llama.cpp/ggml/src/ggml-cuda/mma.cuh
Johannes Gäßler 864a0b67a6
CUDA: use mma PTX instructions for FlashAttention (#11583)
* CUDA: use mma PTX instructions for FlashAttention

* __shfl_sync workaround for movmatrix

* add __shfl_sync to HIP

Co-authored-by: Diego Devesa <slarengh@gmail.com>
2025-02-02 19:31:09 +01:00

458 lines
16 KiB
Text

// This file contains primitives that expose the tensor core PTX instructions for CUDA code.
// The primitives can be used in a similar way as the nvcuda::wmma interface but with a well-defined memory layout.
// The documentation for the PTX instructions can be found under:
// https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#matrix-multiply-accumulate-operation-using-mma-instruction
//
// Like with nvcuda::wmma there are three types of matrix tiles: A, B, and C with A @ B = C.
// A is a row-major matrix with shape I x K.
// B is a column-major matrix with shape K x J.
// C is a column-major matrix with shape I x J.
// Note that along their lowest dimension I, J, and K are measured in physical 32 bit elements instead of logical elements.
// The functions get_i, get_j, and get_k can be used to get the physical 32 bit index of the lth element of a thread within a tile.
// All matrix tiles have ne physical 32 bit elements per warp.
//
// As described in the documentation, all pointers for load_ldmatrix must be to shared memory and aligned to 16 bytes.
#include "common.cuh"
#if CUDART_VERSION >= 11800
static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) {
int ret = 0;
#ifdef NEW_MMA_AVAILABLE
asm("movmatrix.sync.aligned.m8n8.trans.b16 %0, %1;"
: "+r"(ret) : "r"(x));
#else
NO_DEVICE_CODE;
#endif // defined(NEW_MMA_AVAILABLE)
return ret;
}
#else
static __device__ __forceinline__ int ggml_cuda_movmatrix(const int x) {
// Imagine transposing row-major matrix to column-major matrix.
const int src_i_low = 2 * (threadIdx.x % 4);
const int src_i_high = src_i_low + 1;
const int src_j = threadIdx.x / 4;
const int src_laneid_low = src_i_low * 4 + src_j / 2;
const int src_laneid_high = src_i_high * 4 + src_j / 2;
const int shift_low = ((src_j + 0) % 2) * 16;
const int shift_high = ((src_j + 1) % 2) * 16;
const int ret_low = (__shfl_sync(0xFFFFFFFF, x, src_laneid_low, WARP_SIZE) >> shift_low) & 0x0000FFFF;
const int ret_high = (__shfl_sync(0xFFFFFFFF, x, src_laneid_high, WARP_SIZE) << shift_high) & 0xFFFF0000;
return ret_low | ret_high;
}
#endif // CUDART_VERSION >= 11800
template <typename T>
struct mma_A_I16K4 {
static_assert(sizeof(T) == 4, "bad type size");
static constexpr int I = 16;
static constexpr int K = 4;
static constexpr int ne = 2;
T x[ne];
static __device__ __forceinline__ int get_i(const int l) {
const int ret = (l%2) * (I/2) + threadIdx.x / K;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < I);
return ret;
}
static __device__ __forceinline__ int get_k(const int /* l */) {
const int ret = threadIdx.x % K;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_i(l)*stride + get_k(l)];
}
}
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
#ifdef NEW_MMA_AVAILABLE
int * xi = (int *) x;
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride;
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
: "+r"(xi[0]), "+r"(xi[1])
: "l"(xs));
#else
load_generic(xs0, stride);
#endif // NEW_MMA_AVAILABLE
}
};
template <typename T>
struct mma_A_I16K8 {
static_assert(sizeof(T) == 4, "bad type size");
static constexpr int I = 16;
static constexpr int K = 8;
static constexpr int ne = 4;
T x[ne];
static __device__ __forceinline__ int get_i(const int l) {
const int ret = (l%2) * (I/2) + threadIdx.x / (K/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < I);
return ret;
}
static __device__ __forceinline__ int get_k(const int l) {
const int ret = (l/2) * (K/2) + threadIdx.x % (K/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_i(l)*stride + get_k(l)];
}
}
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
#ifdef NEW_MMA_AVAILABLE
int * xi = (int * ) x;
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
asm("ldmatrix.sync.aligned.m8n8.x4.b16 {%0, %1, %2, %3}, [%4];"
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
: "l"(xs));
#else
GGML_UNUSED(xs0);
GGML_UNUSED(stride);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
}
__device__ __forceinline__ void load_ldmatrix_trans(const T * __restrict__ xs0, const int & stride) {
#ifdef NEW_MMA_AVAILABLE
int * xi = (int * ) x;
const int * xs = (const int *) xs0 + (threadIdx.x%I)*stride + (threadIdx.x/I)*(K/2);
asm("ldmatrix.sync.aligned.m8n8.x4.trans.b16 {%0, %1, %2, %3}, [%4];"
: "+r"(xi[0]), "+r"(xi[2]), "+r"(xi[1]), "+r"(xi[3])
: "l"(xs));
#else
GGML_UNUSED(xs0);
GGML_UNUSED(stride);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
}
__device__ __forceinline__ void transpose() {
int * xi = (int *) x;
xi[0] = ggml_cuda_movmatrix(xi[0]);
const int tmp = ggml_cuda_movmatrix(xi[1]);
xi[1] = ggml_cuda_movmatrix(xi[2]);
xi[2] = tmp;
xi[3] = ggml_cuda_movmatrix(xi[3]);
}
};
template <typename T>
struct mma_B_J8K4 {
static_assert(sizeof(T) == 4, "bad type size");
static constexpr int J = 8;
static constexpr int K = 4;
static constexpr int ne = 1;
T x[ne];
static __device__ __forceinline__ int get_j(const int /* l */) {
const int ret = threadIdx.x / K;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < J);
return ret;
}
static __device__ __forceinline__ int get_k(const int /* l */) {
const int ret = threadIdx.x % K;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_j(l)*stride + get_k(l)];
}
}
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
#ifdef NEW_MMA_AVAILABLE
int * xi = (int *) x;
const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride;
asm("ldmatrix.sync.aligned.m8n8.x1.b16 {%0}, [%1];"
: "+r"(xi[0]) : "l"(xs));
#else
load_generic(xs0, stride);
#endif // NEW_MMA_AVAILABLE
}
};
template <typename T>
struct mma_B_J8K8 {
static_assert(sizeof(T) == 4, "bad type size");
static constexpr int J = 8;
static constexpr int K = 8;
static constexpr int ne = 2;
T x[ne];
static __device__ __forceinline__ int get_j(const int /* l */) {
const int ret = threadIdx.x / (K/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < J);
return ret;
}
static __device__ __forceinline__ int get_k(const int l) {
const int ret = l * (K/2) + threadIdx.x % (K/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < K);
return ret;
}
__device__ __forceinline__ void load_generic(const T * __restrict__ xs0, const int & stride) {
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_j(l)*stride + get_k(l)];
}
}
__device__ __forceinline__ void load_ldmatrix(const T * __restrict__ xs0, const int & stride) {
#ifdef NEW_MMA_AVAILABLE
int * xi = (int *) x;
const int * xs = (const int *) xs0 + (threadIdx.x%J)*stride + ((threadIdx.x/J)*(K/2)) % K;
asm("ldmatrix.sync.aligned.m8n8.x2.b16 {%0, %1}, [%2];"
: "+r"(xi[0]), "+r"(xi[1])
: "l"(xs));
#else
load_generic(xs0, stride);
#endif // NEW_MMA_AVAILABLE
}
};
template <typename T>
struct mma_C_I16J8 {};
template <>
struct mma_C_I16J8<int> {
static constexpr int I = 16;
static constexpr int J = 8;
static constexpr int ne = 4;
int x[ne] = {0};
static __device__ __forceinline__ int get_i(const int l) {
const int ret = (l/2) * (I/2) + threadIdx.x / (J/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < I);
return ret;
}
static __device__ __forceinline__ int get_j(const int l) {
const int ret = 2 * (threadIdx.x % (J/2)) + l%2;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < J);
return ret;
}
__device__ __forceinline__ void mma(const mma_A_I16K4<int> & mma_A, const mma_B_J8K4<int> & mma_B) {
#ifdef NEW_MMA_AVAILABLE
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k16.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_B.x[0]));
#else
// On Turing m16n8k16 mma is not available, use 2x m8n8k16 mma instead:
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[0]), "+r"(x[1])
: "r"(mma_A.x[0]), "r"(mma_B.x[0]));
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[1]), "r"(mma_B.x[0]));
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
}
__device__ __forceinline__ void mma(const mma_A_I16K8<int> & mma_A, const mma_B_J8K8<int> & mma_B) {
#ifdef NEW_MMA_AVAILABLE
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k32.row.col.s32.s8.s8.s32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
: "+r"(x[0]), "+r"(x[1]), "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[0]), "r"(mma_A.x[1]), "r"(mma_A.x[2]), "r"(mma_A.x[3]), "r"(mma_B.x[0]), "r"(mma_B.x[1]));
#else
// On Turing m16n8k32 mma is not available, use 4x m8n8k16 mma instead:
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[0]), "+r"(x[1])
: "r"(mma_A.x[0]), "r"(mma_B.x[0]));
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[1]), "r"(mma_B.x[0]));
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[0]), "+r"(x[1])
: "r"(mma_A.x[2]), "r"(mma_B.x[1]));
asm("mma.sync.aligned.m8n8k16.row.col.s32.s8.s8.s32 {%0, %1}, {%2}, {%3}, {%0, %1};"
: "+r"(x[2]), "+r"(x[3])
: "r"(mma_A.x[3]), "r"(mma_B.x[1]));
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
}
};
template <>
struct mma_C_I16J8<half2> {
static constexpr int I = 16;
static constexpr int J = 4;
static constexpr int ne = 2;
half2 x[ne] = {{0.0f, 0.0f}, {0.0f, 0.0f}};
static __device__ __forceinline__ int get_i(const int l) {
const int ret = l * (I/2) + threadIdx.x / J;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < I);
return ret;
}
static __device__ __forceinline__ int get_j(const int /* l */) {
const int ret = threadIdx.x % J;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < J);
return ret;
}
__device__ __forceinline__ void mma(const mma_A_I16K8<half2> & mma_A, const mma_B_J8K8<half2> & mma_B) {
#ifdef NEW_MMA_AVAILABLE
int * Axi = (int *) mma_A.x;
int * Bxi = (int *) mma_B.x;
int * xi = (int *) x;
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k16.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3, %4, %5}, {%6, %7}, {%0, %1};"
: "+r"(xi[0]), "+r"(xi[1])
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
#else
// On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead:
asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};"
: "+r"(xi[0]), "+r"(xi[1])
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]));
asm("mma.sync.aligned.m16n8k8.row.col.f16.f16.f16.f16 {%0, %1}, {%2, %3}, {%4}, {%0, %1};"
: "+r"(xi[0]), "+r"(xi[1])
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
}
__device__ __forceinline__ mma_B_J8K8<half2> to_mma_B() {
mma_B_J8K8<half2> mma_B;
int * xi = (int *) x;
int * Bxi = (int *) mma_B.x;
Bxi[0] = ggml_cuda_movmatrix(xi[0]);
Bxi[1] = ggml_cuda_movmatrix(xi[1]);
return mma_B;
}
};
template <>
struct mma_C_I16J8<float> {
static constexpr int I = 16;
static constexpr int J = 8;
static constexpr int ne = 4;
float x[ne] = {0.0f, 0.0f, 0.0f, 0.0f};
static __device__ __forceinline__ int get_i(const int l) {
const int ret = (l/2) * (I/2) + threadIdx.x / (J/2);
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < I);
return ret;
}
static __device__ __forceinline__ int get_j(const int l) {
const int ret = 2 * (threadIdx.x % (J/2)) + l%2;
GGML_CUDA_ASSUME(ret >= 0);
GGML_CUDA_ASSUME(ret < J);
return ret;
}
__device__ __forceinline__ void mma(const mma_A_I16K8<half2> & mma_A, const mma_B_J8K8<half2> & mma_B) {
#ifdef NEW_MMA_AVAILABLE
int * Axi = (int *) mma_A.x;
int * Bxi = (int *) mma_B.x;
int * xi = (int *) x;
#if __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
asm("mma.sync.aligned.m16n8k16.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5, %6, %7}, {%8, %9}, {%0, %1, %2, %3};"
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
: "r"(Axi[0]), "r"(Axi[1]), "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[0]), "r"(Bxi[1]));
#else
// On Turing m16n8k16 mma is not available, use 2x m8n8k8 mma instead:
asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
: "r"(Axi[0]), "r"(Axi[1]), "r"(Bxi[0]));
asm("mma.sync.aligned.m16n8k8.row.col.f32.f16.f16.f32 {%0, %1, %2, %3}, {%4, %5}, {%6}, {%0, %1, %2, %3};"
: "+r"(xi[0]), "+r"(xi[1]), "+r"(xi[2]), "+r"(xi[3])
: "r"(Axi[2]), "r"(Axi[3]), "r"(Bxi[1]));
#endif // __CUDA_ARCH__ >= GGML_CUDA_CC_AMPERE
#else
GGML_UNUSED(mma_A);
GGML_UNUSED(mma_B);
NO_DEVICE_CODE;
#endif // NEW_MMA_AVAILABLE
}
__device__ __forceinline__ mma_B_J8K8<half2> to_mma_B() {
mma_B_J8K8<half2> mma_B;
mma_B.x[0] = make_half2(x[0], x[1]);
mma_B.x[1] = make_half2(x[2], x[3]);
int * Bxi = (int *) mma_B.x;
Bxi[0] = ggml_cuda_movmatrix(Bxi[0]);
Bxi[1] = ggml_cuda_movmatrix(Bxi[1]);
return mma_B;
}
__device__ __forceinline__ void load_generic(const float * __restrict__ xs0, const int & stride) {
#pragma unroll
for (int l = 0; l < ne; ++l) {
x[l] = xs0[get_j(l)*stride + get_i(l)];
}
}
};