* multi row k quant shaders! * better row selection * more row choices * readjust row selection * rm_kq=2 by default
133 lines
5.6 KiB
Text
133 lines
5.6 KiB
Text
#version 450
|
|
#extension GL_EXT_shader_explicit_arithmetic_types : require
|
|
|
|
#include "mul_mat_vec_base.comp"
|
|
|
|
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
|
|
|
|
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
|
|
layout (constant_id = 1) const uint NUM_ROWS = 1;
|
|
|
|
shared FLOAT_TYPE tmpsh[NUM_ROWS][BLOCK_SIZE];
|
|
|
|
void compute_outputs(const uint32_t first_row, const uint32_t num_rows) {
|
|
uint a_offset, b_offset, d_offset;
|
|
get_offsets(a_offset, b_offset, d_offset);
|
|
|
|
const uint num_blocks_per_row = p.ncols / QUANT_K;
|
|
|
|
// 16 threads are used to process each block
|
|
const uint it_size = gl_WorkGroupSize.x/16;
|
|
const uint tid = gl_LocalInvocationID.x;
|
|
const uint itid = tid%16; // 0...16
|
|
const uint ix = tid/16;
|
|
|
|
const uint step = 8;
|
|
|
|
const uint v_im = itid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const uint v_in = itid - step*v_im; // 0...15 or 0...7
|
|
|
|
const uint l0 = 2*v_in; // 0...15
|
|
const uint q_offset = 32*v_im + l0;
|
|
const uint s_offset = 8*v_im;
|
|
const uint y_offset = 128*v_im + l0;
|
|
|
|
FLOAT_TYPE temp[NUM_ROWS];
|
|
|
|
[[unroll]] for (uint i = 0; i < NUM_ROWS; ++i) {
|
|
temp[i] = FLOAT_TYPE(0);
|
|
}
|
|
|
|
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += it_size) {
|
|
const uint y_idx = i * QUANT_K + y_offset;
|
|
|
|
B_TYPE_VEC2 b0 = data_b_v2[(b_offset + y_idx) / 2 + 0];
|
|
B_TYPE_VEC2 b16 = data_b_v2[(b_offset + y_idx) / 2 + 8];
|
|
B_TYPE_VEC2 b32 = data_b_v2[(b_offset + y_idx) / 2 + 16];
|
|
B_TYPE_VEC2 b48 = data_b_v2[(b_offset + y_idx) / 2 + 24];
|
|
B_TYPE_VEC2 b64 = data_b_v2[(b_offset + y_idx) / 2 + 32];
|
|
B_TYPE_VEC2 b80 = data_b_v2[(b_offset + y_idx) / 2 + 40];
|
|
B_TYPE_VEC2 b96 = data_b_v2[(b_offset + y_idx) / 2 + 48];
|
|
B_TYPE_VEC2 b112 = data_b_v2[(b_offset + y_idx) / 2 + 56];
|
|
|
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
|
const uint ib0 = a_offset / QUANT_K + (first_row+n)*num_blocks_per_row;
|
|
f16vec2 d = data_a[ib0 + i].d;
|
|
const FLOAT_TYPE dall = d.x;
|
|
const FLOAT_TYPE dmin = d.y;
|
|
|
|
uint32_t s0_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 0];
|
|
uint32_t s4_u32 = data_a_packed32[ib0 + i].scales[s_offset / 4 + 1];
|
|
|
|
uint32_t s0_lo4_u32 = s0_u32 & 0x0F0F0F0F;
|
|
uint32_t s0_hi4_u32 = (s0_u32 >> 4) & 0x0F0F0F0F;
|
|
uint32_t s4_lo4_u32 = s4_u32 & 0x0F0F0F0F;
|
|
uint32_t s4_hi4_u32 = (s4_u32 >> 4) & 0x0F0F0F0F;
|
|
|
|
uvec4 s0_lo4 = uvec4(unpack8(s0_lo4_u32));
|
|
uvec4 s4_lo4 = uvec4(unpack8(s4_lo4_u32));
|
|
uvec4 s0_hi4 = uvec4(unpack8(s0_hi4_u32));
|
|
uvec4 s4_hi4 = uvec4(unpack8(s4_hi4_u32));
|
|
|
|
uint16_t qs0_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 0];
|
|
uint16_t qs16_u16 = data_a_packed16[ib0 + i].qs[q_offset / 2 + 8];
|
|
uvec2 qs0 = uvec2(unpack8(qs0_u16));
|
|
uvec2 qs16 = uvec2(unpack8(qs16_u16));
|
|
|
|
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
|
|
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
|
|
[[unroll]] for (int l = 0; l < 2; ++l) {
|
|
sum1 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_lo4[0]) * FLOAT_TYPE((qs0[l] >> 0) & 3),
|
|
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_lo4[1]) * FLOAT_TYPE((qs16[l] >> 0) & 3),
|
|
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_lo4[2]) * FLOAT_TYPE((qs0[l] >> 2) & 3),
|
|
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_lo4[3]) * FLOAT_TYPE((qs16[l] >> 2) & 3),
|
|
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_lo4[0]) * FLOAT_TYPE((qs0[l] >> 4) & 3),
|
|
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_lo4[1]) * FLOAT_TYPE((qs16[l] >> 4) & 3),
|
|
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_lo4[2]) * FLOAT_TYPE((qs0[l] >> 6) & 3),
|
|
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_lo4[3]) * FLOAT_TYPE((qs16[l] >> 6) & 3), sum1))))))));
|
|
sum2 = fma(FLOAT_TYPE(b0[l]), FLOAT_TYPE(s0_hi4[0]),
|
|
fma(FLOAT_TYPE(b16[l]), FLOAT_TYPE(s0_hi4[1]),
|
|
fma(FLOAT_TYPE(b32[l]), FLOAT_TYPE(s0_hi4[2]),
|
|
fma(FLOAT_TYPE(b48[l]), FLOAT_TYPE(s0_hi4[3]),
|
|
fma(FLOAT_TYPE(b64[l]), FLOAT_TYPE(s4_hi4[0]),
|
|
fma(FLOAT_TYPE(b80[l]), FLOAT_TYPE(s4_hi4[1]),
|
|
fma(FLOAT_TYPE(b96[l]), FLOAT_TYPE(s4_hi4[2]),
|
|
fma(FLOAT_TYPE(b112[l]), FLOAT_TYPE(s4_hi4[3]), sum2))))))));
|
|
}
|
|
temp[n] = fma(dall, sum1, fma(-dmin, sum2, temp[n]));
|
|
}
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
|
tmpsh[n][tid] = temp[n];
|
|
}
|
|
barrier();
|
|
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
|
|
if (tid < s) {
|
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
|
tmpsh[n][tid] += tmpsh[n][tid + s];
|
|
}
|
|
}
|
|
barrier();
|
|
}
|
|
if (tid == 0) {
|
|
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
|
|
data_d[d_offset + first_row + n] = D_TYPE(tmpsh[n][0]);
|
|
}
|
|
}
|
|
}
|
|
|
|
void main() {
|
|
const uint first_row = NUM_ROWS * (gl_WorkGroupID.x + gl_NumWorkGroups.x * gl_WorkGroupID.z);
|
|
|
|
// do NUM_ROWS at a time, unless there aren't enough remaining rows
|
|
if (first_row + NUM_ROWS <= p.stride_d) {
|
|
compute_outputs(first_row, NUM_ROWS);
|
|
} else {
|
|
if (first_row >= p.stride_d) {
|
|
return;
|
|
}
|
|
compute_outputs(first_row, p.stride_d - first_row);
|
|
}
|
|
}
|