* readme: introduce gpustack
GPUStack is an open-source GPU cluster manager for running large
language models, which uses llama.cpp as the backend.
Signed-off-by: thxCode <thxcode0824@gmail.com>
* readme: introduce gguf-parser
GGUF Parser is a tool to review/check the GGUF file and estimate the
memory usage without downloading the whole model.
Signed-off-by: thxCode <thxcode0824@gmail.com>
---------
Signed-off-by: thxCode <thxcode0824@gmail.com>
* Optimize Vulkan backend for better CPU performance and less GPU synchronization overhead.
- Allocation overhead for the temporary std::vectors was easily detectable with a sampling profiler and simple to remove.
- ggml_vk_sync_buffer introduce a full pipeline sync which has a significant cost on the GPU side, sometimes larger than the actual kernel execution. Adding only barriers for shader read/writes and transfers seems to be sufficient looking at the code which either launches compute kernels or copies tensors.
* Fix small typo
---------
Co-authored-by: 0cc4m <picard12@live.de>
* gguf-py : add T5ENCODER model architecture
* common : call llama_decode() during warmup only if the model has decoder
* convert-hf : add T5EncoderModel
* llama : add llama_model_has_decoder() API function
* llama : split build_t5() into build_t5_encoder() and build_t5_decoder()
* llama : add support for LLM_ARCH_T5ENCODER
* llama-embedding : add support for LLAMA_POOLING_TYPE_NONE
* llama-embedding : add support for encoder-only models
---------
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
* ggml: use vulkan as gpu backend when available
Signed-off-by: Matt Stephenson <mstephenson6@users.noreply.github.com>
* whisper: enable using vk as default buffer type
Signed-off-by: Matt Stephenson <mstephenson6@users.noreply.github.com>
---------
Signed-off-by: Matt Stephenson <mstephenson6@users.noreply.github.com>
This commit adds the `--pooling` option to the README.md file in the
`examples/embedding` directory.
The motivation for adding this options is that currently if the model
used does not specify a pooling type the embedding example will fail
with the following error message:
```console
main: error: pooling type NONE not supported
```
This commit also updates the name of the executable in the examples
section.
* gguf-py : use classes for quants
* convert_hf : simplify internal quantization type selection
* gguf-py : fix flake8 lint
* gguf-py : fix BF16 numpy view type
* gguf-py : remove LlamaFileTypeMap
Too specific to 'llama.cpp', and would be a maintenance burden
to keep up to date.
* gguf-py : add generic quantize and dequantize functions
The quant classes no longer need to be known,
only the target or the source type,
for 'quantize' and 'dequantize', respectively.
This PR simply replicates the tensor per tensor custom quantization CLI feature brought by Ikawrakow for the token embeddings and output tensors in #6239 to :
- attn_q.weight
- attn_k.weight
- attn_v.weight
- attn_qkv.weight
- attn_output.weight
- ffn_gate
- ffn_down
- ffn_up
This, to allow LlamaCPP users to easily tailor their chosen quant strategy to their needs, but ALSO to allow them to requant easily a quant "a bit too big" for their VRAM in the case of GPU users.
For example, a nice Miqu 70b Q5_K_M (which has no FP16 weight available beyond dequants of Q5_K_M) is short of VRAM in one's pair of 3090s.
And one is French, like me, so Miqu is one of his main local model.
Requanting the Q5_K_M in... Q5_K_M, BUT with all the ffn_down and attn_v.weight tensors specified in Q5_K, and the attn_q.weight specified in Q4_K_M might save you approximatively 1.5GB without degrading too much the quality.
That means 1.3-1.4GB of additional context (yummy with FA and KV Cache) and let's say 100-200MB of additional compute cache with a resonable Blas Batch Size in MMQ.
But also : the unspecified tensors won't be requantized, because LlamaCPP just copy the tensor rather than requantizing it when a specific tensor quant of the chosent strategy is the same than the source.
So one can enjoy the original Miqu quant of these tensors rather than a dequant/requant.
And that's just an example.
I think that many LCPP users could enjoy this feature for their own needs.
This, even if it remains quite basic :
This PR doesn't support hybrid quantization of a tensor (example, with a fraction of the layers in the upper quant (from layer 0 onwards), or the "more_bits" calculus devised by Ikawrakow to create intervals of different quants (ex : 1 layer every 3 layers quantized with the superior quant).
CL example: `llama-quantize --allow-requantize --imatrix Q:\iMatrix\Sheared\princeton-nlp_Sheared-LLaMA-2.7B-AR-b1924-Q8_0.iMatrix_Wiki_c32_ch500.dat --output-tensor-type q4_0 --token-embedding-type q4_0 --attn-q-type q4_0 --attn-k-type q4_0 --attn-v-type q4_0 --attn-output-type q4_0 --ffn-gate-type q4_0 --ffn-down-type q4_0 --ffn-up-type q4_0 D:\text-generation-webui\models\Q8_0\princeton-nlp_Sheared-LLaMA-2.7B-AR-b1924-Q8_0.gguf D:\text-generation-webui\models\princeton-nlp_Sheared-LLaMA-2.7B-AR-b228N.iMatrix_Wiki_c32_ch500-Q5_K_M.gguf Q5_K_M` for a full q4_0 quant equivalent to a pure quant, but specified tensor by tensor.