vulkan: multi-row k quants (#10846)
* multi row k quant shaders! * better row selection * more row choices * readjust row selection * rm_kq=2 by default
This commit is contained in:
parent
d283d02bf2
commit
d79d8f39b4
6 changed files with 472 additions and 367 deletions
|
@ -6,21 +6,15 @@
|
|||
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
||||
|
||||
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
||||
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
||||
|
||||
shared FLOAT_TYPE tmp[BLOCK_SIZE];
|
||||
|
||||
void main() {
|
||||
const uint row = gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z;
|
||||
|
||||
if (row >= p.stride_d) {
|
||||
return;
|
||||
}
|
||||
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
||||
|
||||
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
||||
uint a_offset, b_offset, d_offset;
|
||||
get_offsets(a_offset, b_offset, d_offset);
|
||||
|
||||
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
||||
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
|
||||
|
||||
// 16 threads are used to process each block
|
||||
const uint it_size = gl_WorkGroupSize.x/16;
|
||||
|
@ -38,15 +32,15 @@ void main() {
|
|||
const uint s_offset = 8*v_im;
|
||||
const uint y_offset = 128*v_im + l0;
|
||||
|
||||
FLOAT_TYPE temp = FLOAT_TYPE(0.0); // partial sum for thread in warp
|
||||
FLOAT_TYPE temp[NUM_ROWS];
|
||||
|
||||
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
||||
temp[i] = FLOAT_TYPE(0);
|
||||
}
|
||||
|
||||
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
||||
const uint y_idx = i * QUANT_K + y_offset;
|
||||
|
||||
f16vec2 d = data_a[ib0 + i].d;
|
||||
const FLOAT_TYPE dall = d.x;
|
||||
const FLOAT_TYPE dmin = d.y;
|
||||
|
||||
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
|
||||
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
|
||||
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
|
||||
|
@ -56,58 +50,84 @@ void main() {
|
|||
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
|
||||
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
|
||||
|
||||
uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
|
||||
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
||||
f16vec2 d = data_a[ib0 + i].d;
|
||||
const FLOAT_TYPE dall = d.x;
|
||||
const FLOAT_TYPE dmin = d.y;
|
||||
|
||||
uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F;
|
||||
uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F;
|
||||
uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F;
|
||||
uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F;
|
||||
uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
|
||||
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
|
||||
|
||||
uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32));
|
||||
uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32));
|
||||
uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32));
|
||||
uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32));
|
||||
uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F;
|
||||
uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F;
|
||||
uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F;
|
||||
uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F;
|
||||
|
||||
uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0];
|
||||
uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8];
|
||||
uvec2 qs0 = uvec2(unpack8(qs0_u16));
|
||||
uvec2 qs16 = uvec2(unpack8(qs16_u16));
|
||||
uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32));
|
||||
uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32));
|
||||
uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32));
|
||||
uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32));
|
||||
|
||||
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
|
||||
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 2; ++l) {
|
||||
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
|
||||
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
|
||||
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
|
||||
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
|
||||
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
|
||||
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
|
||||
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
|
||||
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
|
||||
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
|
||||
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
|
||||
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
|
||||
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
|
||||
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
|
||||
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
|
||||
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
|
||||
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
|
||||
uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0];
|
||||
uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8];
|
||||
uvec2 qs0 = uvec2(unpack8(qs0_u16));
|
||||
uvec2 qs16 = uvec2(unpack8(qs16_u16));
|
||||
|
||||
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
|
||||
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
|
||||
[[unroll]] for (int l = 0; l < 2; ++l) {
|
||||
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
|
||||
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
|
||||
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
|
||||
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
|
||||
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
|
||||
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
|
||||
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
|
||||
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
|
||||
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
|
||||
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
|
||||
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
|
||||
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
|
||||
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
|
||||
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
|
||||
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
|
||||
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
|
||||
}
|
||||
temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n]));
|
||||
}
|
||||
temp = fma(dall, sum1, fma(-dmin, sum2, temp));
|
||||
}
|
||||
|
||||
tmp[gl_LocalInvocationID.x] = temp;
|
||||
|
||||
// sum up partial sums and write back result
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] = temp[n];
|
||||
}
|
||||
barrier();
|
||||
[[unroll]] for (uint s = gl_WorkGroupSize.x/2; s > 0; s >>= 1) {
|
||||
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
||||
if (tid < s) {
|
||||
tmp[tid] += tmp[tid + s];
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
tmpsh[n][tid] += tmpsh[n][tid + s];
|
||||
}
|
||||
}
|
||||
barrier();
|
||||
}
|
||||
if (tid == 0) {
|
||||
data_d[d_offset + row] = D_TYPE(tmp[0]);
|
||||
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
||||
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
|
||||
|
||||
// do NUM_ROWS at a time, unless there aren't enough remaining rows
|
||||
if (first_row + NUM_ROWS <= p.stride_d) {
|
||||
compute_outputs(first_row, NUM_ROWS);
|
||||
} else {
|
||||
if (first_row >= p.stride_d) {
|
||||
return;
|
||||
}
|
||||
compute_outputs(first_row, p.stride_d - first_row);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue