* server/bench: - support openAI streaming standard output with [DONE]\n\n - export k6 raw results in csv - fix too many tcp idle connection in tcp_wait - add metric time to emit first token * server/bench: - fix when prometheus not started - wait for server to be ready before starting bench
		
			
				
	
	
		
			119 lines
		
	
	
	
		
			4.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			119 lines
		
	
	
	
		
			4.2 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
| ### Server benchmark tools
 | |
| 
 | |
| Benchmark is using [k6](https://k6.io/).
 | |
| 
 | |
| ##### Install k6 and sse extension
 | |
| 
 | |
| SSE is not supported by default in k6, you have to build k6 with the [xk6-sse](https://github.com/phymbert/xk6-sse) extension.
 | |
| 
 | |
| Example (assuming golang >= 1.21 is installed):
 | |
| ```shell
 | |
| go install go.k6.io/xk6/cmd/xk6@latest
 | |
| $GOPATH/bin/xk6 build master \
 | |
| --with github.com/phymbert/xk6-sse
 | |
| ```
 | |
| 
 | |
| #### Download a dataset
 | |
| 
 | |
| This dataset was originally proposed in [vLLM benchmarks](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md).
 | |
| 
 | |
| ```shell
 | |
| wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
 | |
| ```
 | |
| 
 | |
| #### Download a model
 | |
| Example for PHI-2
 | |
| 
 | |
| ```shell
 | |
| ../../../scripts/hf.sh --repo ggml-org/models --file phi-2/ggml-model-q4_0.gguf
 | |
| ```
 | |
| 
 | |
| #### Start the server
 | |
| The server must answer OAI Chat completion requests on `http://localhost:8080/v1` or according to the environment variable `SERVER_BENCH_URL`.
 | |
| 
 | |
| Example:
 | |
| ```shell
 | |
| llama-server --host localhost --port 8080 \
 | |
|   --model ggml-model-q4_0.gguf \
 | |
|   --cont-batching \
 | |
|   --metrics \
 | |
|   --parallel 8 \
 | |
|   --batch-size 512 \
 | |
|   --ctx-size 4096 \
 | |
|   -ngl 33
 | |
| ```
 | |
| 
 | |
| #### Run the benchmark
 | |
| 
 | |
| For 500 chat completions request with 8 concurrent users during maximum 10 minutes, run:
 | |
| ```shell
 | |
| ./k6 run script.js --duration 10m --iterations 500 --vus 8
 | |
| ```
 | |
| 
 | |
| The benchmark values can be overridden with:
 | |
| - `SERVER_BENCH_URL` server url prefix for chat completions, default `http://localhost:8080/v1`
 | |
| - `SERVER_BENCH_N_PROMPTS` total prompts to randomly select in the benchmark, default `480`
 | |
| - `SERVER_BENCH_MODEL_ALIAS` model alias to pass in the completion request, default `my-model`
 | |
| - `SERVER_BENCH_MAX_TOKENS` max tokens to predict, default: `512`
 | |
| - `SERVER_BENCH_DATASET` path to the benchmark dataset file
 | |
| - `SERVER_BENCH_MAX_PROMPT_TOKENS` maximum prompt tokens to filter out in the dataset: default `1024`
 | |
| - `SERVER_BENCH_MAX_CONTEXT` maximum context size of the completions request to filter out in the dataset: prompt + predicted tokens, default `2048`
 | |
| 
 | |
| Note: the local tokenizer is just a string space split, real number of tokens will differ.
 | |
| 
 | |
| Or with [k6 options](https://k6.io/docs/using-k6/k6-options/reference/):
 | |
| 
 | |
| ```shell
 | |
| SERVER_BENCH_N_PROMPTS=500 k6 run script.js --duration 10m --iterations 500 --vus 8
 | |
| ```
 | |
| 
 | |
| To [debug http request](https://k6.io/docs/using-k6/http-debugging/) use `--http-debug="full"`.
 | |
| 
 | |
| #### Metrics
 | |
| 
 | |
| Following metrics are available computed from the OAI chat completions response `usage`:
 | |
| - `llamacpp_tokens_second` Trend of `usage.total_tokens / request duration`
 | |
| - `llamacpp_prompt_tokens` Trend of `usage.prompt_tokens`
 | |
| - `llamacpp_prompt_tokens_total_counter` Counter of `usage.prompt_tokens`
 | |
| - `llamacpp_completion_tokens` Trend of `usage.completion_tokens`
 | |
| - `llamacpp_completion_tokens_total_counter` Counter of `usage.completion_tokens`
 | |
| - `llamacpp_completions_truncated_rate` Rate of completions truncated, i.e. if `finish_reason === 'length'`
 | |
| - `llamacpp_completions_stop_rate` Rate of completions stopped by the model, i.e. if `finish_reason === 'stop'`
 | |
| 
 | |
| The script will fail if too many completions are truncated, see `llamacpp_completions_truncated_rate`.
 | |
| 
 | |
| K6 metrics might be compared against [server metrics](../README.md), with:
 | |
| 
 | |
| ```shell
 | |
| curl http://localhost:8080/metrics
 | |
| ```
 | |
| 
 | |
| ### Using the CI python script
 | |
| The `bench.py` script does several steps:
 | |
| - start the server
 | |
| - define good variable for k6
 | |
| - run k6 script
 | |
| - extract metrics from prometheus
 | |
| 
 | |
| It aims to be used in the CI, but you can run it manually:
 | |
| 
 | |
| ```shell
 | |
| LLAMA_SERVER_BIN_PATH=../../../cmake-build-release/bin/llama-server python bench.py \
 | |
|               --runner-label local \
 | |
|               --name local \
 | |
|               --branch `git rev-parse --abbrev-ref HEAD` \
 | |
|               --commit `git rev-parse HEAD` \
 | |
|               --scenario script.js \
 | |
|               --duration 5m \
 | |
|               --hf-repo ggml-org/models	 \
 | |
|               --hf-file phi-2/ggml-model-q4_0.gguf \
 | |
|               --model-path-prefix models \
 | |
|               --parallel 4 \
 | |
|               -ngl 33 \
 | |
|               --batch-size 2048 \
 | |
|               --ubatch-size	256 \
 | |
|               --ctx-size 4096 \
 | |
|               --n-prompts 200 \
 | |
|               --max-prompt-tokens 256 \
 | |
|               --max-tokens 256
 | |
| ```
 |