Bad indents and trailing whitespaces
This commit is contained in:
parent
f63860eaac
commit
dd3df754b2
1 changed files with 9 additions and 9 deletions
|
@ -16386,8 +16386,8 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||||
// original formula use_more_bits :
|
// original formula use_more_bits :
|
||||||
// return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
|
// return i_layer < n_layers/8 || i_layer >= 7*n_layers/8 || (i_layer - n_layers/8)%3 == 2;
|
||||||
// The intervals of 3 are replaced by a broad bump in the central layers.
|
// The intervals of 3 are replaced by a broad bump in the central layers.
|
||||||
// In the case of a 32 layers model, layers 5-7 and layers 12-16 are always skipped.
|
// In the case of a 32 layers model, layers 5-7 and layers 12-16 are always skipped.
|
||||||
// In the case of a 40 layers model, layers 6-9 and layers 15-20 are always skipped.
|
// In the case of a 40 layers model, layers 6-9 and layers 15-20 are always skipped.
|
||||||
// difquant_half_tensors replaces it and keeps the broad 50% bump to the upper quant. Ex : 16/32
|
// difquant_half_tensors replaces it and keeps the broad 50% bump to the upper quant. Ex : 16/32
|
||||||
auto difquant_half_tensors = [](int i_layer, int n_layers) -> bool {
|
auto difquant_half_tensors = [](int i_layer, int n_layers) -> bool {
|
||||||
return i_layer <= n_layers/8 || i_layer > 6*n_layers/8 || (i_layer >= 2*n_layers/8 && i_layer < 3*n_layers/8);
|
return i_layer <= n_layers/8 || i_layer > 6*n_layers/8 || (i_layer >= 2*n_layers/8 && i_layer < 3*n_layers/8);
|
||||||
|
@ -16448,7 +16448,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||||
else new_type = GGML_TYPE_IQ4_XS;
|
else new_type = GGML_TYPE_IQ4_XS;
|
||||||
}
|
}
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XL || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_XL || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
|
||||||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S) {
|
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S) {
|
||||||
if (qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q6_K;
|
if (qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q6_K;
|
||||||
else if (qs.model.hparams.n_head() <= 20) new_type = GGML_TYPE_IQ4_XS;
|
else if (qs.model.hparams.n_head() <= 20) new_type = GGML_TYPE_IQ4_XS;
|
||||||
else new_type = GGML_TYPE_Q4_K;
|
else new_type = GGML_TYPE_Q4_K;
|
||||||
|
@ -16478,7 +16478,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||||
if (qs.model.hparams.n_expert >= 4) {
|
if (qs.model.hparams.n_expert >= 4) {
|
||||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L ||
|
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L ||
|
||||||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ||
|
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ||
|
||||||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) {
|
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) {
|
||||||
new_type = GGML_TYPE_Q4_K;
|
new_type = GGML_TYPE_Q4_K;
|
||||||
}
|
}
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
|
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS ||
|
||||||
|
@ -16611,20 +16611,20 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||||
}
|
}
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L) {
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_L) {
|
||||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q4_K;
|
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q4_K;
|
||||||
else new_type = GGML_TYPE_Q3_K;
|
else new_type = GGML_TYPE_Q3_K;
|
||||||
}
|
}
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) {
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) {
|
||||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q4_K;
|
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q4_K;
|
||||||
else new_type = GGML_TYPE_Q3_K;
|
else new_type = GGML_TYPE_Q3_K;
|
||||||
}
|
}
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||||
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q5_K;
|
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q5_K;
|
||||||
else if (qs.model.hparams.n_gqa() >= 2) new_type = GGML_TYPE_Q4_K;
|
else if (qs.model.hparams.n_gqa() >= 2) new_type = GGML_TYPE_Q4_K;
|
||||||
else new_type = GGML_TYPE_Q3_K;
|
else new_type = GGML_TYPE_Q3_K;
|
||||||
}
|
}
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) {
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) {
|
||||||
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q5_K;
|
if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q5_K;
|
||||||
else new_type = GGML_TYPE_Q4_K;
|
else new_type = GGML_TYPE_Q4_K;
|
||||||
}
|
}
|
||||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S ||
|
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S ||
|
||||||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) && (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)) {
|
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) && (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2)) {
|
||||||
|
@ -16722,7 +16722,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) {
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) {
|
||||||
if (qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
if (qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
||||||
else if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q3_K;
|
else if (qs.model.hparams.n_gqa() >= 2 || qs.model.hparams.n_expert >= 2) new_type = GGML_TYPE_Q3_K;
|
||||||
else new_type = GGML_TYPE_Q2_K;
|
else new_type = GGML_TYPE_Q2_K;
|
||||||
}
|
}
|
||||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) {
|
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XL) {
|
||||||
if (qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
if (qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue