pkg/libcontainer/README.md
Rohit Jnagal 60159f9737 Fix container.json sample to be loadable by nsinit.
Docker-DCO-1.1-Signed-off-by: Rohit Jnagal <jnagal@google.com> (github: rjnagal)
2014-04-25 00:17:45 +00:00

113 lines
4.3 KiB
Markdown

## libcontainer - reference implementation for containers
#### background
libcontainer specifies configuration options for what a container is. It provides a native Go implementation
for using Linux namespaces with no external dependencies. libcontainer provides many convenience functions for working with namespaces, networking, and management.
#### container
A container is a self contained directory that is able to run one or more processes without
affecting the host system. The directory is usually a full system tree. Inside the directory
a `container.json` file is placed with the runtime configuration for how the processes
should be contained and ran. Environment, networking, and different capabilities for the
process are specified in this file. The configuration is used for each process executed inside the container.
Sample `container.json` file:
```json
{
"hostname" : "koye",
"networks" : [
{
"gateway" : "172.17.42.1",
"context" : {
"bridge" : "docker0",
"prefix" : "veth"
},
"address" : "172.17.0.2/16",
"type" : "veth",
"mtu" : 1500
}
],
"cgroups" : {
"parent" : "docker",
"name" : "11bb30683fb0bdd57fab4d3a8238877f1e4395a2cfc7320ea359f7a02c1a5620"
},
"tty" : true,
"environment" : [
"HOME=/",
"PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
"HOSTNAME=11bb30683fb0",
"TERM=xterm"
],
"capabilities_mask" : [
{ "key": "SETPCAP" },
{ "key": "SYS_MODULE" },
{ "key": "SYS_RAWIO" },
{ "key": "SYS_PACCT" },
{ "key": "SYS_ADMIN" },
{ "key": "SYS_NICE" },
{ "key": "SYS_RESOURCE" },
{ "key": "SYS_TIME" },
{ "key": "SYS_TTY_CONFIG" },
{ "key": "MKNOD" },
{ "key": "AUDIT_WRITE" },
{ "key": "AUDIT_CONTROL" },
{ "key": "MAC_OVERRIDE" },
{ "key": "MAC_ADMIN" },
{ "key": "NET_ADMIN" }
],
"context" : {
"apparmor_profile" : "docker-default"
},
"mounts" : [
{
"source" : "/var/lib/docker/containers/11bb30683fb0bdd57fab4d3a8238877f1e4395a2cfc7320ea359f7a02c1a5620/resolv.conf",
"writable" : false,
"destination" : "/etc/resolv.conf",
"private" : true
},
{
"source" : "/var/lib/docker/containers/11bb30683fb0bdd57fab4d3a8238877f1e4395a2cfc7320ea359f7a02c1a5620/hostname",
"writable" : false,
"destination" : "/etc/hostname",
"private" : true
},
{
"source" : "/var/lib/docker/containers/11bb30683fb0bdd57fab4d3a8238877f1e4395a2cfc7320ea359f7a02c1a5620/hosts",
"writable" : false,
"destination" : "/etc/hosts",
"private" : true
}
],
"namespaces" : [
{ "key": "NEWNS" },
{ "key": "NEWUTS" },
{ "key": "NEWIPC" },
{ "key": "NEWPID" },
{ "key": "NEWNET" }
]
}
```
Using this configuration and the current directory holding the rootfs for a process, one can use libcontainer to exec the container. Running the life of the namespace, a `pid` file
is written to the current directory with the pid of the namespaced process to the external world. A client can use this pid to wait, kill, or perform other operation with the container. If a user tries to run a new process inside an existing container with a live namespace, the namespace will be joined by the new process.
You may also specify an alternate root place where the `container.json` file is read and where the `pid` file will be saved.
#### nsinit
`nsinit` is a cli application used as the reference implementation of libcontainer. It is able to
spawn or join new containers giving the current directory. To use `nsinit` cd into a Linux
rootfs and copy a `container.json` file into the directory with your specified configuration.
To execute `/bin/bash` in the current directory as a container just run:
```bash
nsinit exec /bin/bash
```
If you wish to spawn another process inside the container while your current bash session is
running just run the exact same command again to get another bash shell or change the command. If the original process dies, PID 1, all other processes spawned inside the container will also be killed and the namespace will be removed.
You can identify if a process is running in a container by looking to see if `pid` is in the root of the directory.