gguf-debug: no mutex, verify type, fix stride.
This commit is contained in:
parent
067e294783
commit
f63b722486
2 changed files with 53 additions and 60 deletions
|
@ -26,80 +26,69 @@ llama_new_context_with_model: CUDA0 compute buffer size = 105.00 MiB
|
|||
llama_new_context_with_model: CUDA_Host compute buffer size = 6.01 MiB
|
||||
llama_new_context_with_model: graph nodes = 1225
|
||||
llama_new_context_with_model: graph splits = 2
|
||||
|
||||
system_info: n_threads = 6 / 12 | AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 |
|
||||
ggml_debug: inp_embd = GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
|
||||
ggml_debug: inp_embd = (f32) GET_ROWS(token_embd.weight{2560, 51200, 1, 1}, inp_tokens{1, 1, 1, 1}}) = {2560, 1, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -0.0181, -0.0181, 0.0453, ...],
|
||||
[ -0.0181, 0.0272, 0.0272, ...],
|
||||
],
|
||||
]
|
||||
ggml_debug: norm-0 = NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
|
||||
ggml_debug: norm-0 = (f32) NORM(CUDA0#inp_embd#0{2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -0.6989, -0.6989, 1.7686, ...],
|
||||
[ -0.6989, 1.0636, 1.0636, ...],
|
||||
],
|
||||
]
|
||||
ggml_debug: norm_w-0 = MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
|
||||
ggml_debug: norm_w-0 = (f32) MUL(norm-0{2560, 1, 1, 1}, blk.0.attn_norm.weight{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -0.1800, -0.1788, 0.4663, ...],
|
||||
[ -0.1800, 0.2817, 0.2632, ...],
|
||||
],
|
||||
]
|
||||
ggml_debug: attn_norm-0 = ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
|
||||
ggml_debug: attn_norm-0 = (f32) ADD(norm_w-0{2560, 1, 1, 1}, blk.0.attn_norm.bias{2560, 1, 1, 1}}) = {2560, 1, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -0.1863, -0.1712, 0.4750, ...],
|
||||
[ -0.1863, 0.2970, 0.2604, ...],
|
||||
],
|
||||
]
|
||||
ggml_debug: wqkv-0 = MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
|
||||
ggml_debug: wqkv-0 = (f32) MUL_MAT(blk.0.attn_qkv.weight{2560, 7680, 1, 1}, attn_norm-0{2560, 1, 1, 1}}) = {7680, 1, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -1.1238, -2.3523, -1.6938, ...],
|
||||
[ -1.1238, 1.2876, -1.8086, ...],
|
||||
],
|
||||
]
|
||||
ggml_debug: bqkv-0 = ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
|
||||
ggml_debug: bqkv-0 = (f32) ADD(wqkv-0{7680, 1, 1, 1}, blk.0.attn_qkv.bias{7680, 1, 1, 1}}) = {7680, 1, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -1.1135, -2.5451, -1.8321, ...],
|
||||
[ -1.1135, 1.4604, -1.9226, ...],
|
||||
],
|
||||
]
|
||||
ggml_debug: bqkv-0 (view) = VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
|
||||
ggml_debug: bqkv-0 (view) = (f32) VIEW(bqkv-0{7680, 1, 1, 1}, }) = {2560, 1, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -1.1135, -2.5451, -1.8321, ...],
|
||||
[ -1.1135, 1.4604, -1.9226, ...],
|
||||
],
|
||||
]
|
||||
ggml_debug: Qcur-0 = CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
|
||||
ggml_debug: Qcur-0 = (f32) CONT(bqkv-0 (view){2560, 1, 1, 1}, }) = {2560, 1, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -1.1135, -2.5451, -1.8321, ...],
|
||||
[ -1.1135, 1.4604, -1.9226, ...],
|
||||
],
|
||||
]
|
||||
ggml_debug: Qcur-0 (reshaped) = RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
|
||||
ggml_debug: Qcur-0 (reshaped) = (f32) RESHAPE(Qcur-0{2560, 1, 1, 1}, }) = {80, 32, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -1.1135, 0.8348, 0.8010, ...],
|
||||
[ -2.5451, -1.1920, 0.0546, ...],
|
||||
[ -1.8321, -0.0515, 0.8186, ...],
|
||||
[ -1.1135, 1.4604, -1.9226, ...],
|
||||
[ -0.3608, 0.5076, -1.8866, ...],
|
||||
[ 1.7643, 0.0273, -2.1065, ...],
|
||||
...
|
||||
],
|
||||
]
|
||||
ggml_debug: Qcur-0 = ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
|
||||
ggml_debug: Qcur-0 = (f32) ROPE(Qcur-0 (reshaped){80, 32, 1, 1}, CUDA0#inp_pos#0{1, 1, 1, 1}}) = {80, 32, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -1.1135, 0.8348, 0.8010, ...],
|
||||
[ -2.5451, -1.1920, 0.0546, ...],
|
||||
[ -1.8321, -0.0515, 0.8186, ...],
|
||||
...
|
||||
],
|
||||
]
|
||||
ggml_debug: Qcur-0 = SCALE(Qcur-0{80, 32, 1, 1}, }) = {80, 32, 1, 1}
|
||||
[
|
||||
[
|
||||
[ -0.1245, 0.0933, 0.0896, ...],
|
||||
[ -0.2845, -0.1333, 0.0061, ...],
|
||||
[ -0.2048, -0.0058, 0.0915, ...],
|
||||
[ -1.1135, 1.4604, -1.9226, ...],
|
||||
[ -0.3608, 0.5076, -1.8866, ...],
|
||||
[ 1.7643, 0.0273, -2.1065, ...],
|
||||
...
|
||||
],
|
||||
]
|
||||
|
|
|
@ -3,13 +3,14 @@
|
|||
#include "ggml.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <string>
|
||||
#include <mutex>
|
||||
#include <vector>
|
||||
|
||||
/**
|
||||
* This the arbitrary data which will be passed to each callback.
|
||||
* Later on we can for example add operation or tensor name filter from the CLI arg, or a file descriptor to dump the tensor.
|
||||
*/
|
||||
struct callback_data {
|
||||
std::mutex m_mutex;
|
||||
std::vector<float> data;
|
||||
};
|
||||
|
||||
|
@ -24,25 +25,28 @@ static std::string ggml_ne_string(const ggml_tensor * t) {
|
|||
return str;
|
||||
}
|
||||
|
||||
static void ggml_print_tensor(const float * data, const int64_t * ne) {
|
||||
int i, j, k;
|
||||
printf(" [\n");
|
||||
for (i = 0; i < ne[2] && i < 3; i++) {
|
||||
printf(" [\n");
|
||||
for (j = 0; j < ne[1] && j < 3; j++) {
|
||||
printf(" [");
|
||||
for (k = 0; k < ne[0] && k < 3; k++) {
|
||||
printf("%8.4f", data[k * ne[1] * ne[2] + j * ne[2] + i]);
|
||||
if (k < ne[0] - 1 && k < 2) printf(", ");
|
||||
static void ggml_print_tensor(const float * data, const int64_t * ne, const size_t * nb, int64_t n) {
|
||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||
printf(" [\n");
|
||||
for (int64_t i2 = 0; i2 < ne[2] && i2 < n; i2++) {
|
||||
printf(" [\n");
|
||||
for (int64_t i1 = 0; i1 < ne[1] && i1 < n; i1++) {
|
||||
printf(" [");
|
||||
for (int64_t i0 = 0; i0 < ne[0] && i0 < n; i0++) {
|
||||
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
||||
float v = *(data + i);
|
||||
printf("%8.4f", v);
|
||||
if (i0 < ne[0] - 1 && i0 < n - 1) printf(", ");
|
||||
}
|
||||
if (ne[0] > n) printf(", ...");
|
||||
printf("],\n");
|
||||
}
|
||||
if (ne[0] > 3) printf(", ...");
|
||||
printf("],\n");
|
||||
if (ne[1] > n) printf(" ...\n");
|
||||
printf(" ],\n");
|
||||
}
|
||||
if (ne[1] > 3) printf(" ...\n");
|
||||
printf(" ],\n");
|
||||
if (ne[2] > n) printf(" ...\n");
|
||||
printf(" ]\n");
|
||||
}
|
||||
if (ne[2] > 3) printf(" ...\n");
|
||||
printf(" ]\n");
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -64,15 +68,13 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
|||
return true; // Always retrieve data
|
||||
}
|
||||
|
||||
std::lock_guard<std::mutex> lock(cb_data->m_mutex);
|
||||
|
||||
char src1_str[128] = {0};
|
||||
if (src1) {
|
||||
sprintf(src1_str, "%s{%s}", src1->name, ggml_ne_string(src1).c_str());
|
||||
}
|
||||
|
||||
printf("%s: %24s = %10s(%s{%s}, %s}) = {%s} \n", __func__,
|
||||
t->name, ggml_op_name(t->op),
|
||||
printf("%s: %24s = (%s) %10s(%s{%s}, %s}) = {%s} \n", __func__,
|
||||
t->name, ggml_type_name(t->type), ggml_op_name(t->op),
|
||||
src0->name, ggml_ne_string(src0).c_str(),
|
||||
src1 ? src1_str : "",
|
||||
ggml_ne_string(t).c_str());
|
||||
|
@ -87,8 +89,10 @@ static bool ggml_debug(struct ggml_tensor * t, bool ask, void * user_data) {
|
|||
ggml_backend_tensor_get(t, cb_data->data.data(), 0, n_bytes);
|
||||
}
|
||||
|
||||
const float * data = is_host ? (const float *) t->data : cb_data->data.data();
|
||||
ggml_print_tensor(data, t->ne);
|
||||
if (t->type == GGML_TYPE_F32 || t->type == GGML_TYPE_F16) {
|
||||
const float * data = is_host ? (const float *) t->data : cb_data->data.data();
|
||||
ggml_print_tensor(data, t->ne, t->nb, 3);
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue