287,10 +289,10 @@ static bool check_gradient(
|
|||
ggml_set_f32_1d(x[i], k, x0);
|
||||
|
||||
// compute gradient using backward graph
|
||||
ggml_graph_reset (&gf);
|
||||
ggml_graph_reset (gf);
|
||||
ggml_set_f32 (f->grad, 1.0f);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
|
||||
ggml_graph_compute_with_ctx(ctx0, gb, n_threads);
|
||||
|
||||
const double g1 = ggml_get_f32_1d(x[i]->grad, k);
|
||||
|
||||
|
@ -373,7 +375,7 @@ static bool check_mat_mul(
|
|||
|
||||
int main(int argc, const char ** argv) {
|
||||
struct ggml_init_params params = {
|
||||
/* .mem_size = */ 128*1024*1024,
|
||||
/* .mem_size = */ 256*1024*1024,
|
||||
/* .mem_buffer = */ NULL,
|
||||
/* .no_alloc = */ false,
|
||||
};
|
||||
|
@ -405,6 +407,7 @@ int main(int argc, const char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
unsigned seed_iter = 1;
|
||||
|
||||
// original loop: 1000
|
||||
int niter = 4;
|
||||
|
@ -416,6 +419,10 @@ int main(int argc, const char ** argv) {
|
|||
niter = atoi(argv[1]);
|
||||
}
|
||||
for (int iter = 0; iter < niter; ++iter) {
|
||||
srand(seed_iter);
|
||||
seed_iter = rand();
|
||||
unsigned seed = rand();
|
||||
|
||||
printf("test-grad0: iter:%d/%d\n", iter, niter);
|
||||
struct ggml_context * ctx0 = ggml_init(params);
|
||||
|
||||
|
@ -425,6 +432,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// add f32
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -441,6 +449,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// add f16
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -457,6 +466,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// sub
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -473,6 +483,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// mul
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -489,6 +500,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// div
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -505,6 +517,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// sqr
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -521,6 +534,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// sqrt
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -537,6 +551,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// log
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -553,6 +568,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// sum
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -570,6 +586,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// sum_rows
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -587,6 +604,7 @@ int main(int argc, const char ** argv) {
|
|||
// mean, not yet fully implemented
|
||||
if(0)
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -604,6 +622,7 @@ int main(int argc, const char ** argv) {
|
|||
// argmax
|
||||
if (0)
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -620,6 +639,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// repeat
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4];
|
||||
get_random_dims(ne2, 4);
|
||||
|
||||
|
@ -642,6 +662,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// repeat back
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4];
|
||||
get_random_dims(ne2, 4);
|
||||
|
||||
|
@ -680,6 +701,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// sgn
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -696,6 +718,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// neg
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -712,6 +735,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// step
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -729,6 +753,7 @@ int main(int argc, const char ** argv) {
|
|||
// tanh, not yet fully implemented
|
||||
if(0)
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -745,33 +770,45 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// mul_mat
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 2; ndims <= 2; ++ndims) {
|
||||
for (int ndims = 2; ndims <= 4; ++ndims) {
|
||||
int max_nrep = (ndims >= 3) ? 2 : 1;
|
||||
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
{
|
||||
int64_t ne2[4];
|
||||
get_random_dims(ne2, 4);
|
||||
ne2[0] = ne[0];
|
||||
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
|
||||
for (int nrep2 = 1; nrep2 < max_nrep; ++nrep2) {
|
||||
for (int nrep3 = 1; nrep3 < max_nrep; ++nrep3) {
|
||||
{
|
||||
int64_t ne2[4];
|
||||
get_random_dims(ne2, 4);
|
||||
ne2[0] = ne[0];
|
||||
ne2[2] = nrep2 * ne[2];
|
||||
ne2[3] = nrep3 * ne[3];
|
||||
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
|
||||
}
|
||||
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
|
||||
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, m);
|
||||
|
||||
GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims);
|
||||
|
||||
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
if (ndims == 2) {
|
||||
// check_mat_mul does not support ndims > 2
|
||||
check_mat_mul(m, x[1], x[0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
|
||||
struct ggml_tensor * m = ggml_mul_mat(ctx0, x[1], x[0]);
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, m);
|
||||
|
||||
GGML_PRINT_DEBUG("testing: mul_mat, [%lld, %lld] (%d) * [%lld, %lld] (%d)\n", x[1]->ne[0], x[1]->ne[1], x[1]->n_dims, x[0]->ne[0], x[0]->ne[1], x[0]->n_dims);
|
||||
|
||||
check_gradient("mul_mat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
check_mat_mul(m, x[1], x[0]);
|
||||
}
|
||||
}
|
||||
|
||||
// elu, not yet fully implemented
|
||||
if(0)
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -788,6 +825,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// relu
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -805,6 +843,7 @@ int main(int argc, const char ** argv) {
|
|||
// gelu, not yet fully implemented
|
||||
if(0)
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
@ -821,6 +860,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// silu
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -842,6 +882,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// rms_norm
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -858,6 +899,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// scale
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
|
||||
int64_t ne2[4];
|
||||
|
@ -878,6 +920,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// cpy f32
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -895,6 +938,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// cpy f16
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 2;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -912,6 +956,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// reshape (1d->nd)
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -935,6 +980,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// reshape (nd->1d)
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
for (int ndims = 1; ndims <= 2; ++ndims) {
|
||||
|
@ -958,6 +1004,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// acc 1d
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||
|
||||
const int nargs = 2;
|
||||
|
@ -985,6 +1032,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// acc 2d
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||
|
@ -1017,6 +1065,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// acc 3d
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||
|
@ -1051,6 +1100,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// acc 4d
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||
|
@ -1087,6 +1137,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// set_1d
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4];
|
||||
|
||||
const int nargs = 2;
|
||||
|
@ -1114,6 +1165,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// set_2d
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4];
|
||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||
|
@ -1146,6 +1198,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// view_1d
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
||||
|
@ -1169,6 +1222,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// view_2d
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4];
|
||||
int64_t nb2[4];
|
||||
|
||||
|
@ -1199,6 +1253,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// view_3d
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4] = {1,1,1,1};
|
||||
int64_t nb2[4] = {0,0,0,0};
|
||||
|
||||
|
@ -1230,6 +1285,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// permute
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4];
|
||||
|
||||
const int nargs = 1;
|
||||
|
@ -1263,6 +1319,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// transpose
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4];
|
||||
|
||||
const int nargs = 1;
|
||||
|
@ -1290,6 +1347,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// get_rows
|
||||
{
|
||||
srand(seed);
|
||||
int64_t ne2[4] = {ne[0], ne[1], 1, 1};
|
||||
int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1};
|
||||
const int nargs = 1;
|
||||
|
@ -1306,6 +1364,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// diag_mask_inf
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
const int ndims = 2;
|
||||
|
||||
|
@ -1321,6 +1380,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// diag_mask_zero
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
const int ndims = 2;
|
||||
|
||||
|
@ -1336,6 +1396,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// softmax
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
int64_t ne2[4];
|
||||
|
@ -1357,11 +1418,16 @@ int main(int argc, const char ** argv) {
|
|||
ggml_new_f32(ctx0, eps))));
|
||||
|
||||
check_gradient("softmax", ctx0, x, f, ndims, nargs, 1e-3f, 2e-1f, INFINITY);
|
||||
// NOTE: softmax forward is computed using f16 table lookup instead of using actual expf, but backward assumes actual expf.
|
||||
// this may result in different gradients too finite differences.
|
||||
// when this test reports errors, first try to replace the table lookup with actual expf and test again to see if just that was the cause.
|
||||
// if only the table lookup causes gradients to differ this is acceptable.
|
||||
}
|
||||
}
|
||||
|
||||
// cross_entropy_loss
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
int64_t ne2[4];
|
||||
|
@ -1392,6 +1458,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// rope f32
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
int64_t ne2[4];
|
||||
|
@ -1431,6 +1498,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// rope f16
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 1;
|
||||
|
||||
int64_t ne2[4];
|
||||
|
@ -1470,6 +1538,7 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
// flash_attn f32
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 3;
|
||||
|
||||
int64_t ne2[4];
|
||||
|
@ -1482,28 +1551,31 @@ int main(int argc, const char ** argv) {
|
|||
|
||||
for (int masked = 0; masked <= 1; ++masked) {
|
||||
for (int ndims = 2; ndims <= 4; ++ndims) {
|
||||
int64_t neq[4] = { D, N, B, ne[3] };
|
||||
int64_t nek[4] = { D, M, B, ne[3] };
|
||||
int64_t nev[4] = { M, D, B, ne[3] };
|
||||
if (ndims == 2) {
|
||||
neq[2] = 1; neq[3] = 1;
|
||||
nek[2] = 1; nek[3] = 1;
|
||||
nev[2] = 1; nev[3] = 1;
|
||||
} else if (ndims == 3) {
|
||||
neq[3] = 1;
|
||||
nek[3] = 1;
|
||||
nev[3] = 1;
|
||||
int max_nrep = (ndims >= 3) ? 2 : 1;
|
||||
for (int nrep = 1; nrep < max_nrep; ++nrep) {
|
||||
int64_t neq[4] = { D, N, B*nrep, ne[3] };
|
||||
int64_t nek[4] = { D, M, B, ne[3] };
|
||||
int64_t nev[4] = { M, D, B, ne[3] };
|
||||
if (ndims == 2) {
|
||||
neq[2] = 1; neq[3] = 1;
|
||||
nek[2] = 1; nek[3] = 1;
|
||||
nev[2] = 1; nev[3] = 1;
|
||||
} else if (ndims == 3) {
|
||||
neq[3] = 1;
|
||||
nek[3] = 1;
|
||||
nev[3] = 1;
|
||||
}
|
||||
x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
|
||||
x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
|
||||
x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
ggml_set_param(ctx0, x[2]);
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
|
||||
|
||||
check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
|
||||
}
|
||||
x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
|
||||
x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
|
||||
x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
ggml_set_param(ctx0, x[2]);
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
|
||||
|
||||
check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1511,6 +1583,7 @@ int main(int argc, const char ** argv) {
|
|||
// flash_attn f16, not yet fully implemented
|
||||
if(0)
|
||||
{
|
||||
srand(seed);
|
||||
const int nargs = 3;
|
||||
|
||||
int64_t ne2[4];
|
||||
|
|
|
@ -101,7 +101,7 @@ static struct ggml_tensor * get_random_tensor(
|
|||
break;
|
||||
default:
|
||||
assert(false);
|
||||
};
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
@ -124,7 +124,7 @@ int main(void) {
|
|||
struct ggml_context * ctx = ggml_init(params);
|
||||
|
||||
int64_t ne1[4] = {4, 128, 1, 1};
|
||||
int64_t ne2[4] = {4, 256, 1, 1};;
|
||||
int64_t ne2[4] = {4, 256, 1, 1};
|
||||
int64_t ne3[4] = {128, 256, 1, 1};
|
||||
|
||||
struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
|
||||
|
|
|
@ -62,18 +62,20 @@ int main(int argc, char **argv) {
|
|||
|
||||
// load the vocab
|
||||
{
|
||||
auto lparams = llama_context_default_params();
|
||||
auto mparams = llama_model_default_params();
|
||||
|
||||
lparams.vocab_only = true;
|
||||
mparams.vocab_only = true;
|
||||
|
||||
model = llama_load_model_from_file(fname.c_str(), lparams);
|
||||
model = llama_load_model_from_file(fname.c_str(), mparams);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
ctx = llama_new_context_with_model(model, lparams);
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||
|
@ -82,7 +84,7 @@ int main(int argc, char **argv) {
|
|||
}
|
||||
}
|
||||
|
||||
if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_BPE) {
|
||||
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_BPE) {
|
||||
fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__);
|
||||
llama_free_model(model);
|
||||
llama_free(ctx);
|
||||
|
|
|
@ -64,18 +64,20 @@ int main(int argc, char **argv) {
|
|||
|
||||
// load the vocab
|
||||
{
|
||||
auto lparams = llama_context_default_params();
|
||||
auto mparams = llama_model_default_params();
|
||||
|
||||
lparams.vocab_only = true;
|
||||
mparams.vocab_only = true;
|
||||
|
||||
model = llama_load_model_from_file(fname.c_str(), lparams);
|
||||
model = llama_load_model_from_file(fname.c_str(), mparams);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
ctx = llama_new_context_with_model(model, lparams);
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||
|
@ -84,7 +86,7 @@ int main(int argc, char **argv) {
|
|||
}
|
||||
}
|
||||
|
||||
if (llama_vocab_type(ctx) != LLAMA_VOCAB_TYPE_SPM) {
|
||||
if (llama_vocab_type(model) != LLAMA_VOCAB_TYPE_SPM) {
|
||||
fprintf(stderr, "%s : error: vocab type is not SPM\n", __func__);
|
||||
llama_free_model(model);
|
||||
llama_free(ctx);
|
||||
|
|
|
@ -52,18 +52,20 @@ int main(int argc, char **argv) {
|
|||
|
||||
// load the vocab
|
||||
{
|
||||
auto lparams = llama_context_default_params();
|
||||
auto mparams = llama_model_default_params();
|
||||
|
||||
lparams.vocab_only = true;
|
||||
mparams.vocab_only = true;
|
||||
|
||||
model = llama_load_model_from_file(fname.c_str(), lparams);
|
||||
model = llama_load_model_from_file(fname.c_str(), mparams);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||
return 1;
|
||||
}
|
||||
|
||||
ctx = llama_new_context_with_model(model, lparams);
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
ctx = llama_new_context_with_model(model, cparams);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr, "%s: error: failed to load vocab '%s'\n", __func__, fname.c_str());
|
||||
|
@ -72,7 +74,7 @@ int main(int argc, char **argv) {
|
|||
}
|
||||
}
|
||||
|
||||
GGML_ASSERT(llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM);
|
||||
GGML_ASSERT(llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
|
||||
|
||||
#ifdef _WIN32
|
||||
// We need this for unicode console support
|
||||
|
@ -80,7 +82,7 @@ int main(int argc, char **argv) {
|
|||
atexit([]() { console::cleanup(); });
|
||||
#endif
|
||||
|
||||
const int n_vocab = llama_n_vocab(ctx);
|
||||
const int n_vocab = llama_n_vocab(model);
|
||||
|
||||
for (int i = 0; i < n_vocab; ++i) {
|
||||
std::string str = llama_detokenize_spm(ctx, std::vector<int>(1, i));
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue