fix(bamba conv): Jamba -> Bamba

Branch: BambaArchitecture

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
This commit is contained in:
Gabe Goodhart 2024-12-03 16:27:29 -07:00
parent e3525e9e50
commit fd98682ec3
3 changed files with 21 additions and 48 deletions

View file

@ -3093,12 +3093,12 @@ class Mamba2Model(Model):
return data_torch.squeeze()
# TODO: Switch to BambaForCausalLM once ready in transformers
# @Model.register("BambaForCausalLM")
@Model.register("JambaForCausalLM")
class JambaModel(Model):
"""Jamba is a hybrid SSM + Attention model and can support either Mamba or
Mamba2 style SSMs
"""
model_arch = gguf.MODEL_ARCH.JAMBA
class BambaModel(Mamba2Model):
"""Bamba is a hybrid SSM + Attention model that uses Mamba2 SSM layers"""
model_arch = gguf.MODEL_ARCH.BAMBA
def __init__(self, *args, **kwargs):
@ -3108,17 +3108,7 @@ class JambaModel(Model):
super().__init__(*args, **kwargs)
# Determine if this is using Mamba or Mamba2
self._mamba_version = self.hparams.get("mamba_version", "v1")
self._mamba_model_class: type[Model] = {
"v1": MambaModel,
"v2": Mamba2Model,
}.get(self._mamba_version, Model)
assert (
self._mamba_model_class is not Model
), f"Unsupported mamba_version: {self._mamba_version}"
# Use Llama conversion for attention / FF / MoE
# Use Llama conversion for attention
self._transformer_model_class: type[Model] = LlamaModel
# Lists of which layers use ssm vs attention
@ -3152,17 +3142,14 @@ class JambaModel(Model):
keys = list(keys) + prefixed
return super().find_hparam(keys, *args, **kwargs)
def set_vocab(self):
self._mamba_model_class.set_vocab(self)
def set_gguf_parameters(self):
## General Params ##
self.gguf_writer.add_embedding_length(self.d_model)
self.gguf_writer.add_mamba_version(self._mamba_version)
self.gguf_writer.add_block_count(self.block_count)
self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
## Mamba mixer params ##
self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
@ -3175,8 +3162,6 @@ class JambaModel(Model):
self.gguf_writer.add_ssm_conv_bias(self.find_hparam(["conv_bias"], optional=True) or False)
self.gguf_writer.add_ssm_proj_bias(self.find_hparam(["proj_bias"], optional=True) or False)
self.gguf_writer.add_ssm_chunk_size(self.find_hparam(["chunk_size"]))
# TODO: I think this will always be true if available?
# "use_mamba_kernels": true,
## Attention params ##
self.gguf_writer.add_attn_layer_indices(self._attn_layers)
@ -3185,33 +3170,27 @@ class JambaModel(Model):
self.gguf_writer.add_head_count_kv(self.find_hparam(["num_key_value_heads", "n_head_kv"]))
## Feed Forward Params ##
rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
self.gguf_writer.add_layer_norm_rms_eps(
self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
)
## Validation ##
assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
# TODO: Support MoE FFN configurations
# "num_experts"
# "num_experts_per_tok"
# "expert_layer_offset"
# "expert_layer_period"
assert self.hparams.get("num_experts") in [None, 1], "MoE not currently supported"
## UNUSED?? ##
# "tie_word_embeddings" <-- Implied by presence of output weights
# "router_aux_loss_coef" <-- Only used if outputting router logits
# "num_logits_to_keep" <-- Always only keep final token logits
# "output_router_logits" <-- Never output router logits since only doing generate
# "use_cache" <-- KV Cache always enabled
# "sliding_window" <-- Used for flash attention in transformers
# "tie_word_embeddings" <-- Implied by presence of output weights
# "num_logits_to_keep" <-- Always only keep final token logits
# "use_cache" <-- KV Cache always enabled
# "use_mamba_kernels" <-- I think this will always be true if available?
def modify_tensors(
self, data_torch: Tensor, name: str, bid: int | None
) -> Iterable[tuple[str, Tensor]]:
# Determine whether this is a mamaba layer or an attention layer
if bid in self._ssm_layers:
for mamba_new_name, data_torch in self._mamba_model_class.modify_tensors(
self, data_torch, name, bid
for mamba_new_name, data_torch in super().modify_tensors(
data_torch, name, bid
):
yield mamba_new_name, data_torch
elif bid in self._attn_layers:
@ -3229,9 +3208,7 @@ class JambaModel(Model):
new_name: str, bid: int | None,
) -> Tensor:
if bid in self._ssm_layers:
return self._mamba_model_class.reshape_tensors(
self, data_torch, new_name, bid
)
return super().reshape_tensors(data_torch, new_name, bid)
elif bid in self._attn_layers:
return self._transformer_model_class.reshape_tensors(
self, data_torch, new_name, bid

View file

@ -158,8 +158,7 @@ class Keys:
PROJ_BIAS = "{arch}.ssm.proj_bias"
class HybridMamba:
MAMBA_VERSION = "{arch}.mamba.version"
ATTN_LAYER_INDICES = "{arch}.attn.layers"
ATTN_LAYER_INDICES = "{arch}.attention.layer_indices"
class WKV:
HEAD_SIZE = "{arch}.wkv.head_size"
@ -250,7 +249,7 @@ class MODEL_ARCH(IntEnum):
RWKV6 = auto()
MAMBA = auto()
MAMBA2 = auto()
JAMBA = auto()
BAMBA = auto()
XVERSE = auto()
COMMAND_R = auto()
DBRX = auto()
@ -415,7 +414,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.RWKV6: "rwkv6",
MODEL_ARCH.MAMBA: "mamba",
MODEL_ARCH.MAMBA2: "mamba2",
MODEL_ARCH.JAMBA: "jamba",
MODEL_ARCH.BAMBA: "bamba",
MODEL_ARCH.XVERSE: "xverse",
MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx",
@ -1046,7 +1045,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.SSM_NORM,
MODEL_TENSOR.SSM_OUT,
],
MODEL_ARCH.JAMBA: [
MODEL_ARCH.BAMBA: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,

View file

@ -805,9 +805,6 @@ class GGUFWriter:
def add_ssm_proj_bias(self, value: bool) -> None:
self.add_bool(Keys.SSM.PROJ_BIAS.format(arch=self.arch), value)
def add_mamba_version(self, value: str) -> None:
self.add_string(Keys.HybridMamba.MAMBA_VERSION.format(arch=self.arch), value)
def add_attn_layer_indices(self, values: list[int]) -> None:
self.add_array(Keys.HybridMamba.ATTN_LAYER_INDICES.format(arch=self.arch), values)